
~ TEXAS 
INSfRUMENTS 

TAfS320C4x 

1991 Digital Signal Processing Products 



TlfllS320C4x 
User's Guide 

2564090·9721 revision A 
May 1991 

• TEXAS 
INSTRUMENTS 



IMPORTANT NOTICE 

Texas Instruments (TI) reserves the right to make changes to or to discontinue 
any semiconductor product or service identified in this publication without notice. 
TI advises its customers to obtain the latest version of the relevant information 
to verify, before placing orders, that the information being relied upon is current. 

TI warrants performance of its semiconductor products to current specifications 
in accordance with TI's standard warranty. Testing and other quality control tech­
niques are utilized to the extent TI deems necessary to support this warranty. Un­
less mandated by government requirements, specific testing of all parameters of 
each device is not necessarily performed. 

TI assumes no liability for TI applications assistance, customer product design, 
software performance, or infringement of patents or services described herein. 
Nor does TI warrant or represent that license, either express or implied, is granted 
under any patent right, copyright, mask work right, or other intellectual property 
right of TI covering or relating to any combination, machine, or process in which 
such semiconductor products or services might be or are used. 

Copyright © 1991, Texas Instruments Incorporated 



Preface 

Read This First 
II 111111 HIMIIIl jill II II I II III. U III I III 11I11 11111111111111111 ill I :1111111111111 1 1111111 lilil llililllllillililllilllllllllllllll 

$ 1Ii9'" n ( orr , C" iN' ¥~)Ij M T r $i"M.1E1 I11;jj' 'r 

The purpose of this user's guide is to serve as a reference book for the 
TMS320C40 and TMS320C40-40 digital signal processors. Throughout the 
book, all references to the TMS320C40 apply to the TMS320C40-40 as 
well, unless an exception is noted. This document provides information to 
assist managers and hardware/software engineers in application develop­
ment. 

How to Use This Manual 

This document contains the following chapters: 

Chapter 1 Introduction 
A general description of the TMS320C40, its key features, and typical appli­
cations. 

Chapter 2 Architectural Overview 
Functional block diagrams. TMS320C40 design description, hardware 
components, and device operation. Instruction set summary. 

Chapter 3 CPU Registers, Memory, and Cache 
Description of the registers in the CPU primary register file and expansion 
register file. Memory maps. Instruction cache architecture, algorithm, and 
control bits. 

Chapter 4 Data Formats and Floating-Point Operation 
Description of signed and unsigned integer and floating-point formats. Dis­
cussion of floating-point multiplication, addition, subtraction, normalization, 
rounding, conversions, and reCiprocals. 

Chapter 5 Addressing 
Addressing types. Operation, encoding, and implementation of addressing 
modes. Format descriptions. Circular and bit-reversed addressing. System 
stack management. 
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Chapter 6 Program Flow Control 
Software control of program flow using repeat modes, different types of 
branching, traps, interrupts, and interlocked operations. Reset operation, 
including resulting values in registers and on pins. 

Chapter 7 External Bus Operation 
Discussion of the two SO-pin local and global memory interfaces. 
Programmable wait-states. Memory access timing. Signal group control. 
Interlocked instructions. Interrupt acknowledge timing. 

Chapter 8 Communication Ports 
Description of the six, bidirectional, 160-megabit-per-second (at 40-ns 
cycle time) communication ports designed for sharing tasks between 
processors. Memory maps of the ports and their registers. Port operation 
and coordination of port activity with CPU and DMA coprocessors. 

Chapter 9 DMA Coprocessors and 'C40 Timers 
DMA coprocessor operation. Description of coprocessor registers (channel 
control, channel- address, index, transfer count, and link pointer). Use in 
unified and split mode. Priority and CPU/DMA arbitration. Autoinitialization 
and interrupts. Operation of the 'C40 timers; their registers (global control, 
timer counter, and period). 

Chapter 10 Pipeline Operation 
Discussion of 'C40 pipeline operations. This includes pipeline conflicts and 
methods for resolving these. Clocking of memory accesses. 

Chapter 11 Assembly Language Instructions 
Functional listing of instructions. Condition code def4nitions (for conditional 
instructions such as branch conditional). Alphabetized individual instruction 
descriptions with examples. 

Chapter 12 Software Applications 
Software application examples for using various TMS320C40 
instruction-set and programming features. Code listings enhance 
explanations. 

Chapter 13 Hardware Applications 
Hardware design techniques and application examples for interfacing to 
memories, peripherals, or other microcomputers/microprocessors. Code 
listings, schematics, and timing diagrams facilitate explanations. 

Chapter 14 TMS320C4x Signal Descriptions and Electrical Characteristics 

iv 

Pin locations and pin descriptions. 'C40 dimensions and package 
description. Electrical characteristics. Signal timing and characteristics. 
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Appendix A TMS320C40 Sockets 
Two sockets available for the TMS320C40. 

Appendix B XDS510 Design Considerations 
Considerations for designing your TMS320C40 target system for use with 
the XDS51 0 emulator. 

References 

The publications in the following reference list contain useful information re­
garding functions, operations, and applications of digital signal processing. 
These books also provide other references to many usefuftechnical papers. 
The reference list is organized into categories of general DSP, speech, 
image processing, and digital control theory, and is alphabetized by author. 

Cl General Digital Signal Processing: 

Antoniou, Andreas, Digital Filters: Analysis and Design. New York, 
NY: McGraw-Hili Company, Inc., 1979. 

Brigham, E. Oran, The Fast Fourier Transform. Englewood Cliffs, NJ: 
Prentice-Hall, Inc., 1974. 

Burrus, C.S., and Parks, T.W., DFTIFFT and Convolution Algorithms. 
New York, NY: John Wiley and Sons, Inc., 1984. 

Digital Signal Processing Applications with the TMS320 Family. Texas 
Instruments, 1986; Prentice-Hall, Inc., 1987. 

Gold, Bernard, and Rader, C.M., Digital Processing of Signals. New 
York, NY: McGraw-Hili Company, Inc., 1969. 

Hamming, R.W., Digital Filters. Englewood Cliffs, NJ: Prentice-Hall, 
Inc., 1977. 

IEEE ASSP DSP Committee (Editor), Programs for Digital Signal Pro­
cessing. New York, NY: IEEE Press, 1979. 

Jackson, Leland B., Digital Filters and Signal Processing. Hingham, 
MA: Kluwer Academic Publishers, 1986. 

Jones, D.L., and Parks, T.W., A Digital Signal Processing Laboratory 
Using the TMS32010. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987. 

Lim, Jae, and Oppenheim, Alan V. (Editors), Advanced Topics in Sig­
nal Processing. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1988. 

Morris, L. Robert, Digital Signal Processing Software. Ottawa, Cana­
da: Carleton University, 1983. 

v 



Preface - Read This First 

vi 

A *e 

Meyer, Riamund and Schwartz, Karl , FFT Implementation on DSP 
Chips- Theory and Practice, Proceedings of ICAASP 90, vol. 3, 19aO 

Oppenheim, Alan V. (Editor), Applications of Digital Signal Process­
ing. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978. 

Oppenheim, Alan V., and Schafer, R.W., Digital Signal Processing. 
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975. 

Oppenheim, Alan V., and Willsky, A.N., with Young, I.T., Signals and 
Systems. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1983. 

Parks, T.W., and Burrus, C.S., Digital Filter Design. New York, NY: 
John Wiley and Sons, Inc., 1987. 

Rabiner, Lawrence R., and Gold, Bernard, Theory and Application of 
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Q Speech: 

Gray, A.H., and Markel, J.D., Linear Prediction of Speech. New York, 
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Q Image Processing: 
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Reading, MA: Addison~Wesley Publishing Company, Inc., 1977. 

Pratt, William K., Digital Image Processing. New York, NY: John Wiley 
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o Digital Control Theory: 

Jacquot, R., Modern Digital Control Systems. New York, NY: Marcel 
Dekker, Inc., 1981. 

Katz, P., Digital Control Using Microprocessors. Englewood Cliffs, NJ: 
Prentice-Hall, Inc., 1981. 

Kuo, B.C., Digital Control Systems. New York, NY: Holt, Reinholt and 
Winston, Inc., 1980. 
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sign. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984. 

Style and Symbol Conventions 

This document uses the following conventions: 

a Program listings, program examples, interactive displays, file names, 
and symbol names are shown in a special font. Examples use a bold 
version of the special font for emphasis. Here is a sample program list­
ing: 

0011 0005 0001 
0012 0005 0003 
0013 0005 0006 
0014 0006 

. field 1, 2 

. field 3, 4 

. field 6, 3 
. even 

a In syntax descriptions, the instruction, command, or directive is in a 
bold face font and parameters are in italics. Portions of a syntax that 
are in bold face should be entered as shown; portions of a syntax that 
are in italics describe the type of information that should be entered. 
Here is an example of an instruction: 

CMPF3 src2,src3 

Note: Although the instruction mnemonic (CMPF3 in this example) is in 
capital letters, the 'C40 assembler is not case sensitive - it can 
assemble mnemonics entered in either upper or lower case. 

CMPF3 is the instruction mnemonic. This instruction has two 
parameters, indicated by src2 and src3. 
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a Square brackets ( [ and] ) identify an optional parameter. If you use an 
optional parameter, you 'must specify the information within the 
brackets; however, you don't enter the brackets themselves. Here's an 
example of an instruction that has an optional parameter: 

LDP src [,DP] 

The LOP instruction is shown with two paramEiters; one Is optional. The 
first parameter, src, is required. The second parameter, DP, is optional. 
As this syntax shows, if you use the optional second parameter, you 
must precede it with a comma. 

a Braces ( {and} ) indicate a list. The symbol I (read as ot? separates 
items within the list. Here's an example of a list: 

{ * I *+ I *- } 
This provides three choices: *, *+, or *-. 
Unless the list is enclosed in square brackets, you must choose one 
item from the list. 

a The following is the format for a varying number of parameters. For ex­
ample, the .byte directive can have up to 100 parameters. The syntax 
for this directive is 

.byte va/ue1 [, ... , va/uen] 

This syntax shows that .byte must have at least one value parameter, 
but you have the option of supplying additional value parameters sepa­
rated by commas. 
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Information About Cautions and Warnings 

Q A caution describes a situation that could potentially damage your 
software or equipment. 

Q A warning describes a situation that could potentially cause harm to 
you. 

Please read each caution or warning carefully. The information is provided 
for your protection. 

Trademarks 
ABEL is a trademark of the Data I/O Corporation. 

SPOX is a trademark of Spectron Microsystems. Inc. 
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Texas Instruments' TMS320C4x generation floating-point processors are 
designed specifically to meet the needs of parallel processing and other 
real-time embedded applications. TMS320C4x products consist of both 
parallel processing devices and development tools. With world-class 
parallel-processing development tools, designers are able to fully utilize the 
immense performance of 275 MOPS (millions of operations per second) 
and 320 Mbytes per second throughput made available by the TMS320C4x 
generation. 

This chapter provides a brief overview of the TMS320C4x generation. Major 
topics covered are as follows: 
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The TMS320 Family 

1.1 The TMS320 Family 

Figure 1-1. 

P 
E 
R 
F 
o 
R 
M 
A 
N 
C 
E 

M 
I 
P 
S 
/ 
M 
F 
L 
o 
P 
S 

The TMS320C4x is one of five generations in the TMS320 family of digital 
signal processors. The TMS320C1 x, TMS320C2x, and TMS320C5x offer 
designers a complete line of general-purpose and application-specific fixed­
point DSPs. The TMS320C3x and TMS320C4x generations round out the 
TMS320 family, providing an ensemble of floating-point DSPs. The 
TMS320 family has blossomed from a single device introduced in 1982', the 
TMS3201 0, to nearly thirty different products across five CPU architectures. 
On-chip hardware multipliers, register files, barrel shifters, ALUs, ROM, 
RAM, caches, and I/O peripherals along with massive internal busing (all 
within a product as programmable as a general-purpose microprocessor), 
make Tl's TMS320 devices ideal forthe gamut of computer-intensive appli­
cations. 

TMS320 Family of Devices 

TMS320C3x 

TMS32OC1x 

TMS32010/Cl0 
TMS320Cl0-141-25 
TMS320C14 
TMS320E14/P14 
TMS320Cl51LC15 
TMS320E15/P15 
TMS320Cl5-25 
TMS320E15-25 
TMS320C16 
TMS320C17/LC17 
TMS320E17/P17 

TMS320C2x 

TMS32020 
TMS320C25 
TMS320E25 
TMS320C25-33 
TMS320C25-50 
TMS320C26 

TMS320C5x 

TMS32OC50 
TMS320C51 

GENERATION 

LJ Fixed-Point Generations 
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Parallel Processing 

1.2 Parallel Processing 
The need for parallel prdcessing is quickly growing. As floating-point per­
formance requirements grow exponentially, semiconductor manufacturers 
can no longer meet the need with single processing elements. Processors 
not designed for parallel processing are inadequate forthe task, as interpro­
cessor communication quickly saturates device I/O and adversely affects 
computing efficiency. Products in the TMS320C3x generation made the first 
step in addressing the need for parallel processing by providing designers 
with two external interface ports, each with a comprehensive memory inter­
face. This yields an immense amount of I/O bandwidth. Devices in the 
TMS320C4x generation go several steps further by incorporating on-chip 
hardware to facilitate high-speed interprocessor communication and con­
current I/O without degrading CPU performance. These features, coupled 
with a host of sophisticated parallel processing development tools, make 
the TMS320C4x generation of floating-point processors ideal for realtime 
embedded applications. 
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1.3 TMS320C4x Features 
The TMS320C4x generation consists of two equally important aspects, par­
allel processing devices and parallel processing development tools. 

1.3.1 TMS320C40 Device Key Features 

1-4 

The Primary features of the TMS320C4x devices are: 

Cl Six communication ports for high speed interprocessor communication. 
Communication port key features include: 

• 20-Mbytes/sec asynchronous transfer rate at each port for maxi­
mum data throughput 

• Direct (glueless) processor-to-processor communication for ease 
of use 

• Bidirectional transfers for maximum communication flexibility 

Cl Six-channel DMA coprocessor for concurrent I/O and CPU operation, 
thereby maximizing sustained CPU performance by alleviating the CPU 
of burdensome I/O. DMA coprocessor key features include: 

• Concurrent data transfers and CPU operation for sustained CPU 
performance 

• Self-programming (autoinitialize) capability for each channel, 
thereby not requiring the CPU for initialization, maximizing sus­
tained CPU performance 

• Data transfers to and from anywhere in the processor's memory 
map for maximum flexibility 

Cl High-performance DSP CPU capable of 275 MOPS and 320 Mbytes/ 
sec. CPU key features include: 

• Eleven operations per cycle throughput, resulting in massive com­
puting parallelism and sustained CPU performance 

• 40-ns and 50-ns instruction cycle times 

• 40/32-bit single-cycle floating-point/integer multiplier for high per­
formance in computationally intensive algorithms 

• Single-cycle IEEE floating-point conversion for efficient interface to 
I EEE-compatible processors 

• Hardware divide and inverse square root support for high perform­
ance 

• Byte and half-word manipulation capabilities for fast data (un)pack­
ing 
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• Source code compatible with TMS320C3x generation for easy up­
ward and downward mobility 

• Support for linear, circular, and bit-reversed addressing for high 
performance 

• Single-cycle branches, calls, and returns for fast program control 

• Single-cycle barrel shifter for 0-31 single-cycle right or left shifts for 
fast bit manipulation 

• Relocatable reset and interrupt vectors for easy integration into 
parallel processing systems 

Q Two identical external data and address buses supporting shared 
memory system:; and high data rate, single-cycle transfers. Key fea­
tures include: 

• High port data-transfer rate of 100 Mbytes/sec 

• 16-Gbyte continuous program/data/peripheral address space for 
maximum design flexibility 

• Status pins that signal type of memory access requested for fast, 
intelligent bus arbitration in shared memory systems 

• Separate address, data, and control-enable pins for high-speed 
bus arbitration 

• Four sets of memory-control signals support different speed 
memories in hardware, enabling efficient use of low- and high­
speed memories 

Q On-chip analysis module supporting efficient, state of the art parallel 
processing debug. Key features include: 

• Separate breakpoint comparators for program, data, and DMA ac­
cesses, providing onchip hardware breakpoint capabilities for fast 
debug and development 

• Discontinuity stack for hardware trace, facilitating fast debug and 
development 

• Event counter for accurate benchmarking and profiling 

• JTAG interface for standard system connection 
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I;J On-chip program cache and dual-access/single-cycle RAM for in­
creased memory access performance. On-chip memory key features 
include: . 

• 512-byte instruction cache for increased system performance 

• 8K-bytes of single-cycle dual access program or data RAM for in­
creased system performance and lower system cost 

• Bootloader (ROM based) supporting program bootup via 8-, 16- or 
32-bit memories over anyone of the communication ports 

I;J Separate internal program, data, and DMA coprocessor buses for sup­
port of massive concurrent I/O of program and data throughput, thereby 
maximizing sustained CPU performance. 

Summed up, the total device performance is 275 MOPS and 320 Mbytes/ 
sec as noted below. 

TMS320C40 Performance 

Sustained Computation: 

• DMA Coprocessor 

• High-Performance CPU 

CPU and DMA PERFORMANCE 

CPU,.... 8 OPS/Cycle = 200 MOPS 
• 2 Data Accesses 60 MOPS 
• 1 FP Multiply 25 MOPS 
• 1 FP ALU Operation 25 MOPS 
• 2 Addr. Register Mods 60 MOPS 
• 1 Loop Counter Update 25 MOPS 
• 1 Branch 25 MOPS 

DMA COPROCESSOR 
3 OPS/Cycle = 75 MOPS 

• 1 Data Access 25 MOPS 
• 1 Addr. Register Mods. 25 MOPS 
• 1 Transfer Counter 25 MOPS 

Update 

TOTAL MOPS = 275 MOPS 

40-ns 
Cycle Time 

+ 

Sustained I/O: 

• Communication Ports 

• DMA Coprocessor 

• Global and Local Buses • 
DATA THROUGHPUT 

Global Port 100 Mbytes/sec 
Local Port 100 Mbytes/sec 
6 Com Ports 120 Mbytes/sec 

TOTAL 110 = 320Mbytes/sec 
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1.3.2 Communication Port Benefits 

Without the six communication ports, 120 Mbytes/sec of processor through­
put must be squeezed over one or both of the external memory interfaces, 
thereby saturating processor throughput, likewise turning the system into 
a complex shared memory architecture. With the communication ports, 
bandwidth is plentiful (illustrated in Figure 1-2). 

Figure 1-2. TMS320C40 Throughput Increases Use of Communication Ports 
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1.3.3 DMA Coprocessor Benefits 

Without the DMA coprocessor, the CPU would have to use computational 
MOPS to transfer data within the processor's memory map. With the DMA 
coprocessor, the CPU can focus its entire 200 MOPS of performance on 
quality computational tasks while the DMA coprocessor takes care of the 
burdensome 1/0. This is illustrated in Figure 1-3. 

Figure 1-3. TMS320C40 Throughput Increases Use of DMA Coprocessor 
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1.3.4 TMS320C40 Parallel Processing Development Tools Key Features 

The primary TMS320C4x development tools are as follows: 

o Parallel processing in-circuit emulator (XDS51 0) 

• Able to debug both C and assembly code simultaneously using the 
graphical user-interface based source-level debugger 

• Can debug any number of TMS320C4x devices in a system with a 
single XDS51 0 controller card 

• Can globally stop, start and single step all or any combination of 
'C40s in a system. 

o Parallel processing development system 

• Host-independent evaluation board with four 'C40s 

• Each 'C40 connected to every other 'C40 via their communication 
ports, enabling designers to efficiently test different system 
topologies 

• Interfaces directly to XDS510 emulator, creating a complete 
parallel processing development environment. 

o Parallel processing optimizing ANSI C compiler 

• Parallel runtime support library for easy implementation of data and 
message passing between tasks (or processors) in parallel 
processing systems 

• C-source and target-specific optimizations for dense, optimal code 

• Plum-Hall validated to ANSI standard for maximum code portability 

o SPOX parallel processing DSP operating system 

• Parallel processing support for easy message passing within a 
multitasking environment 

• Communication port, DMA coprocessor, and memory interface 
drivers for fast development of C code without detailed knowledge 
of the hardware 

• Multitasking real-time kernel for fast implementation of 
multitasking system 

• DSP math library for fast development of DSP applications (using 
optimized assembly language routines) 

o Parallel processing assembler/linker 

• Directives to map program and data code on specific processors for 
fast integration and debug of parallel processing code 

• Relocatable modules for maximum code flexibility 
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Q Hardware verification and full functional models 

• Simulation of multiple 'C40's and associated logic for accurate 
development (via software simulation) of parallel processing 
systems 

• Accurate simulation of device bus cycles and functional execution 
for fast development of product hardware 

• Supports various workstation and PC environments 

Q State accurate simulator 

• Provides cycle-by-cycle simulation of all aspects of the 
TMS320C4x 

• Low-cost way to simulate key software kernels 

• Supported on a host of workstation and PC platforms 

Introduction 
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1.4 Applications 
Below is a list of classical DSP applications along with a number of 
embedded real-time applications which need the computational 
performance offered by TMS320 devices. The real time performance, low 
device costs, and comprehensive development tools are the primary 
aspects that which make Texas Instruments TMS320 devices the preferred 
solution in the following applications: 

Figure 1-4. Matrix of TMS320 DSP Applications 

Digital Filtering 
Convolution 
Correlation 
Hilbert Transforms 
FaSt Fourier Transforms 
Adaptive Filtering 
Windowing 
Waveform Generation 

Voice Mail 
Speech Vocoding 
Speech Recognition 
Speaker Verification 
Speech Enhancement 
Speech Synthesis 
Text-to-Speech 
Neural Networks 

3-D Transformations Rendering 
Robot Vision 
Image Transmission/Compression 
Pattern Recognition 
Image Enhancement 
Homomorphic Processing 
Workstations 
Animation/Digital Map 

Disk Control 
Servo Control 
Robot Control 
Laser Printer Control 
Engine Control 
Motor Control 
Kalman Filtering 

,Telecol1tmunications ' 

Echo Cancellation 
ADPCM Transcoders 
Digital PBXs 
Line Repeaters 
Channel Multiplexing 
1200- to 19200-bps Modems 
Adaptive Equalizers 
DTMF Encoding/Decoding 
Data Encryption 

Radar Detectors 
Power Tools 
Digital AudiolTV 
Music Synthesizer 
Toys and Games 
Solid-State Answering Machines 

FAX 
Cellular Telephones 
Speaker Phones 
Digital Speech Interpolation (DSI) 
X.25 Packet Switching 
Video Conferencing 
Spread Spectrum 
Communications 

Robotics 
Numeric Control 
Security Access 
Power Line Monitors 
Visual Inspection 
Lathe Control 
CAM 

Spectrum Analysis 
Function Generation 
Pattern Matching 
Seismic Processing 
Transient Analysis 
Digital Filtering 
Phase-Locked Loops 

Secure Communications 
Radar Processing 
Sonar Processing 
Image Processing 
Navigation 
Missile Guidance 
Radio Frequency Modems 
Sensor Fusion 

Automotive' 

Engine Control 
Vibration Analysis 
Antiskid Brakes 
Ad~ptive Ride Control 
Global Positioning Navigation 
Voice Commands 
Digital Radio 
Cellular Telephones 

Hearing Aids 
Patient Monitoring 
Ultra Sound Equipment 
Diagnostic Tools 
Prosthetics 
Fetal Monitors 
MR Imaging 
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Architectural Overview 
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The TMS320C40's high performance is achieved through the precision and 
wide dynamic range of the floating-point units, large on-chip memory, a high 
degree of parallelism, and the six-channel DMA coprocessor. Figure 2-1, 
beginning on the next page, is a block diagram of the TMS320C40. 

This chapter gives an architectural overview of the TMS320C40 processor. 
Major areas of discussion are listed below. 

Section Page 

2.1 Central Processing Unit (CPU) .......................... 2-4 

• Floating-poinVinteger multiplier .................... 2-4 

• ALU for floating-point, integer, and logical operations . 2-4 

• 32-bit barrel shifter ............................... 2-4 

• Internal buses (CPU1/CPU2 and REG1/REG2) ...... 2-4 

• Auxiliary register arithmetic units (ARAUs) .......... 2-6 

• Primary registerfile .............................. 2-6 

• CPU expansion register file ........................ 2-9 

2.2 Memory Organization) ................................. 2-10 

• RAM, ROM, and cache ........................... 2-10 

• Memory maps ................................... 2-12 

• Memory addressing modes ........................ 2-15 

2.3 Instruction Set Summary ....... , ....................... 2-16 

2.4 Internal Bus Operation ................................. 2-26 

2.5 External Bus Operation ................................ 2-27 

2.6 Peripherals ........................................... 2-28 

• Communication ports ............................ 2-29 

• Direct memory access (DMA) coprocessor .......... 2-29 

• Timers........................................... 2-29 
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Figure 2-1. TMS320C40 Block Diagram 

(J) 
OJ 

D(31-0) CIS c.. 
A(30.:Ql x 

DE (J) 

AE 
c: 
c: 

STAT(3-0) 0 
lOCK 'U 

(J) 
STRBO.l :::l 

RJWO.l c: 
E PAGEO.l 0 

RDYO.l 0 
CEO.l 

Xl 
X2/CLKIN 

TClKO 

TClKl 
ROMEN 
RESET 
RESET- C 

lOC (0.1) 0 
n 

NMI t 
IIOF(3-0) 

lACK 0 

Hl I 
I 

H3 e 
CVSS 

DVDD 
DVSS 
IVSS 

LADVDD 
lDDVDD 

VDDl 
VSSl 
SUBS 

2-2 Architectural Overview 



Figure 2-1. 

CD 

~ 
Co 
til 
::J 

.~ 

~ 
E e -i 
::J c: 
E 
8 

TMS320C40 Block Diagram (Concluded) 

6 DMA Channels 

TMS320C40 Block Diagram 

lO(3l·0) 
~o-O) 
LDE 
LAE 
LSTAT(3-0) 
llOCK 
LSTRBO.l 
lRiWo.l 
lPAGEO.l 
lRDYO,l 
LCEO.l 

6 Communi· 
cation Ports 

TClKO 

TCLKl 

2-3 



TMS320C40 CPU 

2.1 Central Processing Unit (CPU) 

The TMS320C40 has a register-based CPU architecture. The CPU com­
prises the following components: 

Q Floating-poinVinteger multiplier 

Q ALU for performing arithmetic: floating-point, integer, and logical opera-
tions 

Q 32-bit barrel shifter 

Q Internal buses (CPU1/CPU2 and REG1/REG2) 

Q Auxiliary register arithmetic units (ARAUs) 

Q CPU register file 

Figure 2-2 shows the various CPU components that are discussed in the 
succeeding subsections. 

2.1.1 Multiplier 

The multiplier performs single-cycle multiplications on 32-bit integer and 
40-bit floating-point values. The TMS320C40 implementation of float­
ing-point arithmetic allows for floating-point operations at fixed-point 
speeds via a 40-ns instruction cycle and a high degree of parallelism. To 
gain even higher throughput, you can use parallel instructions to perform a 
multiply and ALU operation in a single cycle. 

When the multiplier performs floating-point multiplication, the inputs are 
40-bit floating-point numbers, and the result is a 40-bit floating-point num­
ber. When the multiplier performs integer multiplication, the input data is 32 
bits and yields either the 32 most significant bits or 32 least significant bits 
of the resulting 64-bit product. Refer to Chapter 4 for detailed information 
on data formats and floating-point operation. 

2.1.2 Arithmetic Logic Unit (ALU) 

2-4 

The ALU performs single-cycle operations on 32-bit integer, 32-bit logical, 
and 40-bit floating-point data, including single-cycle integer and float­
ing-point conversions. Results of the ALU are always maintained in 32-bit 
integer or 40-bit floating-point formats. The barrel shifter is used to shift up 
to 32 bits left or right in a single cycle. 

Internal buses, CPU1/CPU2 and REG1/REG2, carry two operands from 
memory and two operands from the register file, thus allowing parallel multi­
plies and adds/subtracts on four integer or floating-point operands in a 
single cycle. 

Architectural Overview 



Figure 2-2. Central Processing Unit (CPU) 
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2.1.3 Auxiliary Register Arithmetic Units (ARAUs) 

Two auxiliary register arithmetic units (ARAUQ and ARAU1) can generate 
two addresses in a single cycle. The ARAUs operate in parallel with the mul­
tiplier and ALU. They support addressing with displacements, index regis­
ters (IRQ and IR1), and circular and bit-reversed addressing. Refer to Chap­
ter 5 for a description of addressing modes. 

2.1.4 CPU Primary Register File 

2-6 

The TMS320C4Q primary register file provides 32 registers in a multiport 
register file that is tightly coupled to the CPU. Table 2-1 lists register names 
and functions, followed by the section number and page of each description. 
(The expansion register file is described in subsection 2.1.5 on page 2-9.) 

All of the primary register file registers can be operated upon by the multipli­
er and ALU, and can be used as general-purpose registers. However, the 
registers also have some special functions. For example, the 12 ex­
tended-precision registers are especially suited for maintaining float­
ing-point results. The eight auxiliary registers support a variety of indirect 
addressing modes and can be used as general-purpose 32-bit integer and 
logical registers. The remaining registers provide system functions such as 
addressing, stack management, processor status, interrupts, and block re­
peat. Refer to Chapter 3 for detailed information on the CPU registers. Re­
fer to Chapter 5 for register usage in addressing. 

The extended-precision registers (RO-R11) are capable of storing and 
supporting operations on 32-bit integer and 40-bit floating-point numbers. 
Any instruction that assumes the operands are floating-point numbers uses 
bits 39-0. If the operands are either signed or unsigned integers, only bits 
31-0 are used, and bits 39-32 remain unchanged. This is true for all shift 
operations. Refer to Chapter 4 for extended-precision register formats for 
floating-point and integer numbers. 

The 32-bit auxiliary registers (ARO-AR7) can be accessed by the CPU 
and modified by the two auxiliary register arithmetic units (ARAUs). The pri­
mary function of the auxiliary registers is the generation of 32-bit addresses. 
They can also be used as loop counters or as 32-bit general-purpose regis­
ters that can be modified by the multiplier and ALU. Refer to Chapter 5 for 
detailed information and examples of the use of auxiliary registers in ad­
dressing. 

Architectural Overview 
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Table 2-1. CPU Primary Registers 

For Further 
Assembler Description, See: 

Syntax Assigned Function Name Paragraph Page 

RO Extended-precision register 0 3.1.1 3-4 
R1 Extended-precision register 1 3.1.1 3-4 
R2 Extended-precision register 2 3.1.1 3-4 
R3 Extended-precision register 3 3.1.1 3-4 
R4 Extended-precision register 4 3.1.1 3-4 
R5 Extended-precision register 5 3.1.1 3-4 
R6 Extended-precision register 6 3.1.1 3-4 
R7 Extended-precision register 7 3.1.1 3-4 
R8 Extended-precision register 8 3.1.1 3-4 
R9 Extended-precision register 9 3.1.1 3-4 

R10 Extended-precision register 10 3.1.1 3-4 
R11 Extended-precision register 11 3.1.1 3-4 

ARO Auxiliary register 0 3.1.2 3-5 
AR1 Auxiliary register 1 3.1.2 3-5 
AR2 Auxiliary register 2 3.1.2 3-5 
AR3 Auxiliary register 3 3.1.2 3-5 
AR4 Auxiliary register 4 3.1.2 3-5 
AR5 Auxiliary register 5 3.1.2 3-5 
AR6 Auxiliary register 6 3.1.2 3-5 
AR7 Auxiliary register 7 3.1.2 3-5 

DP Data-page pointer 3.1.3 3-5 
IRO Index register 0 3.1.4 3-5 
IR1 Index register 1 3.1.4 3-5 
BK Block-size register 3.1.5 3-5 
SP System stack pointer 3.1.6 3-5 

ST Status register 3.1.7 3-5 
DIE DMA Coprocessor interrupt enable 3.1.8 3-8 
liE Internal-interrupt enable register 3.1.9 3-10 
IIF 1I0F flag register 3.1.10 3-12 

RS Repeat start address 3.1.11 3-14 
RE Repeat end address 3.1.11 3-14 
RC Repeat counter 3.1.11 3-14 

The data page pOinter (OP) is a 32-bit register. The 16 LSBs of the data 
page pointer are used by the direct addressing mode as a pointerto the page 
of data being addressed. The 'C40 can address up to 64K pages, each page 
containing 64K words. The data page pointer is illustrated in Figure 5-1 
on page 5-4. 

The 32-bit index registers contain the value used by the auxiliary register 
arithmetic unit (ARAU) to compute an indexed address. Refer to Chapter 
5 for examples of the use of index registers in addressing (see subsection 
5.1.3, page 5-5, and Section 5.4, page 5-30. 

The ARAU uses the 32-bit block size register (BK) in circular addressing 
to specify the data block size. (Circular addressing is described in Section 
5.3 on page 5-25.) 
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The system stack pointer (SP) is a 32-bit register that contains the ad­
dress of the top of the system stack. The SP always points to the last ele­
ment pushed onto the stack. A push performs a preincrement, and a pop 
performs a postdecrement of the system stack pointer. The SP is manipu­
lated by interrupts, traps, calls, returns, and the PUSH and POP instruc­
tions. Refer to Section 5.5, page 5-31, for information about system stack 
management. 

The status register (ST) contains global information relating to the state 
of the CPU. Typically, operations set the condition flags of the status register 
according to whether the result is zero, negative, etc. This includes register 
load and store operations as well as arithmetic and logical functions. When 
the status register is loaded, however, a bit-for-bit replacement is performed 
with the contents of the source operand, regardless of the state of any bits 
in the source operand. Therefore, following a load, the contents of the status 
register are identically equal to the contents of the source operand. This al­
lows the status register to be easily saved and restored. See Table 3-2 on 
page 3-6 for definitions of the status register bits. 

The DMA coprocessor interrupt enable register (DIE) is a 32-bit register 
containing 2- and 3-bit fields to designate the interrupt synchronization 
scheme for each of the six DMA channels. It allows each DMA channel to 
service a corresponding input communication port and output communica­
tion port. Also, each DMA channel can be synchronized with external inter­
rupts or the on-chip timers. This register is described in subsection 3.1.8 
on page 3-8. 

The CPU internal interrupt enable register (liE) is also a 32-bit register 
(described in subsection 3.1.9 on page 3-10). This register enables/dis­
ables interrupts for the six communication ports, both timers, and the six 
DMA coprocessor channels .. 

The IIOF flag register (IIF) controls the function (general-purpose I/O or in­
terrupt) of the four external pins (IIOFO to IIOF3). Interrupts can be level or 
edge triggered. Subsection 3.1.10 on page 3-12 provides further descrip­
tion. 

The 32-bit repeat counter (RC) register specifies the number of times a 
block of code is to be repeated when performing a block repeat. When the 
processor is operating in the repeat mode; the 32-bit repeat start address 
register (RS) contains the starting address of the block of program memory 

. to be repeated, and the 32-bit repeat end address register (RE) contains 
the ending address of the block to be repeated. Further information is in 
subsection 3.1.11 on page 3-14. 

The program counter (PC) is a 32-bit register containing the address of the 
next instruction to be fetched. Although the PC is not part of the CPU register 
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file, it is a register that can be modified by instructions that modify the pro­
gram flow. 

2.1.5 CPU Expansion Register File 

Besides the CPU primary register file (just covered in subsection 2.1.4, 
starting on page 2-6), the expansion register file contains two special reg­
isters that act as pointers: 

a IVTP register (points to the interrupt~vector table, which is shown in 
Figure 3-8 on page 3-16), 

. a TVTP register (points to the trap vector table (TVT). which defines vec­
tors for 512 interrupts. This is described in Figure 3-7 on page 3-15). 

These two registers are fully described in Section 3.2 on page 3-15. 
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2.2 Memory Organization 
The total memory reach of the TMS320C40 is 4G (giga or billion) 32-bit 
words (4 Gbytes). Program memory (on-chip RAM or ROM and external 
memory) as well as registers affecting timers, communication ports, and 
DMA channels are contained within this space. This allows tables, coeffi­
cients, program code, and data to be stored in either RAM or ROM. Thus, 
memory usage is maximized, and memory space allocated as desired. 

By manipulating one external pin (ROMEN, pin AK4), the first one-mega­
word area of memory (0000 OOOOh to OOOF FFFFh) can be configured to be 
part of the local address bus or configured to address the on--chip ROM 
when using the boot loader (with remaining space reserved). (This is further 
discussed in Section 3.4 on page 3-18.) 

2.2.1 RAM, ROM, and Cache 

2-10 

Figure 2-3 shows how the memory is organized on the TMS320C40. RAM 
blocks 0 and 1 are 4K bytes (1 K x 32 bits) each. The ROM block is reserved 
and contains a boot loader. Each RAM and ROM block is capable of sup­
porting two accesses in a Single cycle. The separate program buses, data 
buses, and DMA buses allow for parallel program fetches, data reads and 
writes, and DMA operations. For example: the CPU can access two data 
values in one RAM block and perform an external program fetch in parallel 
with the DMA coprocessor loading another RAM block, all within a single 
cycle. 

The reserved ROM block (upper right in Figure 2-3) contains a boot loader. 
This loader supports loading of program and data at reset time. Loading is 
from 8-, 16-, or 32-bit wide memories or anyone of the six communication 
ports. Section 13.2 (page 13-5) explains the boot loader in detail. 

A 128 x 32-bit instruction cache is provided to store often-repeated sections 
of code, thus greatly reducing the number of needed off-chip accesses. This 
allows for code to be stored off-chip in slower, lower-cost memories. The ex­
ternal buses are also freed for use by the DMA, external memory fetches, 
or other devices in the system. 

For further information about the memory and instruction cache, refer to 
Section 3.4 (memory organization - page 3-18) and Section 3.5 (cache 
memory - page 3-25). 
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Figure 2-3. 
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2.2.2 Memory Maps 

2-12 

Two memory maps are available as shown in Figure 2-4; the one selected 
depends upon the level at external pin ROMEN. Both maps in the figure il­
lustrate the 4-gigaword reach of the 'C40; however, they differ in the first 1 
megaword of memory in which: 
Q A one at external pin ROMEN (pin AK4) causes internal ROM to be en­

abled at OOQOh with the one-megaword space reserved (0000 OOOOh 
- OOOF FFFFh). This is shown in the right side of the figure. 

Q A zero at ROMEN causes addresses 0000 OOOOh - OOOF FFFFh to be 
accessible on the local bus. This is shown in the ieft side of the figure. 

The rest of the memory map is the same for either level of ROMEN: 
Q The second megaword of memory is devoted to peripherals (as shown 

in Figure 2-5). 
Q The third megaword of memory contains the two 1 K (4K-byte) blocks 

of RAM (BLKO and BLK1 as shown at 002F FSOOh - 002F FFFFh). 
Q The rest of the first 2 gigawords (0030 OOOOh - 7FFF FFFFh) is on the 

local bus (external). 
Q The second 2 gigawords (SOOO OOOOh - FFFF FFFFh) are on the global 

bus (external). 

Section 3.4 (page 3-1S) describes the memory maps in greater detail. Sec­
tions 7.1, 7.2, and 7.3, beginning on page 7-3, discuss the local and global 
interfaces to these memories. The peripheral bus map and the vector loca­
tions for reset, interrupts, and traps are also explained. 
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Figure 2-4. Memory Maps 
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Figure 2-5. Peripheral Memory Map 
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2.2.3 Memory Addressing Modes 

The TMS320C40 supports a base set of general-purpose instructions as 
well as arithmetic-intensive instructions that are particularly suited for digital 
signal processing and other numeric-intensive applications. Refer to Chap­
ter 5 for detailed information on addressing. 

Four groups of addressing modes are provided on the TMS320C40 (major 
headings below). Each group uses two or more of several different address­
ing types, as shown for each group in the following list: 

1) General addressing modes: 
• Register. The operand is a CPU register. 
• Immediate. The operand is a 16-bit immediate value. 
• Direct. The operand is the contents of a 32-bit address 

(concatenation of 16 bits of the data page pointer and a 16-bit 
operand). 

• Indirect. A 32-bit auxiliary register indicates the address of the 
operand. 

2) Three-operand addressing modes: 
• Register (same as for general addressing mode). 
• Indirect (same as for general addressing mode). 
• Immediate (same as for general addressing mode). 

3) Parallel addressing modes: 
• Register. The operand is an extended-precision register. 
• Indirect (same as for general addressing mode). 

4) Branch addressing modes: 
• Register (same as for general addressing mode). 
• PC-relative. A signed 16-bit displacement ora 24-bit displacement 

is added to the PC. 
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2.3 Instruction Set Summary 

Table 2-2 lists the TMS320C40 instruction set in alphabetical order. Each 
table entry shows the instruction mnemonic, description, and operation. Re­
fer to Chapter 11 for a functional listing of the instructions and individual in­
struction descriptions. 

Table 2-2. Instruction Set Summary 

Mnemonic Description 

ABSF 

ABSI· 

ADDC 

ADDC3 

ADDF 

ADDF3 

ADDI 

ADDI3 

AND 

AND3 

ANDN 

ANDN3 

ASH 

ASH3 

LEGEND: 
src 
src1 
src2 
Csrc 
Sreg 
count 
SP 
GIE 
RM 
TOS 

2-16 

Absolute value of a floating-point number 

Absolute value of an integer 

Add integers with carry 

Add integers with carry (3-operand) 

Add floating-point values 

Add floating-point values (3-operand) 

Add integers 

Add integers (3-operand) 

Bitwise logical-AND 

Bitwise logical-AND (3-operand) 

Bitwise logical-AND with complement 

Bitwise logical-ANDN (3-operand) 

Arithmetic shift 

Arithmetic shift (3-operand) 

general addressing modes 
three-operand addressing modes 
three-operand addressing modes 
conditional-branch addressing modes 
register address (any register) 
shift value (general addressing modes) 
stack pointer 
global interrupt enable register 
repeat mode bit 
top of stack 

Operation 

Isrc!-t Rn 

Isrc!-t Dreg 

src + Dreg + C -t Dreg 

src1 + srd2. + C -t Dreg 

src+ Rn -t Rn 

src1 + srd2. -t Rn 

src + Dreg -t Dreg 

src1 + srd2. + -t Dreg 

Dreg AND src -t Dreg 

src1 AND srd2. -t Dreg 

Dreg AND src -t Dreg 

src1 AND srd2. -t Dreg 

If count;;::: 0: 
(Shifted Dreg left by count) -t Dreg 

Else: 
(Shifted Dreg right by Icount!) -t Dreg 

If count;;::: 0: 
(Shifted src left by count) -t Dreg 

Else: 
(Shifted src right by Icount!) -t Dreg 

Dreg 
Rn 
Daddr 
ARn 
cond 
ST 
RE 
RS 
PC 
C 

register address (any register) 
register address (RO - R11) 
destination memory address 
auxiliary register n (ARO - AR7) 
condition code (see Table 11-8) 
status register 
repeat interrupt register 
repeat start register 
program counter 
carry bit 
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TMS320C40 Instruction Set 

Table 2-2. Instruction Set Summary (Continued) 

Mnemonic Description Operation 

If cond = true: 

Bcond Branch conditionally (standard) 
If Csrc is a register, Csrc ~ PC 
If Csrc is a value, Csrc + PC + 1 ~ PC 

Else: PC + 1 ~ PC 

If cond is true: 
If src is a register: 

Branch conditionally delayed and annul if src~ PC 
BcondAF If src is a displacement: false src + PC of branch + 3 ~ PC 

Else: If condis false, annul execute phase re-
sults of next 3 instructions and continue 

If cond is true: 
If src is a register: 
src~ PC 

Branch conditionally delayed and annul if 
annul execute phase results of next 3 

BcondAT instructions 
true If src is a displacement: 

src + PC of branch + 3 ~ PC 
annul execute phase' results of next 3 
instructions 

Else: continue 

If cond = true: 

BcondD Branch conditionally (delayed) 
If Csrc is a register, Csrc ~ PC 
If Csrc is a value, Csrc + PC + 3 ~ PC 

Else: PC + 1 ~ PC 

BR Branch unconditionally (standard) Csrc + PC + 1 ~ PC 

BRD Branch unconditionally (delayed) Csrc + PC + 3 ~ PC 

CALL Call subroutine PC+1 ~TOS 
Csrc + PC + 1 ~ PC 

If cond = true: 
PC+ 1 ~ TOS 

CALLcond Call subroutine conditionally If Csrc is a register, Csrc ~ PC 
If Csrc is a value, Csrc + PC ~ PC 

Else: PC + 1 ~ PC 

CMPF Compare floating-point values Set flags on Rn - src 

CMPF3 Compare floating-point values 
(3-operand) Set flags on src1 - srC2. 

CMPI Compare integers Set flags on Dreg - src 

CMPI3 Compare integers (3-operand) Set flags on src1 - srC2. 

ARn-1 ~ARn 

Decrement and branch conditionally 
If cond = true and ARn ~ 0: 

DBcond (standard) If Csrc is a register, Csrc ~ PC 
If Csrc is a value, Csrc + PC + 1 ~ PC 

Else: PC + 1 ~ PC 
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TMS320C40 Instruction Set 

Table 2-2. Instruction Set Summary (Continued) 

Mnemonic Description 

DBcondD 

FIX 

FLOAT 

FRIEEE 

lACK 

IDLE 

LATcond 

LAJ 

LAJcond 

LBb 

LBUb 

LDA 

LDE 

LDEP 

LEGEND: 
src 
src1 
src2 
Csrc 
Sreg 
count 
SP 
GIE 
RM 
TOS 
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Decrement and branch conditionally 
(delayed) 

Convert floating-point value to integer 

Convert integer to floating-point value 

Convert from IEEE format 

Interrupt acknowledge 

Idle until interrupt 

Link and trap conditionally 

Link and jump 

Link and jump conditional 

Load byte 

Load byte unsigned 

Load address register 

Load floating-pOint exponent 

Load integer from exppansion register file 
to primary register file 

general addressing modes 
three-operand addressing modes 
three-operand addressing modes 
conditional-branch addressing modes 
register address (any register) 
shift value (~effiI7addressing modes) 
stack pointer 
global interrupt enable register 
repeat mode bit 
top of stack 

Operation 

ARn-1 ~ ARn 
If cond = true and ARn ~ 0: 

If Csrc is a register, Csrc ~ PC 
If Csrc is a value, Csrc + PC + 3 ~ PC 

Else: PC + 1 ~ PC 

Fix (src) ~ Dreg 

Float(src) ~ Rn 

Convert srcfrom IEEE format ~ Dreg 

Perform a dummy read with lACK = 0 
At end of dummy read, set lACK = 0 

PC + 1 ~ PC, then Idle until next interrupt 

If cond is true: 
ST(GIE) ~ ST(PGIE) 
ST(CF) ~ ST(PCF) 
o ~ ST(GIE) 
1 ~ ST(CF) 
PC of LAcond+ 4 ~R11 
trap vector N ~ PC 

Else: continue 

PC+4~R11 
PC of LAJ + 3 + src ~ PC 

If cond is true and src is a gegister: 
PC of LAJcond + 4 ~ R11 & src ~ PC 

If conctis true and src is a displacement:: 
PC of LAJcond + 4 ~ R11, & src + PC of 

LAJcond+ 3 + ~ PC 
Else, continue 

Sgn extended byte (byte 3,2,1 ,0) of src~ Dreg 

Unsigned byte (byte 3,2,1 ,0) of src ~ Dreg 

src~ Dreg 

src( exponent) ~ Rn( exponent) 

src~ Dreg 

Dreg 
Rn 
Daddr 
ARri 
cond 
ST 
RE 
RS 
PC 

register address (anyregister) 
register address (RO - R11) 
destination memory address 
auxiliary register n (ARO - AR7) 
condition code (see Table 11-8) 
status register 
repeat interrupt register 
repeat start register 
program counter 
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TMS320C40 Instruction Set 

Table 2-2. Instruction Set Summary (Continued) 

Mnemonic Description Operation 

LDF Load floating-point value src~ Rn 

LDFcond Load floating-point value conditionally If cond = true, src ~ Rn 
Else: Rn is not changed 

LDFI Load floating-point value, interlocked Signal interlocked operation src ~ Rn 

LDHI Load 16 MSBs with 16-bit immediate src ~ 16 MSBs of Dreg 

LDI Load integer src~ Dreg 

LDlcond Load integer conditionally If cond = true, src ~ Dreg 
Else: Dreg is not changed 

LOll Load integer, interlocked Signal interlocked operation src ~ Dreg 

LDM Load floating-point mantissa src (mantissa) ~ Rn (mantissa) 

LDP Load data page pOinter src ~ data page pOinter 

LDPE Load integer from ~rimary register file to 
expansion register ile src~ Dreg 

LOPK Load data page pointer immediate src~ DP 

LHw Load half word Sign-extended half word of src ~ Dreg 

LHUw Load half word unsigned Unsigned half word of src ~ Dreg 

If count;::: 0: 

LSH Logical shift (Dreg left-shifted by count) ~ Dreg 
Else: 

(Dreg right-shifted by Icount!) ~ Dreg 

If count;::: 0: 

LSH3 Logical shift (3-operand) (srcleft-shifted by count) ~ Dreg 
Else: 

(srcright-shifted by Icount!) ~ Dreg 

LWLct Load word, left shifted src« (0,1,2,3) bytes and merged with Dreg ~ 
Dreg 

LWRct Load word, right shifted src» (0,1,2,3) bytes and merged with Dreg ~ 
Dreg 

MBct Merge byte, left shifted 8 LSBs of src« (0,1 ,2,3) bytes and merged 
with Dreg ~ Dreg 

MHct Merge half word, left shifted 16 LSBs of src« (0,1) half words and merged 
with Dreg ~ Dreg 

MPYF Multiply floating-point values srcx Rn ~ Rn 

MPYF3 Multiply floating-point value (3-operand) src1 x srd2. ~ Rn 

MPYI Multiply integers src x Dreg ~ Dreg 

MPYI3 Multiply integers (3-operand) src1 x srd2. ~ Dreg 
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TMS320C40 Instruction Set 

Table 2-2. Instruction Set Summary (Continued) 

Mnemonic Description 

MPYSHI 

MPYSHI3 

MPYUHI 

MPYUHI3 

NEGB 

NEGF 

NEGI 

NOP 

NORM 

NOT 

OR 

OR3 

POP 

POPF 

PUSH 

PUSHF 

RCPF 

RETScond 

RND 

LEGEND: 
src 
src1 
src2 
Csrc 
Sreg 
count 
SP 
GIE 
RM 
TOS 
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Multiply signed integer and produce 32 
MSBs 

Multiply signed integer and produce 32 
MSBs, 3 operand 

Multiply unsigned integer and produce 32 
MSBs 

Multiply unsigned integer and produce 32 
MSBs, 3 operand 

Negate integer with borrow 

Negate floating-point value 

Negate integer 

No operation 

Normalize floating-point value 

Bitwise logical-complement 

Bitwise logical-OR 

Bitwise logical-OR (3-operand) 

Pop integer from stack 

Pop floating-point value from stack 

Push integer on stack 

Push floating-point value on stack 

Reciprocal floating point 

Return from subroutine conditionally 

Round floating-point value 

general addressing modes 
three-operand addressing modes 
three-operand addressing modes 
conditional-branch addressing modes 
register address (any register) 
shift value (general addressing modes) 
stack pointer 
global interrupt enable register 
repeat mode bit 
top of stack 

Operation 

dst x src ~ Dreg 

sre1 x src2 ~ Dreg 

Dreg x src ~ Dreg 

sre1 x src2 ~ Dreg 

O-src-C~Dreg 

O-src~ Rn 

0- sre~ Dreg 

Modify ARn if specified 

Normalize (src) ~ Rn 

src~ Dreg 

Dreg OR sre ~ Dreg 

sre1 OR srd2. ~ Dreg 

·SP--~ Dreg 

·SP--~ Rn 

Sreg ~ *++SP 

Rn ~ *++SP 

16-bit reciprocal of src ~ dst 

If cond = true or missing: 

*SP--~ PC 
Else: continue 

Round (src) ~ Rn 

Dreg 
Rn 
Daddr 
ARn 
cond 
ST 
RE 
RS 
PC 
C 

register address (any register) 
register address (RO ...,.- R 11 ) 
destination memory address 
auxiliary register n (ARO - AR7) 
condition code (see Table 11~) 
status register 
repeat interrupt register 
repeat start register 
program counter 
carry bit 
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Table 2-2. Instruction Set Summary (Continued) 

Mnemonic Description Operation 

ROL Rotate left Dreg rotated left 1 bit ~ Dreg 

ROLC Rotate left through carry Dreg rotated left 1 bit through carry ~ Dreg 

ROR Rotate right Dreg rotated right 1 bit ~ Dreg 

RORC Rotate right through carry Dreg rotated right 1 bit through carry ~ 
Dreg 

src~ RE 
RPTB Repeat block of instructions 1 ~ ST(RM) 

NextPC~RS 

If src is an immediate value (displacement) 

src+ PC +3 ~ RE 
Else: 

RPTBD Repeat block delayed src~ RE 
1 ~ ST(RM) 

PCofRPTBD+4~ RS 

src~ RC 

RPTS Repeat single instruction 
1 ~ST(RM) 
Next PC ~ RS 

NextPC~ RE 

RSQRF Reciprocal of square root floating point 16-bit reciprocal of square root of src -,+ Dreg 

Signal interlocked operation 
SIGI Signal, interlocked Wait for interlock acknowledge 

Clear interlock 

STF Store floating-point value Rn~Daddr 

STFI Store floating-point value, interlocked Rn~Daddr 
Signal end of interlocked operation 

STI Store integer Sreg ~ Daddr 

STII Store integer, interlocked Sreg ~ Daddr 
Signal end of interlocked operation 

STIK, Store integer immediate value src~Dreg 

SUBB Subtract integers with borrow Dreg - src- C ~ Dreg 

SUBB3 Subtract integers with borrow (3-operand) src1 - src2 - C ~ Dreg 

If Dreg - src';2 0: 
SUBC Subtract integers conditionally [(Dreg - src)« 1] OR 1 ~ Dreg 

Else: Dreg « 1 ~ Dreg 
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TMS320C40 Instruction Set 

Table 2-2. Instruction Set Summary (Concluded) 

Mnemonic Description 

SUBF 

SUBF3 

SUBI 

SUBI3 

SUBRB 

SUBRF 

SUBRI 

SWI 

TOIEEE 

TRAPcond 

TSTB 

TSTB3 

XOR 

XOR3 

LEGEND: 
src 
src1 
src2 
Csrc 
Sreg 
count 
SP 
GIE 
RM 
TOS 
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Subtract floating-point values 

Subtract floating-point values (3-0perand) 

Subtract integers 

Subtract integers (3-operand) 

Subtract reverse integer with borrow 

Subtract reverse floating-point value 

Subtract reverse integer 

Software interrupt 

Convert to IEEE format 

Trap conditionally 

Test bit fields 

Test bit fields (3-operand) 

Bitwise exclusive-OR 

Bitwise exclusive-OR (3-operand) 

general addressing modes 
three-operand addressing modes 
three-operand addressing modes 
conditional-branch addressing modes 
register address (any register) 
shift value (general addressing modes) 
stack pointer 
global interrupt enable register 
repeat mode bit 
top of stack 

Operation 

Rn-src~.Rn 

src1 - src'2. ~ Rn 

Dreg - src ~ Dreg 

src1 - src'2. ~ Dreg 

src - Dreg - C ~ Dreg 

src-Rn ~ Rn 

src- Dreg ~ Dreg 

Perform emulator interrupt sequence 

Convert srcto IEEE format -+ dst 

If cond = true or missing: 

Next PC ~ * ++ SP 

Trap vector N ~ PC 
O~ST(GIE) 

Else: continue 

OregANO src 

src1 AN 0 src'2. 

Dreg XOR src ~ Dreg 

src1 XOR src'2. ~ Dreg 

Dreg 
Rn 
Daddr 
ARn 
addr 
cond 
ST 
RE 
RS 
PC 
C 

register address (any register) 
register address (RO - R11) 
destination memory address 
auxiliary register n (ARO - AR7) 
24-bit immediate address (label) 
condition code (see Table 11-8) 
status register 
repeat interrupt register 
repeat start register 
program counter 
carry bit 
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TMS320C40 Instruction Set - Parallel Instructions 

Table 2-3. Parallel Instruction Set Summary 

Mnemonic Description Operation -Parallel Arithmetic With Store Instructions 

ABSF Absolute value of a floating-point Isrc21 4 dst1 
IISTF II src34 dst2 

ABSI Absolute value of an integer Isrc21 4 dst1 
IISTI II src34 dst2 

ADDF3 Add floating-point src1 + src24 dst1 
II STF II src34 dst2 

ADDI3 Add integer src1 + src24 dst1 
II STI II src34 dst2 

AND3 Bitwise logical-AND src1 AND src24 dst1 
IISTI II src34 dst2 

If count ~ 0: 
src2« count 4 dst1 

ASH3 Arithmetic shift II src34 dst2 
Else: 

src2» Icountl 4 dst1 
II src34 dst2 

FIX Convert floating-point to integer Fix(src2) 4 dst1 
IISTI II src34 dst2 

FLOAT Convert integer to floating-point Float(src2) 4 dst1 
IISTF II src34 dst2 

FRIEEE Parallel FRIEEE and STF Convert src2 from IEEE format 4 dst1 
II STF in parallel with src34 dst2 

LDF Load floating-point src24 dst1 
IISTF II src34 dst2 

LDI Load integer src24 dst1 
II STI II src34 dst2 

If count ~ 0: 
src2« count 4 dst1 

LSH3 Logical shift II src34 dst2 
Else: 

src2» Icountl 4 dst1 
II src34 dst2 

LEGEND (for parallel instructions): 
src1 register addr (RO - R11) src2 indirect addr (disp = 0, 1, IRO, IR1) 
src3 register addr (RO - R11) src4 indirect addr (disp = 0, 1, IRO, IR1) 
dst1 register addr (RO - R11) dst2 indirect addr (disp = 0,1, IRO, IR1) . 
op3 - registeraddr (RO or R1) op6 register addr (R2 or R3) 
op1 ,op2,op4,op5-Two of these operands must be specified using register addr, and two must be specified 
using Indirect. 
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TMS320C40 Instruction Set - Parallel Instructions 

Table 2-3. Parallel Instruction Set Summary (Continued) 

Mnemonic Description Operation 

MPYF3 Multiply floating-point and store src1 x src2 -+ dst1 
IISTF II src3 -+ dst2 

MPYI3 Multiply integer src1 x src2 -+ dst1 
IISTI II src3 -+ dst2 

NEGF Negate floating-point 0- src2 -+ dst1 
IISTF II src3 -+ dst2 

TOIEE Convert to IEEE floating point format convert src2 to IEEE format -+ dst1 
II STF II src3 -+ dst2 

Parallel Arithmetic With Store Instructions (Concluded) 

NEGI Negate integer 0- src2 -+ dst1 
IISTI II src3 -+ dst2 

NOT Complement src1-+ dst1 
IISTI II src3 -+ dst2 

OR3 Bitwise logical-OR src1 OR src2 -+ dst1 
IISTI II src3 -+ dst2 

STF Store floating-point . src1 -+ dst1 
IISTF II src3 -+ dst2 

STI Store integer src1-+ dst1 
IISTI II src3 -+ dst2 

SUBF3 Subtract floating-point src1 - src2 -+ dst1 
IISTF II src3 -+ dst2 

SUBI3 Subtract integer src1 - src2 -+ dst1 
IISTI II src3 -+ dst2 

XOR3 Bitwise exclusive-OR src1 XOR src2 -+ dst1 
IISTI II src3 -+ dst2 

LEGEND (for parallel instructions): 
src1 register addr (RO - R11) src2 indirectaddr (disp= 0,1, IRO, IR1) 
src3 register addr (RO - R11) src4 indirect addr (disp = 0,1, IRO, IR1) 
dst1 register addr (RO - R11) dst2 indirect addr (disp = 0, 1, IRO, IR1) 
op3 registeraddr (RO or R1) op6 register addr (R2 or R3) 
op1 ,op2,op4,op5-Two ofthese operands must be specified using register addr, and two must be specified 
using Indirect. 
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TMS320C40 Instruction Set - Parallel Instructions 

Table 2-3. Parallel Instruction Set Summary (Concluded) 

Mnemonic Description Operation 

Parallel Load Instructions 

LDF Load floating-point src2~ dst1 
II LDF II src4~ dst2 

LDF Load floating point and store floating src2~ dst1 
IISTF point II src3~ dst2 

LDI Load integer src2~ dst1 
II LDI II sr04~ dst2 

If count~ 0: 

LSH3 
src2« count ~ dst1 

IISTI Logical shift, 3 operand, and store integer Else: 
src2» Icoun~ ~ dst1 

II src3~ dst2 

LSH3 Logical shift 3 and store integer src2~ dst1 
IISTI II src3~ dst2 

Parallel Multiply And Add/Subtract Instructions 

MPYF3 Multiply and add floating-point op1 x op2 ~ op3 
II ADDF3 II op4 + op5 ~ op6 

MPYF3 Multiply and subtract floating-point opi x op2 ~ op3 
II SUBF3 II op4 - op5 ~ op6 

MPYI3 Multiply and add integer opi x op2 ~ op3 
IIADDI3 II op4 +, op5 ~ op6 

MPYI3 Multiply and subtract integer opi x op2 ~ op3 
II SUBI3 II op4-op5 ~ op6 

LEGEND (for parallel Instructions): 
src1 register addr (RO - Rii) src2 indirectaddr (disp = O,i,IRO,IRi) 
src3 register addr (RO - Rii) src4 indirect addr (disp = 0, i,IRO,IRi) 
dst1 register addr (RO - Rii) dst2 indirect addr (disp = 0, i,IRO,IRi) 
Qp3 - register addr (RO or Ri) op6 register addr (R2 or R3) 
op1 ,op2,op4,op5 - Two of these operands must be specified using register addr, and two must be specified 
using Indirect. 
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Internal Bus Operation 

2.4 Internal Bus Operation 

2-26 

A large portion of the TMS320C40's high performance is due to internal bus­
ing and parallelism. Separate buses allow for parallel program fetches, data 
accesses, and DMA accesses: 
a program buses PADDR and PDATA 
a data buses DADDR1 , DADDR2, and DDATA 
a DMA buses DMAADDR and DMADATA 

These buses connect all of the physical spaces (on-chip memory, off-chip 
memory, and on-chip peripherals) supported by the TMS320C40. 
Figure 2-3 shows these internal buses and their connection to on-chip and 
off-chip memory blocks. 

The program counter (PC) is connected to the 32-bit program address bus 
(PADDR). The instruction register (IR) is connected to the 32-bit program 
data bus (PDATA). These buses can fetch a single instruction word every 
machine cycle. 

The 32-bit data address buses (DADDR1 and DADDR2) and the 32-bit data 
data bus (DDATA) support two data memory accesses every machine cycle. 
The DDATA bus carries data to the CPU over the CPU1 and CPU2 buses. 
The CPU1 and CPU2 buses can carry two data memory operands to the 
multiplier, ALU, and register file every machine cycle. Also internal to the 
CPU are register buses REG1 and REG2, which can carry two data values 
from. the register file to the multiplier and ALU every machine cycle. ' 
Figure 2-2 shows the buses internal to the CPU section of the processor. 

The DMA controller is supported with a 32-bit address bus (DMAADDR) and 
a 32-bit data bus (DMADATA). These buses allow the DMA to perform 
memory accesses in parallel with the memory accesses occurring from the 
data and program buses. 
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2.5 External Bus Operation 

The TMS320C40 provides two identical external interfaces: the global 
memory interface and the local memory interface. Each consists of a 32-bit 
data bus, a 31-bit address bus, and two sets of control signals. Both buses 
can be used to address external program/data memory or I/O space. The 
buses also have external RDY signals for wait-state generation with wait 
states inserted under software control. Chapter 7 covers external bus oper­
ation. 

2.5.1 Interrupts 

The TMS320C40 supports four external interrupts (IIOF3-Q), a number of 
internal interrupts, a nonmaskable, external NMI interrupt, and a nonmask­
able external RESET signal, which sets the processor to a known state. The 
DMA and communication ports have their own internal interrupts. When the 
CPU responds to the interrupt, the lACK pin can be used to signal an exter­
nal interrupt acknowledge. Section 6.7 (beginning on page 6-23) covers 
RESET and interrupt processing. 

2.5.2 Interlocked Instructions 

In order for multiple processors to access global memory and share data in 
a coherent manner, arbitration is necessary. This arbitration ( handshaking) 
is the purpose of the TMS320C40's interlocked operations, handled 
through the Interlocked instructions (explained in Section 6.4 on page 6-11). 
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TMS320C40 Peripherals 
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2.6 Peripherals 

Figure 2-6. 

All TMS320C40 peripherals are controlled through memory-mapped regis­
ters on a dedicated peripheral bus. This peripheral bus is composed of a 
32-bit data bus and a 32-bit address bus. This peripheral bus permits 
straightforward communication to the peripherals. The TMS320C40 periph­
erals include two timers and two serial ports. Figure 2-6 shows the periph­
erals with associated buses and signals. 

Peripheral Modules 

Six 
Communication 
Ports 

\'-----, .... ---' 
6 DMA Channels 

TClKO 

TClK1 

2-28 Architectural Overview 



2.6.1 Communication Ports 
Six high-speed communication ports provide rapid processor-to-processor 
communication through each port's dedicated communication interfaces. 
Coupled with the 'C40's two memory interfaces (global and local), this al­
lows you to construct a parallel processor system that attains optimum sys­
tem performance by the distributing of tasks among several processors. 
Each 'C40 can pass the results of its work to another, enabling each 'C40 
to continue working. Chapter 8 explains communication port operation in 
detail. 

Communication port features: 
o 160-megabit per second (20-Mbytes or 5-Mwords per second) 

bidirectional data transfer operations (at 40-ns cycle time) 
o direct (glueless) processor-to-processor communication via eight data 

lines and four control lines 
o buffering of all data transfers, both input and output 
o automatic arbitration provided to ensure communication synchroniza­

tion 
o synchronization between the CPU or direct-memory access (DMA) 

coprocessor and the six communication ports via internal interrupts and 
internal ready signals. 

2.6.2 Direct Memory Access (DMA) 
The six channels of the on-chip Direct Memory Access (DMA) coprocessor 
can read from or write to any location in the memory map without interfering 
with the operation of the CPU. This allows interfacing to slow external me.;. 
mories and peripherals without reducing throughput tothe CPU. The DMA 
coprocessor contains its own address generators, source and destination 
registers, and transfer counter. Dedicated DMA address and data buses al­
low for minimization of conflicts between the CPU and the DMA coproces­
sor. A DMA operation consists of a block or single-word transfer to or from 
memory. A key feature of the DMA coprocessor is its ability to automatically 
reinitialize each channel following a data transfer. Refer to Chapter 9 for de­
tailed information on the DMA coprocessor. 

2.6.3 Timers 
The two timer modules are general-purpose 32-bit timer/event counters 
with two signaling modes and internal or external clocking. They can signal 
internally to the 'C40 or externally to the outside world at specified intervals, 
orthey can count external events. Each timer has an I/O pin that can be used 
as an input clock to the timer, as an output signal driven by the timer, or as 
a general-purpose I/O pin. Timers are described in detail in Section 9.1 0 on 
page 9-45. 
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CPU Primary Register File 
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3.1 CPU Primary Register File 

The TMS320C40 provides 32 registers in a multiport register file that is tight­
ly coupled to the CPU. The PC (program counter) is not included in the 
32 registers. The registers' names and assigned function are listed in 
Table 3-1. 

All of these registers can be used as operands by the multiplier and ALU, 
and can be used as general-purpose 32-bit registers. However, the regis­
ters also have some special functions for which they are particularly appro­
priate. For example, the 12 extended-precision registers are especially 

Table 3-1. CPU Primary Register File 

Register 
Assembler Machine See On 

Syntax Value (hex) Assigned Function Name Paragraph Page 

RO 00 Extended-precision register 0 3.1.1 3-4 
R1 01 Extended-precision register 1 3.1.1 3-4 
R2 02 Extended-precision register 2 3.1.1 3-4 
R3 03 Extended-precision register 3 3.1.1 3-4 
R4 04 Extended-precision register 4 3.1.1 3-4 
R5 05 Extended-precision register 5 3.1.1 3-4 
R6 06 Extended-precision register 6 3.1.1 3-4 
R7 07 Extended-precision register 7 3.1.1 3-4 
R8 1C Extended-precision register 8 3.1.1 3-4 
R9 10 Extended-precision register 9 3.1.1 3-4 
R10 1E Extended-precision register 1 0 3.1.1 3-4 
R11 1F Extended-precision register 11 3.1.1 3-4 

ARO 08 Auxiliary register 0 3.1.2 3-5 
AR1 09 Auxiliary register 1 3.1.2 3-5 
AR2 OA Auxiliary register 2 3.1.2 3-5 
AR3 OB Auxiliary register 3 3.1.2 3-5 
AR4 OC Auxiliary register 4 3.1.2 3-5 
AR5 00 Auxiliary register 5 3.1.2 3-5 
AR6 OE Auxiliary register 6 3.1.2 3-5 
AR7 OF Auxiliary register 7 3.1.2 3-5 

DP 10 Data-page pointer 3.1.3 3-5 
IRO 11 Index register 0 3.1.4 3-5 
IR1 12 Index register 1 3.1.4 3-5 
BK 13 Block-size register 3.1.5 3-5 
SP 14 System stack pointer 3.1.6 3-5 

ST 15 Status register 3.1.7 3-5 
DIE 16 DMA coprocessor interrupt enable 3.1.8 3-8 
liE 17 Internal-interrupt enable register 3.1.9 3-10 
IIF 18 1I0F flag register (1I0F3-0, timers, DMA) 3.1.10 3-12 

RS 19 Repeat start address 3.1.11 3-14 
RE 1A Repeat end address 3.1.11 3-14 

.RC 1B Repeat counter 3.1.11 3-14 
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well suited for maintaining extended-precision floating-point results. The 
eight auxiliary registers support a variety of indirect addressing modes and 
can be used as general-purpose 32-bit integer and logical registers. The re­
maining registers provide system functions such as addressing, stack man­
agement, processor status, interrupts, and block repeat. Refer to Chapter 
5 for detailed information and examples of the use of CPU registers in ad­
dressing. 

3.1.1 Extended-Precision Registers (RO-R11) 

The 12 extended-precision registers (RO-R11) can store and support oper­
ations on 32-bit integer and 40-bit floating-point numbers. These registers 
consist of two separate and distinct regions: 

Obits 39-32: dedicated to storage of the exponent (e) of the floating-point 
number. 

Obits 31-0: store the mantissa of the floating-point number: 

• bit 31 : sign bit (s), 

• bits 30-0: the fraction (f). 

Any instruction that assumes the operands are floating-point numbers uses 
bits 39-0. Figure 3-1 illustrates the storage of 40-bitfloating-point numbers 
in the extended-precision registers. 

Figure 3-1. Extended"Precision Register Floating-Point Format 
39 32 31 30 o 

e fraction (f) 

mantissa ---------I~~I 

For integer operations, bits 31-0 ofthe extended-precision registers contain 
the integer (signed or unsigned). Any instruction that assumes the operands 
are either signed or unsigned integers uses only bits 31-0. Bits 39-32 re­
main unchanged. This is true for all shift operations. The storage of 32-bit 
integers in the extended-precision registers is shown in Figure 3-2. 

Figure 3-2. Extended-Precision Register Integer Format 

39 3231 o 

I unchanged I signed or unsigned integer 
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3.1.2 Auxiliary Registers (ARO-AR7) 
The eight 32-bit auxiliary registers (ARO-AR7) can be accessed by the CPU 
and modified by the two auxiliary register arithmetic units (ARAUs). The pri­
mary function of the auxiliary registers is the generation of 32-bit addresses. 
However, they can also operate as loop counters in indirect addressing or 
as 32-bit general-purpose registers that can be modified by the multiplier 
and ALU. Refer to Chapter 5 for detailed information and examples of the 
use of auxiliary registers in addressing. 

3.1.3 Data-Page Pointer (DP) 
The data-page pointer (DP) is a 32-bit register whose 16 LSBs are used 
by the direct addressing mode as a pointer to the page of data being ad­
dressed. Data pages are 64K words long with a total of 64K (65,536) pages. 
Bits 31-16 are reserved; they are always read as zeroes and should not 
be modified by writing to the register. The DP can be loaded by using 
the LDP pseudo-instruction or the LDI instruction. Figure 5-1 on page 5-4 
describes this register's function. 

3.1.4 Index Registers (IRO, IR1) 
The 32-bit index registers (IRO and IR1) are used by the auxiliary register 
arithmetic unit (ARAU) for indexing the address. IRO is also used for bit-rev­
ersed addressing. Referto Chapter 5 for detailed information and examples 
of the use of index registers in addressing. (Subsection 5.1.3 on page 5-5 
covers use of the IR in indirect addressing; see the examples starting on 
page 5-12. Section 5.4 on page 5-30 describes using it with bit-reversed ad­
dressing). 

3.1.5 Block-Size Register (BK) 
The 32-bit block-size register (BK) is used by the ARAU in circular address­
ing to specify the data block size (see Section 5.3 on page 5-25). 

3.1.6 System Stack Pointer (SP) 
The system stack pointer (SP) is a 32-bit register that contains the address 
of the top of the system stack. The SP always points to the last element 
pushed onto the stack. The SP is manipulated by interrupts, traps, calls, re­
turns, and the PUSH, PUSHF, POP, and POPF instructions. Pushes and 
pops of the stack perform preincrement and postdecrement, respectively, 
on all 32 bits of the SP. Refer to Section 5.5 on page 5-31 for information 
about system stack management. 

3.1.7 Status Register (ST) 
The status register (ST) contains global information relating to the CPU 
state. Typically, operations set the condition flags of the status register ac-
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Figure3-S. 

Table 3-2. 

Bit 

ot 

1t 

2t 

3t 

4t 

5t 

6t 

7 

8 
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cording to whether the result is zero, negative, etc. This includes register 
load and store operations as well as arithmetic and logical functions. How­
ever, when the ST is loaded, the contents of the load instruction's source 
operand replace the ST current contents bit for bit, regardless of the state 
of any bit(s) in the source operand. Therefore, following an ST load, the con­
tents of the ST are identical to the contents of the source operand. This al­
lows the status register to be saved easily and restored. At system reset, 
o is written to this register. 

The format of the status register is shown in Figure 3-3. Table 3-2 defines 
the status register bits, their names, and functions. 

Status Register 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

R R R R R R R R R R R R R R R R 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

ANI ANI ANI ANI RNI RNI R/W RNI RIW R/W ANI R/W R/W RNI RNI R/W 

NOTE: xx = reserved bit. 
R = read, W = write. 

Status Register Bits Summary 

Bit Field 
Name Function 

C Carry condition flag 

V Overflow condition flag 

Z Zero condition flag 

N Negative condition flag 

UF Floating-point underflow condition flag 

LV Latched overflow condition flag 

LUF Latched floating-point underflow condition flag 

Overflow mode flag. This flag affects only integer operations. 
If OVM = 0, the overflow mode is turned off; integer results that overflow are 
treated in no special way. 

IfOVM = 1, 
OVM a) integer results overflowing in the positive direction are set to the 

most positive 32-bit twos-complement number (7FFF FFFFh). 
b) integer results overflowing in the negative direction are set to the 

most negative 32-bit twos-complement number (8000 OOOOh). 

Notethatthe functions of bits V and LV are independent of the setting ofOVM. 

RM Repeat mode flag. If RM = 1 , the PC is being modified in either the repeat-
block or repeat-single mode. 

t The seven condition flags (ST bits 0 - 6) are defined in Section 11.2 on page 11-10. 
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CPU Register File - Status Register (ST) 

Tab/e3-2. Status Register Bits Summary (Continued) 

Bit Field 
Bit Name Function 

Previous state of bit CF. When a trap executes or an interrupt is taken, bit CF is 
9 PCF set to 1. When this occurs, the PCF bit is set to the CF bit's value before the trap 

or interrupt. Note that the RETI and RETID instructions copy PCF to the CF bit. 

Cache freeze. Set CF = 1 to freeze cache (cache is not updated) including LRU -(least recently used) stack manipulation.lfthe cache is enabled (CE = 1), fetches 

10 CF from the cache are allowed, but modification of the cache contents is not allowed. 
Cache clearing (CC=1) is allowed. At reset, this bit is set to zero. When CF",O, 
cache clearing (CC=1) is allowed. CF is set to one when a trap or interrupt is tak-
en. Also, the RETI and RETID instructions copy PCF to the CF bit. 

Cache enable. Set CE = 1 to enable the cache, allowing the cache to be used 
according to the LRU (least recently used) cache algorithm. Set CE = 0 to disable 
the cache; preventing cache updates or modifications (thus, no cache fetches 
can be made). At reset, 0 is written to this bit. Cache clearing (CC = 1) is allowed 

11 CE 
when CE=O. The following describe the combination of the CE and CF bits: 

~ ~ ~ 
0 0 Cache not enabled 
0 1 Cache not enabled 
1 0 Cache enabled and not frozen 
1 1 Cache enabled but frozen (cache read only) 

Cache clear. CC = 1 invalidates all entries in the cache (contents not guaranteed, 
12 CC "garbage"). This bit is always cleared after it is written to -and thus always read 

as O. At reset, 0 is written to this bit. All cache P flags = 0 when cache is cleared. 

Global interrupt enable. If GIE = 1, the CPU responds to an enabled interrupt. If 
GIE = 0, the CPU does not respond to an enabled interrupt (when a trap executes 

13 GIE or an interrupt is taken, bit GIE is set to 0). This bit does not affect interrupts on 
the NMI pin. The IDLE, LAT, RETI, RETID, and TRAP instructions affect this bit's 
value. 

Previous state of bit GIE. When a trap executes or an interrupt is taken, bit 

14 PGIE GIE is set to O. When this occurs, the PGIE bit is set to the GIE bit's value 
before the trap or interrupt. Note that the RETlcond and RETlconaO instruc-
tions copy PGIE to the GIE bit. At reset, this bit is set to O. 

This bit determines how condition flags (ST bits 0 - 6) are set: 
If SET COND = 0, condition-flags are set if the operation's 

target is any extended-precision register (RO - R 11) com-
patible with the TMS320C30. This bit is set to 0 at reset. 

15 SETCOND If SET COND = 1 , condition flags are set if the target of the 
operation is any register in the primary register files except 
the status register. 

Condition flags are always set when a CMPF, CMPL, CMPF3, CMPI3, TSTB, 
or TSTB3 instruction is executed. 

16 ANALYSIS In analysis mode - state information for emulation. Read only. 

17 -31 Reserved Value undefined. Read only. Reserved for an identification value. This value is 
set by Texas Instruments (e.g., to identify device types and revisions). 
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3.1.8 DMA Coprocessor Interrupt Enable Register (DIE) 

Figure 3-4. 

31 

The 32-bit DMA interrupt enable register (DIE), shown in Figure 3-4, is 
broken into six subfields that determine which interrupts can be used to con­
trol the synchronization for each of the six DMA coprocessor channels. At 
reset, all zeroes are written to the register. 

DMA Interrupt Enable Register Bit Functions 
29 28 26 25 23 22 20 

DMA5WRITE DMA5 READ DMA4WRITE DMA4READ 

RJW RlW RJW RIW RIW RJW R/W RIW RIW RIW RIW RIW 

19 17 16 14 13 11 10 8 

DMA3WRITE DMA3 READ DMA2WRITE DMA2 READ 

RJW RIW RIW RIW RIW R/W RIW RIW RIW RIW RIW RJW 

7654 321 0 

I DMA1 WRITE I DMA1 READ I DMAO WRITE I DMAO READ 

R/W RIW RIW RlW RIW RIW RlW RIW 
R = Read W = Write 

3-8 

Table 3-3 summarizes the interrupt activity for each of the four possible 
combinations of two-bit values in DMAO and DMA 1 (bottom of Figure 3-4). 
Likewise, Table 3-4 (page 3-9) summarizes the interrupts enabled by 
three-bit values in DMA2 through DMA5. 

Note: DMA Coprocessor Uses Signals to Synchronize 

The interrupts in Table 3-3 and Table 3-4 (ICRDYx, OCRDYx, TIMO, 
etc.) are not vectored. The DMAuses these as signals to synchronize 
DMA coprocessor transfers. This is explained in Section 9.9 on page 
9-40. 
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Table 3-3. DMA Channels 0 and 1 Synchronization Interrupts (DMAO and DMA 1) 

Bit Value Interrupt Enabled at DMAO or DMA1 Interrupt Source for (in DMAO DMAO DMAO DMA1 DMA1 DMA Synchronization 
or DMA1) Read Write Read Write 

00 None None None None --
01 ICRDYO OCRDYO ICRDY1 OCRDY1 From communication port 

1 0 

1 1 

IIOFO IIOF1 IIOF2 IIOF3 From external pins IIOFo-IIOF3 

TIMO TIMO TIMO TIMO From timer TIMO 

This interrupt synchronization scheme allows each DMA channel to service 
a corresponding input communication port and output communication port. 
Also, each DMA channel can be synchronized with external interrupts and 
the on-chip timers. 

Table 3-4. DMA Channels 2 to 5 Synchronization Interrupts (DMA2 to DMA)5 

Bit Value Interrupt Enabled at DMA2-DMA5t Interrupt Source for 
(in DMA2"to DMA5 tDMAxRead tDMAxWrite DMA Synchronization 

000 None None --
001 tlCRDYx tOCRDYx From communication port 

010 IIOFO IIOFO 

} o 1 1 IIOF1 IIOF1 From external pins 
1 00 IIOF2 IIOF2 INTO-INT3 

1 01 IIOF3 IIOF3 

1 1 0 TIMO TIMO } 111 TIM1 TIM1 
From timers TIMO and TIM1 

t The x in DMAx is the DMA channel number, which is also the number for the corresponding ICRDYx and 
OCRDYxinterrupts. For example, an 0012 in both DMA2 READ and DMA5 WRITE would enable interrupts 
ICRDY2 and OCRDY5, respectively. All other viable bit values (01 02 to 1112) are the same (as shown in the 
table) for DMA2 through DMA5. 

Note that each DMA channel looks not only at the DMA synchronous inter­
rupts selected but also at the synchronization mode that the channel is cur­
rently using (see Table 9-4 on page 9-15). The synchronization mode is 
specified by the DMA channel control registers located in the DMA 
coprocessor. 
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3.1.9 CPU Internal Interrupt Enable Register (liE) 

3-10 

The 32-bit internal interrupt enable register, shown in Figure 3-5, enables! 
disables the following interrupts for the CPU: 

a Timers 0 and 1, 

a For communication ports 0-5: 

• Input-buffer full, 

• Input-buffer ready, 

• Output-buffer ready, 

• Output-buffer empty. 

a DMA coprocessor channels 0-5. 

Figure 3-5 shows the liE register bits, and Table 3-5 describes the interrupt 
enabled, depending on the bit value. A 1 read means the corresponding in­
terrupt is enabled; a o indicates disabled. At reset, all zeroes are written to 
the register. 

CPU Registers, Memory, and Cache 



Figure 3-5. 
31 

R = Read, W = Write, RIW = ReadlWrite 

o 

Table 3-5. Summary of Interrupt Enable Register Bits (liE) 

liE Bit Field Name Enables/Disables (note 1) 

EICFULLx (Note 2) Comm. port x input-buffer full interrupt 

EICRDYx (Note 2) Comm. port x input-buffer ready interrupt 

EOCRDYx (Note 2) Comm. port x output-buffer ready interrupt 

EOCEMPTYx (Note 2) Comm. port x output-buffer empty interrupt 

EDMAINTx (Note 2) DMA coprocessor channel x interrupt 

ETINTO o Timer 0 interru 

ETINT1 31 Timer 1 interrupt 

NOTES: 1 The x represents a corresponding communication port number (0 - 5) or DMA coprocessor 
chanel number (0 - 5). For example, ones in bits 5 and 25 enable interrupts for (a) input-buffer 
full at communication port 1 and for (b) DMA coprocessor channel O. (A 1 enables the interrupt; 
a 0 disables it.) 

2. Communication port bits are shaded according to communication port number. For example, 
communication port O's bit numbers are in the first group of vertical shading. Thus, communic­
ation port O's bits are 1, 2, 3, 4; communication-port 1's bits are 5, 6, 7, 8; etc. The DMA 
coprocessor channel interrupts are shown the same way (e.g., EDMAINTO at bit 25, 
EDMAINT1 at bit 26, etc.). 
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3.1.10 1I0F Flag Register (IIF) Controls External Pins 1I0F(3- 0), 
Timer/DMA Flags 

The IIF register controls the external interrupt pins IIOF(3 - 0). Useittospec­
ify: 

Cl which IIOF pins are used for general-purpose I/O and which are used 
for interrupts. 

Cl whether a general-purpose pin is input (read only) or output (read/ 
write). 

Cl whether an interrupt pin is for edge-triggered or level-triggered inter-
rupts, 

Cl if an interrupt is enabled or disabled. 

Figure 3-6 depicts the IIF register bits. Table 3-6 (page 3-13) explains 
these bits in detail. Interrupt traps are shownin Figure 3-7 (page 3-15). In­
terrupts are further explained in Section 6.7 on page 6-23. 

Figure 3-6. Interrupt Flag Register (/IF) 
31 30 29 28 27 26 25 24 

II TINT1 I DMAINT5,1 DMAINT4 I DMAINT3 I DMAINT2 I DMAINT1 I DMAINTO I TINTO II 
Rm RN.J R/W RN.J Rm Rm Rm Rm 

23 22 21 20 19 18 17 16 

II xx xx xx xx xx xx xx NMI II 
R R R R R R R R 
15 14 13 12 11 10 9 8 

II EIIOF3 FLAG3 I TYPEs I FUNC3 II EIIOF2 I FLAG2 I TYPE2 I FUNC2 II 
RN.J R/W RIW Rm RN.J RN.J Rm RIW 

7 6 5 4 3 2 1 0 

II EIIOF1 FLAG1 I TYPE1 I FUNC1 II EIIOFO FLAGO I TYPEO I FUNCO II 
RN.J RN.J R/W RIW RN.J Rm Rm Rm 

R = Read (only), RIW = Read/Write, xx = Reserved, read as 0 

3-12 CPU Registers, Memory, and Cache 



CPU Register File - Interrupt Flag Register (/IF) 
s:-.............. ;~'SS!i( . ;s,:~ .... ..,.,,<tWS ; ·s 

Table 3-6. /IF Register Bits Summary 

Bit Field 
Name Function (Note 1 ) 

FUNCx 
(note 2) 

TYPEx 
(note 2) 

FLAGx 
(note 2) 

EIIOFx 
(note 2) 

NMI 

TINTO 
TINT1 

16 

24 
31 

Mode of pin 1I0F x: 
If FUNCx = 0, pin 1I0Fx is a general-purpose 1/0 (RIW) pin. 
If FUNCx = 1, pin 1I0Fx is an interrupt (R) pin. 

Type of function for pin 1I0Fx: 
If pin 1I0Fx is a general-purpose 1/0 pin (FUNCx = 0): 

TVPEx = 0 makes 1I0Fx an Input pin. 
TYPEx = 1 makes 1I0F x an output pin 

If pin 1I0Fx is an interrupt pin (FUNCx = 1): 
TYPEx = 0 makes 1I0Fx an edge-triggered latched interrupt, 
TYPEx = 1 makes IIOF x a level-triggered unlatched In.".rrl "" 

Flag for pin IIOFx: 
If pin 1I0Fx is a general-purpose Input pin (FUNCx = 0, TYPEx = 0), 

FLAGx = the value of pin 1I0Fx and is read only. 
If pin 1I0Fx is a general-purpose output pin (FUNCx = 0, TYPEx = 1), 

FLAGx = the value on pin IIOFx and is RIW. 
If pin IIOFx is an interrupt pin (FUNCx = 1): 

FLAGx = 0 if interrupt is not asserted. 
FLAGx = 1 if interrupt Is asserted. 
If 0 (zero) is written to FLAGx, the corresponding interrupt is 

cleared unless an interrupt is on the same pin; in that case, 
the interrupt will be set. 

Disable/enable external interrupt: 
15 EIIOFx = 0 disables external interrupts at pin IIFOx. 

EIIOFx= 1 enables external interrupts at pin IIFOx. 

Nonmaskable Interrupt flag (NMI). The NMI interrupt (on the external NMI pin) 
behaves like other interrupts, except it cannot be masked (disabled) by the GIE 
bit (ST bit 13) or by writing to the NMI bit itself. It is temporarily masked during 
delayed branches and multicycle CPU operations. At reset, this bit is cleared. 
An asserted interrupt is cleared only by servicing the interrupt. NMI is a negati­
ve-going, edge-triggered, latched interrupt. It is read only. 

Reading NMI as 0 indicates the interrupt is not asserted. 
C ... ,I'Iir." NMI as 1 indicates the interrupt is asserted. 

Reading as 0 indicates the timer interrupt ie not asserted. 
Reading TINTx as 1 indicates the timer interrupt is asserted. 
A zero written to this bit clears the interrupt unless the interrupt is 

asserted at the same time; in that case, the interrupt will be shown 
as asserted. 

Interrupt flag for DMA coprocessor channels 0 to 5. 

DMAINTx 25 -30 

Reading DMAINTx as 0 indicates the channel interrupt is not asserted. 
Reading DMAINTx as 1 indicates the channel interrupt is asserted. 
A zero written to this bit clears the interrupt unless the interrupt is 

NOTES: 

asserted at the same time; in that case, the interrupt will be 
shown as asserted. 

1 The xrepresents the corresponding 1I0F interrupt pin (1I0F3-1I0FO). R = Read, IW = ReadiWrite 
2. Shading organizes each communication port's bits the same as shown for the liE register 

inTable 3-5 (see note 2) on page 3-11. For example, bits 0, 1, 2, 3 apply to pin IIOFO; bits 4, 5, 
6, 7 apply to 1I0F1, etc. 
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3.1.11 Block-Repeat (RS, RE) and Repeat-Count (RC) Registers 

The 32-bit repeat start address register (RS) contains the starting address 
of the block of program memory to be repeated when operating in the repeat 
mode. 

The 32-bit repeat end address register (RE) contains the ending address 
of the block of program memory to be repeated when operating in the repeat 
mode. 

The repeat-count register (RC) is a 32-bit register used to specify the num­
ber of times a block of code is to be repeated when performing a block re­
peat If RC contains the number n, the loop will be executed n + 1 times. 

3.1.12 Program Counter (PC) 

The program counter (PC) is a 32-bit register containing the address of the 
next instruction to be fetched. While the program counter is not part of the 
CPU register file, it is a register that can be modified by instructions that 
modify the program flow. 

3.1.13 Reserved Bits and Compatibility 

3-14 

In order to retain compatibility with future members of the TMS320C4x fami­
ly of microprocessors, reserved bits that are read as zero must be written 
as zero. Reserved bits that have an undefined value must not have their 
current value modified. In other cases, maintain the reserved bits as speci­
fied. 
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3.2 CPU Expansion Register File 
This expansion register file contains two special control registers: 
o Interrupt-vector table pointer register (IVTP), 
o Trap-vector table pointer (TVTP). 

Table 3-7. CPU Expansion Registers 

Assembler Syntax Function Name 

IVTP 
Interrupt-vector table pointer. Points to start of interrupt-
vector table (shown in Figure 3-8). 

TVTP 
Trap-vector table pointer. Points to start of the 512-trap-
vector table (shown at page bottom). . . 

Use the LOEP Instruction to load (copy) an expanSIon regIster to a prtmary 
register{e.g., to any of the auxiliary registers ARO - AR7, see Table 3-1 on 
page 3-3). For example: 

LDEP IVTP,AR5 i IVTP contents to AR5 

Likewise, use the LOPE instruction to load (copy) a primary register to an 
expansion register. Neither of these instructions affects the status.register 
condition flags. 

LDPE AR5,IVTP ; AR5 contents to IVTP 

Note that both the interrupt-vector table and the trap~vector table are re­
quired to lie on a 512-word boundary; thus, the nine least-significant 
bits of these pointers are zeroes (Le., 10000000002 = 512 = 200h). 
Write only zeroes to these bits (though the register forces these to zeroes). 

The 32-bit IVTP register points to (is essentially the base address for) the 
interrupt-vector table (IVT) in memory. The contents of this table are de­
picted in Figure 3-8 on page 3-16. 

The 32-bit TVTP register is essentially the base address for the trap-vector 
table (TVT) in memory. This table, depicted below, contains the vectors for 
the TRAP instruction's 512-trap addresses (TRAPO-TRAP511). 

The interrupt (including RESET - see Section 3.3) and trap maps can be 
configured to overlap. At reset, IVTP and TVTP are set to all zeroes. 

Figure 3-7. Trap Vector Table (TVT) 

TVTP + OOOh 

TVTP + 001h 

• • • 
TVTP + 1FEh 

TVTP + 1FFh 

TRAPO 

TRAP1··.·.·· 

TO 

TRAP509 

TRAP510 

TRAP511 
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Figure 3-8. Interrupt-Vector Table (IVT) 

IVTP + 001 h NMI . Note 2 

IVTP + 002h TINTO Note 3 1--............. --"""" 
IVTP + 003h TiOFo I 
IVTP + 004h IIOF1 
IVTP + 005h 1---~II~O~F2----; Note 4 

IVTP + 006h IIOF3 

IVTP + 007h 
• 

IVTP + • • 
IVTP + OOCh 

IVTP + OODh ICFULLO 
1---------; 

IVTP + OOEh ICRDYO 
I-----------l 

IVTP + OOFh OCRDYO 
I-----------l 

IVTP + 010h OCEMPTYO 1------"""" IVTP + 011h ICFULL1 
I-------l 

IVTP + 012h ICRDY1 
I-----------l 

IVTP + 013h OCRDY1 
I-----------l 

IVTP + 014h OCEMPTY1 
1-------1 Note 5 

IVTP + 015h ICFULL2 
I-----------l 

IVTP + 016h ICRDY2 
I----------l 

IVTP + 017h OCRDY2 
I----------l 

IVTP + 018h OCEMPTY2 
1-------1 

IVTP + 019h ICFULL3 
I-------l 

IVTP + 01 Ah ICRDY3 
1---------1 

IVTp + 01 Bh OCRDY3 
1---------1 

IVTP + 01 Ch OCEMPTY3 ..... _____ ...J 

;:: j 

IVTP + 01 Dh ICFULL4 

IVTP + 01Eh ICRDY4 

IVTP + 01Fh OCRDY4 

IVTP + 020h OCEMPTY4 

IVTP + 021 h ICFULL5 

IVTP + 022h ICRDY5 
1---------; 

IVTP + 023h OCRDY5 
1---------; 

IVTP + 024h OCEMPTY5 1------"""" IVTP + 025h DMA INTO 
1----.------; 

IVTP + 026h DMA INT1 
1---------; 

IVTP + 027h DMA INT2 
1----------1 

IVTP + 028h DMA INT3 
1----------1 

IVTP + 029h DMA INT4 
1--------; 

IVTP + 02Ah DMA INT5 

IVTP + 02Bh 

IVTP + 02Ch 

IVTP + 

IVTP + 

IVTP + 

IVTP + 

IVTP + 

IVTP + 

IVTP + 

IVTP + 

• 

• 

• 

IVTP + 03Eh 

IVTP + 03Fh 

1------"""'1 

I-~--~~~ 

1-"""-"-;';;";;;;' 

Notes: 1) Reserved for the reset vector when IVTP = 0000 OOOOh and RESETLOC(1 ,0) = 0 02 or 
when IVTP=OSOOO OOOOh and RESETLOC(1 ,0) = 1 02. See Table 3-8. 

2) NMI (nonmaskable interrupt) is discussed in Section 9.9, page 9-40. 

Note 5 

Note 6 

3) TImer interrupts TINTO and TINT1 are enabled and programmed by the liE register (subection 
3.1.9, page 3-10) and monitored at the IIF register (subection 3.1.10, page 3-12). 

4) External pins 1I0FO-II0FS are programmed in the DIE register (subsection 3.1.S, page 3-S) 
and IIF register. 

5) The communication port I/O buffers full/ready interrupts are enabled by the DIE and liE re­
gisters and also discussed in Table 8-1, page S-1 0 (OUTPUT LEVEL & INPUT LEVEL bits). 

6) DMA interrupts are enabled at the liE register and DMA channel control register (at bits TCC 
and AUX TCC explained in Table 9-1 on page 9-S). 
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RESET Vector Mapping 

3.3 RESET Vector Mapping 

The 'C40s RESET vector can reside in anyone of four memory locations. 
The value on two external pins (RESETLOC(1 ,0» determines the RESET 
vector location as shown in the following table. 

Table 3-8. Four RESET Vector Locations Chosen by Values on Pins RESETLOC(1,O) 

Value at RESETLOCx Pin Get RESET Vector 

RESETLOC1 I RESETLOCO From Memory Address Comment 

0 0 00000 000016 Local Bus 

0 1 07FFF FFFF16 Local Bus 

1 0 08000 000016 Global Bus 

1 1 OFFFF FFFF16 Global Bus 

Note that if pin ROMEN = 1 and the vector at 0000 OOOOh is enabled (pins 
RESETLOC(1 ,0) = 00), then the vector is mapped to address 0 of internal 
ROM. 

This mapping scheme of the RESET vector allows the TMS320C40 to be 
integrated easily into systems having other processors with fixed RESET 
vector locations. It also allows you to make the RESET vector either external 
or internal (on-chip ROM) to the processor. 
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Memory 

3.4 Memory 

3-18 

The TMS320C40's memory space of 4 giga words (4 billion x 32 bits where 
1 G = 230) is shown in the two memory maps in Figure 3-9. These maps 
differ only by the makeup of the lowest address space at 0000 OOOOh to 
0000 OFFFh. This makeup is configured by the value at pin RaMEN 
(onchip - reserved - ROM enable, pin AK4): 

a ROMEN = 1. Addresses OOOOh - OFFFh are an accessibte onchip 
ROM block (reserved), and 0000 1000h - OOOF FFFFh are reserved 

a ROMEN = O. The on-chip (reserved) ROM is disabled, and address­
es 0000 OOOOh - OOOF FFFFh are accessible over the local bus. 

Memory in both maps starting at 10 OOOOh is not affected by RaMEN (as 
described for addresses OOOOOh - FFFFFh above). A general summary of 
address ranges: 

a 0000 OooOh - OOOF FFFFh: Can be local bus or on-Chip (reserved) 
ROM, depending on the value of pin RaMEN. 

a 0010 OOOOh - 0010 OOFFh: Internal peripherals 
(DMA coprocessor, communications ports, timers,. 
etc.) 

a 0010 0100h - 001F FFFFh: Internal peripheral re­
gion. 

a 0020 OOOOh - 002F F7FFh: Reserved. 

a 002F F800h - 002F FBFFh: 1 K RAM Block O. 

a 002F FCOOh - 002F FFFFh: 1 K RAM Block 1. 

Instructions 
cannot be 
accessed in 
these 3 areas. 

a 0030 OOOOh - 07FFF FFFFh: Local bus. If RaMEN = 1, another part 
of the local bus is at 00 OOOOh - OF FfFFh. These addresses activate 
the local· bus. 

a 08000 OOOOh - OFFFF FFFFh: Global bus. 

CPU data accesses and DMA accesses can be made from any unreserved 
part of the 'C40 memory map. Instruction fetches can take place at any unre­
served area of the 'C40 memory map except at the peripheral space (ad­
dresses 0010 OOOOh - 001 0 OOFFh). 

The 'C40's internal ROM is currently reserved for TI internal use only. 
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3.4.1 Overall Memory Map 

Figure 3-9. Memory Maps 

~ 
i= z 
w 
Q 
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Peripherals (Internal) 
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Reserved 

Reserved 

------------------1 K RAM BlK 0 (Internal) ------------------1 K RAM BlK 1 (Internal) 

local Bus 
(External) 

Global Bus 
(External) 

(a) Internal ROM Disabled 
(RaMEN =0) 

0 

0 

OOOOOOOOh 

OOOOOOFFFh 
00001000h 

OOOOFFFFFh 
000100000h 

0001000FFh 
000100100h 

0 
0 

0 
0 
0 

001F FFFFh 
00200000h 

0002FF7FFh 
002F F800h 
002F FBFFh 
002FFCOOh 
002FFFFFh 0 

0 0030 OOOOh 

07FFFFFFFh 
080000000h 

OFFFF FFFFh 

Memory 

Peripherals (Internal) 
(See Figure 3-10) -----------------

Reserved 

Reserved 

-----------------1 K RAM BlK 0 (Internal) ---_.------------1 K RAM BlK 1 (Internal) 

local Bus 
(External) 

Global Bus 
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(b) Internal ROM Enabled 
(RaMEN = 1) 
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Memory - Peripheral Bus Memory Map 
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3.4.2 Peripheral Bus Memory Map 
This map resides in addresses 0010 OOOOh - 001 0 OOFFh as shown in the 
memory map, Figure 3-9. Each peripheral requires a 16-word area. 

Figure 3-10. Peripheral Memory Map 

00100000h 

0010000Fh 

00100010h 

0010001Fh 

00100020h 

0010002Fh 
, 

00100030h 

0010003Fh 

00100040h 

0010004Fh 

00100050h 

0010005Fh 

00100060h 

0010006Fh 

00100070h 

0010007Fh 

00100080h 

0010008Fh 

00100090h 

0010009Fh 

001000AOh 

001000AFh 

001000S0h 

001000SFh 

001000COh 

001000CFh 

001000DOh 

001000DFh 

001000EOh 

001000EFh 

001000FOh 

001000FFh 
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Memory - Memory Interface and Analysis Module 

3.4.2.1 Local and Global Memory Interface Control Registers 

These registers control the local and global memory interfaces. They 
occupy the first 16-word block of the peripheral bus memory map, shown 
in Figure 3-10. The registers themselves are shown in Figure 3-11. Chap­
ter 7 covers the operation of these registers. A detailed description of these 
is shown in Figure 7-2 and Table 7-3 (pages 7-7and 7-8). 

These registers define: 

• the page sizes used for the two strobes of each port, 

• address ranges over which the strobes are active, 

• wait states, and 

• other similar operations that compose the memory interfaces. 

Figure 3-11. Memory Interface Control Registers 

0010 OOOOh :,""~I9ijaI."~e:m:o!Y::J,F1te'~c~"'PQri~rQI"'~'~glsf.e'r.,,<,,, 
0010 0001h 

Reserved 
0010 0003h 

0010 0005h 

Reserved 

0010 OOOFh '___ ____________ ---' 

3.4.2.2 Analysis Module Registers 

These registers, the second 16-word block in the peripheral bus memory 
Map (Figure 3-10), are shown below in Figure 3-12. These registers are 
reserved for emulation functions. 

Figure 3-12. Analysis Module Registers 

001 0 001 Oh HIIf-!llHtll--I-iiiHH!I+!IIHtII--!!iH!IMHt+-!IiHIf-HHiHiHii-H 

001 0 0011 h H-!llHtll--I-iiiHHH!!-",*-!!iH!IH!!H1!!-I-1IIH!if-HHHiHii-H 

001 0 00 12h H-!llHtll--I-iiiHH!I+!IIHtII--!!iH!IHH~1i!!-I-HHiH!HI!-H 
0010 0013h L.lLIIII..IIII...IIII..IIIIUII..IIL.IL=~~~=..i...JIII..IIIl..iIIi-JLIIII..IIII..III 
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3.4.2.3 Timer Registers 

This group of registers occupies the 001 0 0020h - 0010 003Fh range in the 
peripheral bus memory map, Figure 3-10, on page 3-20. Timers and their 
registers are covered in detail in Section 9.10 on page 9-45. 

Figure 3-13. Timer Registers 

Reserved 

Timer 0 

Reserved 

0010 0028h<><><:'TlmerOperi.odRegister, .... <\,< 

Reserved 

Reserved 

Timer 1 

Reserved 

0010 0038h 1>'<::"":::'" .Timer 1" Period' Register .. ' '<:::'\,'\" 

Reserved 

0010 003Fh L...-__________ -" 

3-22 CPU Registers, Memory, and Cache 



Memory - Communication Port Memory Map 
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3.4.2.4 Communication Port Memory Map 

The communication-port control registers (CPCR) and input and output 
FIFO buffers are illustrated below in Figure 3-14. This is the central group 
of registers in the peripheral bus memory map, Figure 3-10, on page 3-20. 
These are described in more detail in Chapter 8. 

Figure 3-14. Communication Port Memory Map 

0010 0040h 

0010 0061h 

0010 0081h 

0010 0091h 

Reserved 
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Memory - DMA Coprocessor Register Memory Map 

3.4.2.5 DMA Coprocessor Registers 
The DMA registers (shown below) are the bottom block of registers in the 
peripheral bus memory map (Figure 3-10 on page 3-20). These registers 
are described in Chapter 9. Figure 9-2, page 9-5, is an index to subjects. 

Figure 3-15. DMA Coprocessor Memory Map 

0010 OOAOh 

0010 00A8h 
0010 00A9h 

0010 OOAFh 
0010 OOBOh 

0010 00B8h 
0010 00B9h 

0010 OOBFh 
0010 OOCOh 

0010 00C8h 
0010 00C9h 

0010 OOCFh 
0010 OODOh 

T 
DMAChO 

.L 

T 
DMACh 1 

--L 

T 
DMACh2 

...L 

T 

EXPLODED VIEW OF EACH CHANNEL 
REGISTER 

~~~. ~~~~~ t-::-~~~=---"~~~~:':' .... T 
010 00z2h I~""""'=--= _______ '=;';';";";"'_~ 
010 00z3h DMA 
010 00z4h Ch. 
010 OOz5h x 
010 00z6h·linkPointer X·'", 

0010 00D8h 
0010 00D9h 

010 00z7h Auxiliary Transfer Counter x D1.:h 3 010 00z8h Auxiliary Link Pointe(x 

x = channel number (e.g., all are 1 for 
channel 1, all 2 for channel 2, etc.). 

1 

0010 00E8h 
0010 00E9h 

0010 OOEFh 
0010 OOFOh 

0010 00F8h I------"--""""-t 
0010 00F9h 

Reserved 
0010 OOFFh 1.-___ -.1 
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T 
DMACh4 

T 
DMACh5 

...L 

z = corresponding hexadecimal digit for 
channel address (e.g., substitute 
an "A" for DMA channel 0, "B" for 
DMA channel 1. etc.). 

These registers are described in 
Chapter 9, and an index of de­
scription locations is listed in 
Figure 9-2 on page 9-5. 
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Instruction Cache Architecture 
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3.5 Instruction Cache Architecture 

The 128 x 32-bit instruction cache speeds instruction fetches and lowers 
system cost. The instruction cache allows the use of slow external memo­
ries while still achieving single-cycle access performance. The cache also 
frees the external bus from program fetches, thus, allowing the use of these 
buses for DMA or other system needs. The cache can operate in a com­
pletely automatic fashion without the need for external intervention. It uses 
a form of the LRU (least recently used) cache update algorithm. 

The instruction cache (see Figure 3-17 on page 3-26) contains 128 32-bit 
words of RAM, enough to hold 128 words of program memory. It is divided 
into four 32-word segments. Associated with each segment is a 27 -bit seg­
ment start address (SSA) register. For each word in the cache, there is a 
corresponding single-bit present (P) flag. 

When the CPU requests an instruction word, a check is made to determine 
whether the word is already in the instruction cache. The partitioning of an 
instruction address as used by the cache control algorithm is shown in 
Figure 3-16. The 27 most significant bits (MSBs) of the instruction address 
select the segment, and the 5 least significant bits define the address of the 
instruction word within the pertinent segment. The 27 MSBs of the instruc­
tion address are compared with the four SSA registers. If a match is found, 
the relevant P flag is checked. The P flag indicates whether or not the word 
within a particular segment is already present in cache memory: 

Q P = 1: the word is already present in cache memory. 
Q P = 0: location in cache is invalid (e.g., contains garbage). 

Figure 3-16. Address Partitioning for Cache Control Algorithm 

..... ··.instruction word \ •.... 
ddress within segrrie~f 

If there is no match, one of the segments must be replaced by the new data. 
The segment replaced in this circumstance is determined by the LRU (least 
recently used) algorithm. The LRU stack (see upper right of Figure 3-17 on 
page 3-26) is maintained for this purpose. 
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Instruction Cache Architecture 

Figure 3-17. Instruction Cache Architecture 
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The LRU stack keeps track of which segment {O - 3} qualifies as the least 
recently used after each access to the cache. Each time a segment is ac­
cessed, its segment number is removed from the LRU stack and pushed 
onto the top Of the LRU stack. Therefore, the number at the top of the stack 
is the most recently used segment number, and the number at the bottom 
of the stack is the least recently used segment number. 

At RESET, the following occur in the instruction cache: 
Cl all P flags are set to zero, and 
Cl the LRU stack is initialized with segment no. 0 at the top followed by 

1,2, and 3 at the bottom. If any two SSA registers are equal (due to RE­
SET conditions) and a cache hit occurs, the instruction word is fetched 
from the most recently used segment. 

When a replacement is necessary, the least recently used segment is se­
lected for replacement. Also, the 32 P flags for the segment to be replaced 
are set to 0, and the segment's SSA register is replaced with the 27 MSBs 
of the instruction address. 

3.5.1 Cache Algorithm 

When the TMS320C40 requests an instruction word from external memory, 
the tWo possible actions are a cache hit or a cache miss. 

Cl Cache Hit. The cache contains the requested instruction, and the fol­
lowing actions occur: 

• The instruction word is read from the cache. 

• The number of the segment containing the word is removed from 
the LRU stack and pushed to the top of the LRU stack (if not already 
atthe top), thus moving the other segment numbers toward the bot­
tom of the stack. 

Cl Cache Miss. The cache does not contain the instruction. Types of 
cache misses are 
• Subsegment miss. The segment address register matches the in­

struction address, but the relevant P flag is not set. The following 
ac~ons occur: 
• The instruction word is read from memory and copied into the 

cache. 
• The number of the segment containing the word is removed from 

the LRU stack and pushed to the top of the LRU stack (if not al­
ready at the top), thus moving the other segment numbers to­
ward the bottom of the stack. 

• The relevant P flag is set. 
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• Segment miss. None of the segment addresses matches the in­
struction address. The following actions occur: 

• The least recently used segment is selected for replacement. 
The P flags for all 32 words are cleared. 

• The SSA register for the selected segment is loaded with the 27 
MSBs of the address of the requested instruction word. 

• The instruction word is fetched and copied into the cache. It goes 
into the appropriate word of the least recently used segment. The 
P flag for that word is set to 1. 

• The number of the segment containing the instruction word is re­
moved from the LRU stack and pushed to the top of the LRU 
stack, thus moving the other segment numbers toward the bot­
tom of the stack. 

3.5.2 Cache and System Memory 
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Only instructions may be fetched from the program cache. All reads and 
writes of data in memory bypass the cache. Program fetches from internal 
memory do not modify the cache and do not generate cache hits or misses. 
The program cache is a single-access memory block. Dummy program 
fetches (Le., following a branch) can generate cache misses and cache up­
dates. 

Avoid using self-modifying code. If an instruction resides in cache and 
the corresponding location in primary memory is modified, the copy of the 
instruction in cache is not modified. 

Cache can be used more efficiently by aligning program code on 32-word 
address boundaries. Do this by using the ALIGN directive when coding as­
sembly language. 
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Instruction Cache-Cache Control Bits 

3.5.3 Cache Control Bits 

Four cache control bits are located in the CPU status register: the cache 
clear bit (CC), the cache enable bit (CE), the cache freeze bit (CF), and the 
previous cache freeze bit (PCF) as shown in Figure 3-3 on page 3-6. The 
definitions of these bits are repeated below from Table 3-2. 

Cache Clear Bit (CC). Set CC = 1 to invalidate all entries in the cache (con­
tents not guaranteed, "garbage"). This bit is always cleared after it is 
written to; thus, it is always read as O. At reset, 0 is written to this bit. 
The cache P flag = 0 when cache is cleared. 

Cache Enable Bit (CE). Set CE = 1 to enable the cache, allowing the cache 
to be used according to the LRU (least recently used) cache algo­
rithm. Set CE = 0 to disable the cache; this prevents cache updates or 
modifications (thus no cache fetches can be made). At reset, 0 is writ­
ten to this bit. Cache clearing (CC = 1) is allowed when CE=O. 

Cache Freeze Bit (CF). Set CF = 1 to freeze the cache (cannot be written to) 
including freezing of LRU (least recently used) stack manipulation. If 
the cache is enabled (CE = 1), fetches from the cache are allowed, 
but modification of the cache contents is not allowed. Cache clearing 
(CC=1) is allowed .. At reset, this bit is setto zero. When CF=O, cache 
clearing (CC=1) is allowed. CF is set to one when a trap or interrupt is 
taken. Also, the RETI and RETID instructions copy PCF to the CF bit. 

Table 3-9 defines the effect of the CE and CF bits used in combina­
tion. 

Table 3-9. Combined Effect of the CE and CF Bits 

CE CF Effect 

0 0 Cache not enabled 

0 1 Cache not enabled 

1 0 Cache enabled and not frozen 

1 1 Cache enabled and frozen 

Previous Cache Freeze Bit (PCF). When an interrupt or trap vector is tak­
en, theCFvalue is copied to the PCF bit and the CF bit is set to 1. This 
protects the cache during interrupt processing and is particularly use­
ful when code loops are interrupted. The interrupt service routine may 
optionally use the cache under software control. Interrupts may also 
be nested, providing that the status register is saved prior to enabling 
the interrupts. When the instructions RETlcond and RETlconaD are 
executed to complete interrupt processing, the contents of the PCF 
bit are copied to the CF bit. 
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In the TMS320C40 architecture, data is organized into three fundamental 
types: integer, unsigned-integer, and floating-point. Note that the terms, in­
teger and signed-integer, are considered to be equivalent. The TMS320C40 
supports short and single-precision formats for signed and unsigned inte­
gers. It also supports short, single-precision and extended-precision for­
mats for floating-point data. 

Floating-point operations make fast, trouble-free, accurate, and precise 
computations. Specifically, the TMS320C40 implementation of floating­
point arithmetic facilitates floating-point operations at integer speeds while 
preventing problems with overflow, operand alignment, and other burden­
some tasks common in integer operations. 

This chapter discusses in detail the data formats and floating-point opera­
tions supported on the TMS320C40. Major topics in this section are as fol­
lows: 

Section Page 
4.1 Signed Integer Formats ................................ 4-3 

• Short Integer Format .............................. 4-3 

• Single-Precision Integer Format .................... 4-3 

4.2 Unsigned-Integer Formats .............................. 4-4 

• Short Unsigned-Integer Format) .................... 4-4 

• Single-Precision Unsigned-Integer Format ........... 4-4 

4.3 Floating-Point Formats ................................. 4-5 

• Short Floating-Point Format ........................ 4-6 

• Single-Precision Floating-Point Format ............... 4-7 
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Section Page 

• Extended-Precision Floating-Point Format ............ 4-8 

• Conversion Between Floating-Point Formats .......... 4-9 

4.4 Floating-Point Conversions, IEEE/'C4x ................... 4-11 

• Converting IEEE Format to Twos Complement 
Floating-Point Format .............................. 4-12 

• Converting Twos Complement Floating-Point 
Format to I EEE Format ............................ 4-13 

4.5 Floating-Point Multiplication ............................ 4-15 

4.6 Floating-Point Addition and Subtraction .................. 4-20 

4.7 Normalization, (NORM Instruction) ...................... 4-24 

4.8 Rounding, (RND Instruction) . . . . . . . . . . . . . . . . . . . . . . . . . .. .4-26 

4.9 Floating-Point to Integer Conversions, 
FIX Instruction ........................................ 4-28 
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4.1 Signed Integer Formats 

The TMS320C40supports two integer formats: a 16-bit short integer format 
and a 32-bit single-precision integer format. When extended-precision 
registers are used as integer operands, only bits 31- 0 are used; bits 39 -32 
remain unchanged and unused. 

4.1.1 Short Integer Format 

The short integer format is a 16-bit twos-complement integer format used 
for immediate integer operands. For those instructions that assume integer 
operands, this format is sign extended to 32 bits (see Figure 4-1). The 
range of an integer si, represented in the short integer format, is: 

-215 ::; si::; 2 15 _1 

In Figure 4-1 and other figures in this chapter, S = sign bit. 

Figure 4-1. Short Integer Format and Sign Extension of Short Integer 
15 0 

I~l <rill 
(a) Short Integer Format 

(b) Sign Extension of a Short Integer 

4.1.2 Single-Precision Integer Format 

In the single-precision integer format, the integer is represented in 
twos-complement notation. The range of an integer sp, represented in the 
single-precision integerformat, is- 231 ::; sp::; 231 -1. Figure 4-2 shows the 
single-precision integer format. 

Figure 4-2. Single-Precision Integer Format 
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4.2 Unsigned-Integer Formats 

Two unsigned-integer formats are supported on the TMS320C40: a 16-bit 
short format and a 32-bit single-precision format. In extended-precision reg­
isters, the unsigned-integer operands use only bits 31- 0; bits 39 - 32 re­
main unchanged. 

4.2.1 Short Unsigned-Integer Format 

Figure 4-3 shows the 16-bit, short, unsigned-integer format used for imme­
diate unsigned-integer operands. For those instructions that assume 
unsigned-integer operands, this format is zero filled to 32 bits. In Figure 4-3 
below, x = MSB (1 or 0). 

Figure 4-3. Short Unsigned-Integer Format and Zero Fill 

15 o 

(.) .. ···.·.·i .. ·.······ ······.······ .. >\1 
(a) Short Unsigned-Integer Format 

31 1615 o 
..........•...........•...•......•••........•••..••..•••..•..• ···.······1 

(b) Zero Fill of a Short Unsigned Integer 

4.2.2 Single-Precision Unsigned-Integer Format 

In the single-precision unsigned-integer format, the number is represented 
as a 32-bit value, as shown in Figure 4-4. 

Figure 4-4. Single-Precision Unsigned-Integer Format 

31 o 
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4.3 Floating-Point Formats 

All TMS320C40 floating-point formats consist of three fields: an exponent 
field (e), a single-bit sign field (5), and a fraction field (t). These are 
stored as shown in Figure 4-5. The exponent field is a twos-complement 
number. The sign field and fraction field may be considered as one unit and 
referred to as the mantissa field (man). The mantissa is used to represent 
a normalized twos-complement number. In a normalized representation, a 
most significant nonsign bit is implied, thus providing an additional bit of pre­
cision. The value of a floating-point number x as a function of the fields e, 
s, and f is given as 

x=01.fx2e ifs=O 
x= 10.fx 2e 
x=O 

Figure ~5. Generic Floating-Point Format 

if s = 1 
if e = most negative twos-complement 
value or the specified exponent field width 

IIel~Jd> •. · .•. · •.•..•. d.·.·.···.·····>.··.>····>···.f) .. . ..... .....< I 
14 man (mantissa) .. I 
Note: e = exponent field 

s = single-bit sign field 
f = fraction field 

Three floating-point formats are supported on the TMS320C40: 
Q a short floating-point format (for immediate floating-point operands) 

consisting of a 4-bit exponent, 1 sign bit, and an 11-bit fraction, 
Q a single-precision format consisting of an 8-bit exponent, 1 sign bit, and 

a 23-bit fraction, and 
Q an extended-precision format consisting of an 8-bit exponent, 1 sign bit, 

and a 31-bit fraction. 
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4.3.1 Short Floating-Paint Format 

In the short floating-point format, floating-point numbers are represented by 
a twos-complement 4-bit exponent field (e) and a twos-complement 12-bit 
mantissa field (man) with an implied most significant nonsign bit. 

Figure 4-6. Short Floating-Point Format 
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15 12111 110 o 

I ..... f----- man ----1~~1 

Operations are performed with an implied binary point between bits 11 and 
10. When the implied most significant nonsign bit is made explicit, it is lo­
cated to the immediate left of the binary point. The floating-point twos-com­
plement number x in the short floating-point format is given by 

x = 01 .f x 2e if 5 = 0 
x=10.fx2e ifs=1 
x = 0 if e = - 8, 5 = 0, f = 0 

You must use the following reserved values to represent zero in the short 
floating-point format: 

e =-8 

5 = 0 

f = 0 

The following examples illustrate the range and precision of the short float­
ing-point format: 

Most Positive: 

Least Positive: 

Least Negative: 

Most Negative: 

x= (2 -2 -11) x 27 = 2.5594 x 102 

x= 1 x2 -7 = 7.8125 x10- 3 

x=(-1- 2 -11) x2 -7 = -7.8163 x1 0-3 

x = -2 x 27 = - 2.5600 x10 2 
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4.3.2 Single-Precision Floating-Point Format 

In the single-precision format, the floating-point number is represented by 
an 8-bit exponent field (e) and a twos-complement 24-bit mantissa field 
(man) with an implied most significant nonsign bit. 

Operations are performed with an implied binary point between bits 23 and 
22. When the implied most significant nonsign bit is made explicit, it is lo­
cated to the immediate left of the binary point. The floating-point number x 
is given by 

x=01.fx2e 
x= 10.fx2e 
x= 0 

if 5= 0 
if 5 = 1 
if e = -128,5 = 0, f = 0 

Figure 4-7. Single-Precision Floating-Point Format 

31 24123122 0 

lii!:!ii;i!:m:'if![lr~l::!'·'·:i:::· .' •. : •. ,r. ",.,., ...... ,";.,.. .·!!··::!1!··1 

1 ..... 1----- man ---.~I 
You must use the following reserved values to represent zero in the single­
precision floating-point format: 

e=-128 

5=0 

f= 0 

The following examples illustrate the range and precision of the single-pre­
cision floating-point format. 

Most Positive: x = (2 - 2 -23) x 2127 = 3.4028234 x1 038 

Least Positive: x = 1 x2 -127 = 5.8774717 x10 -39 

Least Negative: x = (-1-2 -23) x2 -127 =- 5.8774724x10- 39 

Most Negative: x = - 2 x 2127 = - 3.4028236 x1 038 
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4.3.3 Extended-Precision Floating-Point Format 

In the extended-precision format, the floating-point number is represented 
by an 8-bit exponent field (e) and a 32-bit mantissa field (man) with an im­
plied most significant nonsign bit. 

Operations are performed with an implied binary point between bits 31 and 
30. When the implied most significant nonsign bit is made explicit, it is lo­
cated to the immediate left of the binary point. The floating-point number x 
is given by: 

x = 01 .f x 29 if 5 = 0 
x= 10.fx 29 

x= 0 
if 5 = 1 
if e = -128, 5 = 0, f = 0 

Figure 4-8. Extended-Precision Floating-Point Format 
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39 32131130 o 

1 ..... 1-------- man ------~~~I 

You must use the following reserved values to represent zero in the exten­
ded-precision floating-point format: 

e=-128 

5=0 

f= 0 

The following examples illustrate the range and preCision of the exten­
ded-precision floating-point format: 

Most Positive: x = (2 - 2-31 )x 2127 = 3.4028236683 x1038 

Least Positive: x = 1 x 2 -127 = 5.8774717541 x10 -39 

Least Negative: x = (-1-2 -31)x2 -127 =- 5.8774717569x10 -39 

Most Negative: x = - 2 x 2127 = - 3.4028236691 x 1038 
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4.3.4 Conversion Between Floating-Point Formats 
Floating-point operations assume several different formats for inputs and 
outputs. These formats often require conversion from one floating-pointfor­
mat to another (e.g., short floating-point format to extended-precision float­
ing-point format). Format conversions occur automatically in hardware, with 
no overhead, as a part of the floating-point operations. Examples of the four 
conversions are shown below. When a floating-point format zero is con­
verted to a greater precision format, it is always converted to a valid repre­
sentation of zero in that format. In the figures below, S = sign bit of the expo­
nent. 

Q Short floating-point format conversion to single-precision 
floating-point format. 

15 1211 10 0 

(a) Short Floating-Point Format 

o 

(b) Single-Precision Floating-Point Format 

In this format, the exponent field is sign extended and the fraction field 
filled with zeros. ' 

'!! 
Q Short floating-point format conversion to extended-precision 

39 

floating-point format. 

15 121110 o 

(a) Short Floating-Point Format 

35 3231 30 20 19 o 

(b) Extended-Precision Floating-Point Format 

The exponent field in this format is sign extended and the fraction field 
filled with zeros. 
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Q Single-precision floating-point format conversion to extended 
precision floating-point format. 

31 242322 o 

(a) Single-Precision Floating-Point Format 

32 31 30 8 7 o 

(b) Extended-Precision Floating-Point Format 

The fraction field is filled with zeros. 

Q Extended-precision floating-point format conversion to single­
precision floating-point format. 

3231 30 8 7 

(a) Extended-Precision Floating-Point Format 

31 2423 22 

(b) Single-Precision Floating-Point Format 

The fraction field is truncated. 

o 

o 
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Floating-Point Conversions (IEEE Std. 754/'C4x) 

4.4 Floating-Point Conversions (IEEE Std. 7541'C4x) 

Figure 4-9. IEEE Single-Precision Std. 754 Floating-Point Format 

31 30 2~22 o 

1 ..... 1---- man ----..1 
This IEEE format is depicted in Figure 4-9 above. The following five cases 
define the value vof a number expressed in this format: 

1) If ··i.··.·········.···.·iIF······· 2·····5··5t.iI••••.••••. and then i·····.···v?····=iN?··ai\N··t·····.···········.·····r :} .• ····e········:J .... 

2) If:'i~ •••••• :~ •••••••••• ~§~t and tthheenn •. :.· .••.. , .•. ·v •• ~··_t.i.;~(1j»)~x •• ~·.n:2:I.L. n ..• • ..•. , ..• ·· .. \.·.t.2.· •.. e .•• ~· ... : .••.••.• ( •. j1 •. 1.·.I .•. ·.1 •.•..• ·.i.L ..••.••. I.· .... 
3) If;~~·~~~J "I 

4) If>t~(~O> and 

5) Ifi~>~dO and 

f "* 0, then 

f = 0, then 

--..;8 ····i;Si v - ( . 1 )x 2"--..... .(Q.IJ. 
v= (-11S0(zero):L>< 

where s = sign bit; e = the exponent field; f = the fraction field. 

Forthe above five representations, e is treated as an unsigned integer. Case 
1 generates NaN (not an number) and is primarily used for software signal­
ing. Case 4 represents a denormalized number. Case 5 represents positive 
and negative zero. 

Figure 4-10. TMS320C4x Single-Precision Twos-Complement Floating-Point 
Format; 

31 242322 o 

In comparison, Figure 4-10 shows the the 'C40 twos-complement floating­
point format. In this format, two cases can be used to define value v of a 
number: 

1) If 

2) If 

and then ~\~YO···.····· •• } 
then v: >~~(~~.~ 

where s = sign bit; e = the exponent field; f = the fraction field. 

t NaN = not a number 
:t: Same format as for the TMS320C3x 
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For this representation, e is treated as a twos-complement integer. The frac­
tion and sign bit form a normalized twos-complement mantissa. 

Note: Symbols to Differentiate Between IEEE and 'C40 Formats 

In order to differentiate between the symbols used to define these two for­
mats, all IEEE fields are subscripted with an IEEE (e.g., eIEEE, sIEEE, etc.). 
Similarly, all twos-complement fields are subscripted with a two (Le., 8two, 
stwo, ftwo)· 

4.4.1 Converting IEEE Format to Twos-Complement 
Floating-Point Format 

The most common conversion is the IEEE to twos-complement format. This 
conversion is done according to rules in the following table: 

Table 4-1. Rules for Converting IEEE Format to Twos-Complement Floating-Point Format 

If These Values Are Present Then These Values Equal 

Case 

2 

4 0< elEEE <255 1 1 

BOh o 00 OOOOh 
IEEE = ones complement of fIEEE. 

4-12 

Case 1 maps the IEEE positive NaNs and positive infinity to the single-preci­
sion twos-complement most positive number. Overflow is also signaled to 
allow you to check for these special cases. 

Case 2 maps the IEEE negative NaNs and negative infinity to the single­
precision twos-complement most negative number. Overflow is also sig­
naled to allow you to check for these special cases. 

Case 3 maps the IEEE positive normalized numbers to the identical value 
in the twos-complement positive number. 

Case 4 maps the IEEE negative normalized numbers with a nonzero frac­
tion to the identical value in the twos-complement negative number. 

Case 5 maps the IEEE negative normalized numbers with a zero fraction 
to the identical value in the twos-complement negative number. 
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Case 6 maps the IEEE positive and negative denormalized numbers and 
positive and negative zeroes to a twos-complement zero. 

The TMS320C40 assumes thatthe IEEE numbers are stored as an integer 
in memory or in a register. When converted, they are always placed in an 
extended-precision register by using the exponent and fraction fields of 
these registers. Any arithmetic operations that are performed on the fraction 
field of the IEEE number should be performed only on the IEEE fraction 
field. The eight LSBs of the extended-precision register are set to zero. 

4.4.2 Converting Twos-Complement Floating-Point Format 
to IEEE Format 

This conversion is done according to rules in the following table: 

Table 4-2. Rules for Converting Twos-Complement Floating Point Format to IEEE Format 

If These Values Are Present Then These Values Equal 

FFh 1 00 OOOOh 

t ~o = ones complement of !two. 
Case 1 maps a twos-complement zero to a positive IEEE zero. 

Case 2 maps the twos-complement numbers that are too small to be repre­
sented as normalized IEEE numbers to a positive IEEE zero. 

Case 3 maps the positive twos-complement numbers that are not covered 
by case 2 into the identically valued IEEE number. 
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Case 4 maps the negative twos-complement numbers with a nonzero frac­
tion that are not covered in case 2 into the identically valued IEEE number. 

Case 5 maps all the negative twos-complement numbers with a zero frac­
tion, except for the most negative twos-complement number and those that 
are not covered in case 2, into the identically valued IEEE number. 

Case 6 maps the most negative twos-complement number to the IEEE neg­
ative infinity. 

TheTMS320C4x assumes that the twos-complement numbers are in 
memory or are in an extended-precision register using the exponent and 
fraction field of the register (shown in Figure 4-10 on page 4-11). If the val.,. 
ue is in an extended-precision register, then only the 24 MSBs of the fraction 
field are manipulated as the fraction field and for detection of the special 
cases. The result of the conversion goes to a register as an integer. 
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4.5 Floating-Point Multiplication 

A floating-point number ex can be written in floating-point format as in the fol­
lowing formula, where ex(man) is the mantissa and ex(exp) is the exponent. 

ex = ex( man) x 2a( exp) 

The product of ex and b is c, defined as 

c = ex x b = ex(man) x b(man) x 2(a(exp)+b (exp)) 

c(man) = ex(man) x b(man) 

c( exp) = ex( exp) + b( exp) 

During floating-point multiplication, source operands are always assumed 
to be in the extended-precision floating-point format: 

If the source of the operands is in short floating-point format, it is ex­
tended to the extended-precision floating-point format. 

If the source of the operands is in single-precision floating-point for­
mat, it is extended to extended-precision format. 

These conversions occur automatically in hardware with no overhead. All 
results of floating-point multiplications are in the extended-precision format. 
These multiplications occur in a single cycle. 
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Floating-Point Multiplication 

Figure 4-11; Flowchart for Floating-Point Multiplication 

4-16 

c(exp) = 
-128 

c(man) > > 1 
and c(exp) = 
c(exp) + 1 

c(man) > >2 
and c(exp) = 
c(exp) +2 

Put c( man) in extended­
precision floating-point 
format 

If c(man) > 0, 
set c to most 
positive value. 

If c(man) < 0, 
set cto most 

c(exp) = -128 
c(man) = ° (15) 

negative value. 

c=axb 
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Figure 4-11 is a flowchart showing floating-point multiplication: 

1) In step 1 (steps are shown as numbers in parentheses), the 32-bit 
source operand mantissas are multiplied, producing a 64-bit result 
c(man). (Note that input and output data are always represented as nor­
malized numbers.) 

2) In step 2, the exponents are added, yielding c{exp). 

3) Steps 3 through 6 check for special cases. 

4) Step 3 checks for whether c{ man) in extended-precision format is equal 
to zero. If c{man) is zero, step 7 sets c{exp) to -128, thus yielding the 
representation for zero. 

5) Steps 4 and 5 normalize the result. 

6) If a right shift of one is necessary, then in step 8, c{man) is right-shifted 
one bit, and one is added to c{exp). 

7) If a right shift of two is necessary, then in step 9, c{ man) is right-shifted 
two bits, and two is added to c{exp). Step 6 occurs when the result is 
normalized. 

8) In step 10, c{man) is set in the extended-precision floating-point format. 

9) Steps 11 through 16 check for special cases of c{exp). 

10) In step 14, if c{exp) has overflowed (step 11) in the positive direction, 
then c{ exp) is set to the most positive extended-precision format value. 
If c{exp) has overflowed in the negative direction, then c{exp) is set to 
the most negative extended-precision format value. 

11) Ifc{exp) has underflowed (step 12), then c is set to zero (step 15); i.e., 
c{man) = 0 and c{exp) = -128. 
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Floating-Poi lt Multiplication 

The following examples illustrate how floating-point multiplication is per­
formed on the TMS320C40. For these examples, the implied most signifi­
cant nonsign bit is made explicit. 

Example 4-1. Floating-Point Multiply (Both Mantissas = -2.0) 

Let 
(X = -2.0 x 2a( exp) = 10.00000000000000000000000 x 2a( exp) 
b = -2.0 x 2b( exp) = 10.00000000000000000000000 x 2b( exp) 

where a and b are both represented in binary form according to the normalized single-pre­
oision floating-point format. Then 

To place this number in the proper normalized format, it is necessary to shift the mantissa 
two places to the right and add two to the exponent. This yields 

In floating-point multiplication, the exponent of the result may overflow. This can occur 
when the exponents are initially added or when the exponent is modified during normaliza­
tion. 

Example 4-2. Floating-Point Multiply (Both Mantissas = 1.5) 

Let 
a = 1:5 x 2a(exp) = 01.10000000000000000000000 x 2a(exp) 

b = 1.5 x 2b( exp) = 01.1 0000000000000000000000 x 2b( exp) 

where a and b are both represented in binary form according to the single-precision float­
ing-point format. Then 
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Floating-Point Multiplication 

To place this number in the proper normalized format, it is necessary to shift the mantissa 
one place to the right and add one to the exponent. This yields 

Example 4-3. Floating-Point Muhiply (Both Mantissas = 1.0) 

Let 

a = 1.0 x 2a(exp) = 01.00000000000000000000000 x 2a(exp) 

b = 1.0 x 2b(exp) = 01.00000000000000000000000 x 2b(exp) 

where a and b are both represented in binary form according to the single-precision float­
ing-point format. Then 

This number is in the proper normalized format. Therefore, no shift of the mantissa or mod­
ification of the exponent is necessary. 

These examples have shown cases where the product of two normalized numbers can 
be normalized with a shift of zero, one, or two. For all normalized inputs with the float­
ing-point format used by the TMS320C40, a normalized result can be produced by a shift 
of zero, one, or two. 

Example 4-4. Floating-Point Muhiply Between Positive and Negative Numbers 

Let 

a = 1.0 x 2a(exp) = 01.00000000000000000000000 x 2a(exp) 
b = -2.0 x 2b( exp) = 10.00000000000000000000000 x 2b( exp) 

Then 

The result is c = - 2.0 x 2(a(exp) + b(exp)) 

Example 4--5. Floating-Point Multiply by Zero 

All multiplications by a floating-point zero yield a result of zero ((=0, s=O, and exp= -128). 
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Floating-Point Addition and Subtraction 

4.6 Floating-Point Addition and Subtraction 

4-20 

. In floating-point addition and subtraction, two floating-paint numbers a and 
b can be defined as 

a = a(man) x 2 a(exp) 

b = beman) x 2 b(exp) 

The sum (or difference) of a and b can be defined as 

c""a±b 

= (a(man) ± (b(man) x 2 -(a(exp)-b(exp»)) x 2 a(exp), 

if 0.( exp) ~ b( exp) 

= «a(man) x 2 -(b(exp)-a(exp») ± beman)) x 2 b(exp), 

if 0.( exp) < b( exp) 

Figure 4-12 is the flowchart for floating-paint addition. Since this flowchart 
assumes signed data, it is also appropriate for floating-point subtraction. In 
this figure, it is assumed that a(exp) S b(exp).ln step 1 (steps are numbers 
in parentheses), the source exponents are compared, and c(exp) is set 
equal to the largest of the two source exponents. In step 2, d is set to the 
difference of the two exponents. In step 3, the mantissa with the smallest 
exponent, in this case a(man), is right shifted d bits in order to align the man­
tissas. After the mantissas have been aligned, they are added (step 4). 

Steps 5 through 7 check for a special case of c(man). If c(man) is zero (step 
5), then c(exp) is set to its most negative value (step 8) to yield the correct 
representation of zero. If c(man) has overflowed c (step 6), then in step 9, 
c(man) is right shifted one bit, and one is added to c(exp). In step 10, the 
result is normalized. In steps 11 and 12, special cases of c( exp) are tested. 
If c(exp) has overflowed, then c is set to the most positive extended-preci­
sion value if it is positive; otherwise, it is set to the most negative extended­
precision value. 
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Floating-Point Addition and Subtraction 

Figure 4-12. Flowchart for Floating-Point Addition 

(14) 

a(man) 

If c(man) > 0, 
set cto most 
positive value. 

If c(man) < 0, 
set c to most 
nA"':::ITI~'A value. 

b(man) a(exp) 

c(man) = c(man) > > 1 
c( exp) = c( exp) + 1 
Discard LSBs to keep in 
extended-precision 
tln~ltlnl'_nl,\lnt format 

set c to zero (15) 
c(exp) =-128 
c(man) = 0 

c=a+b 

, .•. ":;'":":' 'S'S"~:se::;J:~' n . 

b(exp) 
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Floating-Point Addition and Subtraction 

The following examples describe the floating-point addition and subtraction 
operations. It is assumed that the data is in the extended-precision 
floating-point format. 

Example 4-6. Floating-Point Addition 

In the case of two normalized numbers to be summed, let 

a = 1.5 = 01.1000000000000000000000000000000 x 20 

b = 0.5 = 01.0000000000000000000000000000000 x 2-1 

It is necessary to shift b to the right by one so that a and b have the same 
exponent. This yields 

b = 0.5 = 00.1000000000000000000000000000000 x 20 

Then 

As in the case of multiplication, it is necessary to shift the binary point one 
place to the left and to add one to the exponent. This yields 

Example 4-7. Floating-Point Subtraction 

4-22 

A subtraction is performed in this example. Let 

a = 01.0000000000000000000000000000001 x 20 
b = 01.0000000000000000000000000000000 x 20 

The operation to be performed is a-b. The mantissas are already aligned 
because the two numbers have the same exponent. The result is a large 
cancellation of the upper bits, as shown below. 
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The result must be normalized. In this case, a left shift of 31 is required. The 
exponent of the result is modified accordingly. The result is 

Example 4-8. Floating-Point Addition With a 32-Bit Shift 

This example illustrates a situation where a full 32-bit shift is necessary to 
normalize the result. Let 

ex = 01.1111111111111111111111111111111 x 2127 

b = 10.0000000000000000000000000000000 x 2127 

The operation to be performed is ex + b. 

Normalizing the result requires a left shift of 32 and a subtraction of 32 from 
the exponent. The result is 

Example 4-9. Floating-Point Addition/Subtraction and Zero 

When floating-point addition and subtraction are performed with a float­
ing-point 0, the following identities are satisfied: 

ex ± 0 = ex (ex::;c 0) 
O±O=O 
O-a=-ex(ex::;cO) 
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.. Normalization (NORM Instruction) 

4.7 Normalization (NORM Instruction) 

Figure 4-13. 
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The NORM instruction normalizes an extended-precision floating-point 
number that is assumed to be unnormalized. Since the number is assumed 
to be unnormalized. no implied most significant nonsign bit is assumed. The 
NORM instruction executes the following three steps: 

1} Locates the most significant nonsign bit of the floating-point number. 
2} Left shifts to normalize the number. 
3} Adjusts the exponent. 

Given the extended-precision floating-point value a. to be normalized. the 
normalization, norm (). is performed as shown in Figure 4-13. 

Flowchart for NORM Instruction Operation 

(4) 

(5) 

c = norm(a) 
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Example 4-10. NORM Instruction 

Assume that an extended-precision register contai~s th~~alue 

When the normalization is performed on a number assumed to be unnor­
malized, the binary point is assumed to be 

.:.':', ....... : .. : .: ...... ,: .:' 
......... :.::::::: ... 

;; : '[ ~ 

This number is then sign extended one bit so that the mantissa contains 33 
bits. 

The intermediate result after the most significant nonsign bit is located and 
the shift performed is: 

The final 32-bit value output after removing the redundant bit is: 

The NORM instruction is useful for counting the number of leading zeros or 
leading ones in a 32-bit field. If the exponent is initially zero, the absolute 
value of the final value of the exponent is the number of leading ones or 
zeros. This instruction is also useful for manipulating unnormalized float-

. ing-point numbers. 

4-25 



Rounding (RND Instruction) 

4.8 Rounding (RND Instruction) 

The RND instruction rounds a number from the extended-precision float­
ing-point format to the single-precision floating-point format. Rounding is 

; similar to floating-point addition. Given the number a. to be rounded, the fol­
lowing operation is performed first. 

4-26 

c = a.(man) x 2a(exp) + (1 x 2a(exp)-24) 

Next, a conversion from extended-precision floating-point to single-preci­
sion floating-point format is performed. Given the extended-precision float­
ing-point value, the rounding, rnd( ), is performed as shown in Figure 4-14. 
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Figure 4-14. Flowchart for Floating-Point Rounding by the RND Instruction 

ex 1X2 

Itc (man) > 0, 
set c to most positive 
single-precision value. 

Itc (man) < 0, 
set c to most negative 
single-precision value. 

c = rnd(ex) 

ex(exp)- 24 
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Floating-Point-to-Integer Conversion (FIX Instruction) 
n 

4.9 Floating-Point-to-Integer Conversion (FIX Instruction) 

Floating-point to integer conversion, using the FIX instructions, allows ex­
tended-precision floating-point numbers to be converted to single-precision 
integers in a single cycle. The floating-point to integer conversion of the 
value x is referred to here as fix(x). The conversion does not overflow if a, 
the number to be converted, is in the range 
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- 231 ::; a ::; 231 - 1 

First, you must be certain that 

a(exp)::; 30 

If these bounds are not met, an overflow occurs. If an overflow occurs in the 
positive direction, the output is the most positive integer. If an overflow oc­
curs in .the negative direction, the output is the most negative integer. If 
a(exp) is within the valid range, then a(man), with implied bit included, is 
sign-extended and right-shifted (rs) by the amount 

rs = 31 - a(exp) 

This right shift (rs) shifts out those bits corresponding to the fractional part 
of the mantissa. For example: 

If 0 ::; x < 1 , then fix(x) = o. 
If -1 ::; x < 0, then fix(x) = -1. 

The flowchart for the floating-point to integer conversion is shown in 
Figure 4-15. 
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Rgure4-15. Flowchart for Floating-Point-to-integer Conversion by FIX Instructions 

a 

c = fix(a) 
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Integer-to-Floating-Point Conversion Using the Float Instruction 

4.10 Integer-to-Floating-Point Conversion (FLOAT Instruction) 

Integer to floating-point conversion, using the FLOAT instruction, allows 
single-precision integers to be converted to extended-precision float­
ing-point numbers. The flowchart for this conversion is shown in 
Figure 4-16. 

Figure 4-16. Flowchart for Integer-to-Floating-Point Conversion by FLOAT Instructions 

c (exp) = -128 
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k=#leading 
non-significant 
sign bits 

c (man) = c (man) < < k 
c (exp) = 30- k 

c = float (a) 
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4.11 Reciprocal (RCPF Instruction) 

The RCPF instruction generates a satisfactory estimate of the reciprocal of 
a floating-point number. The estimate has the correct exponent, and the 
mantissa is often accurate to the eighth binary position (mantissa error is 
thus < 2-8). Also, this estimate may be used as a seed for an algorithm to 
compute the reciprocal to even greater accuracy. (The Newton-Raphson 
algorithm, described in this section, is one such case.) 

Figure 4-17 below depicts the algorithm used by instruction RCPF. 
Q The input is assumed to be v = vman x 2'exp. 
Q The output is assumed to be x = xman x 2X9XP. 
Q vexp is negated. 
Q If vexp= -128. the result is saturated to the most positive number. and 

the overflow flag is set. The N condition flag is set to the same sign as 
vsign. 

Figure 4-17. RCPF Instruction Algorithm 

vexp vsign vfrac(22 . . 15) 

xexp xman 

x 
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Reciprocal (RCPF Instruction) 

The look-up table is addressed by forming a nine-bit address consisting of 
vsign and bits 22-15 of vfrac. The eight-bit output of the lookup table is 
forms bits 22-15 of xfrac. Bits 14-0 of xfrac are set to zero. xsign is set to 
vsign. 

The lookup-table values are generated from simulation results. 

4.11.1 Reciprocal Algorithm 

The RCPF instruction provides the reciprocal of a number. The estimate has 
the correct exponent and a mantissa accurate to the eighth binary place 
(i.e., the error of the mantissa is < 2-8). The Newton-Raphson algorithm 
(shown below) may be used to further extend the mantissa's precision: 

x(n+l] = x[n] (2 - v.x[n]) 

where v = the number whose reciprocal is to be found. 

~O], the seed for the algorithm, is given by RCPF. For each iteration of the 
algorithm, the number of accurate bits in the mantissa doubles. Using 
RCPF, you can start with an estimate accurate to eight bits. With one itera­
tion, accuracy is 16 bits in the mantissa, and with a secbnd iteration, accura­
cy is 32 bits. 

The TMS320C4x program to implement this algbrithm is shown in 
Figure 4-18. Each step of the algorithm is labeled along with the corre­
sponding accuracy achieved at the end of the step. The algorithm takes only 
seven machine cycles. 

Figure 4-18. Newton-Raphson Algorithm for Computing the Reciprocal 
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4.12 Reciprocal Square Root (RSQRF Instruction) 
The RSORF instruction generates an estimated reciprocal of the square 
root of a floating-point number. It parallels some of the operational charac­
teristics of the RCPF instruction (Section 4.11) in that the RSORF: 
a it generates an estimate (in this case the reciprocal of the square root 

of a floating-point number), 
a the mantissa is accurate to the eighth binary place (mantissa error is 

< 2-8), and 
a often, this is a satisfactory estimate of the reciprocal of a number's 

square root; in other cases, it may be used as a seed for an algorithm 
that computes the reciprocal square root to an even greater accuracy. 

Figure 4-19 depicts the RSORF algorithm. 
a The input is assumed to be v = vman x 2vexp. 
a The output is assumed to be x = xman x 2xexP· 
a vexp + 1 is negated and shifted right one bit with sign extension. 
a If vexp= -128, the result is saturated to the most positive number, and 

the overflow flag is set. 

Figure 4-19. RSQRF Instruction Algorithm 
vexp vexp(O) vfrac(22 . . 15) 

xexp 

x 
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The look-up table is addressed by forming a nine-bit address consisting of 
the least significant bit of vexpand bits 22 - 15 of vfrac. The eight-bit output 
of the look-up table is used to form bits 22 - 15 of xfrac. Bits 14 - 0 of xfrac 
are set to zero. xsign is set to O. There is no provision for negative values 
of v. 
The look-up-table values are generated from simulation results. 

Of course, given the result of this algorithm, division is performed by a sim­
ple multiplication: y/v = yx[n] where x[n] is the estimate of 1/vas determined 
by the Newton-Raphson algorithm or an other algorithm. 

4.12.1 Reciprocal Square Root Algorithm 
The RSQRF instruction provides the reciprocal of the square root of a num­
ber. The estimate has the correct exponent and a mantissa accurate to the 
eighth binary place (Le., the error of the mantissa is < 2-8). The Newton­
Raphson algorithm (shown below) may be used to further extend the man­
tissa's precision: 

x[n+l] = x[n] (1. 5- (v/2) x[n] x[n]) 

where v = the number whose reciprocal is to be found. 

The seed for the algorithm, x[O], is given by RSQRF. For each iteration of 
the algorithm, the number of accurate bits in the mantissa doubles. Using 
RSQRF, you can start with an estimate having an accuracy to eight bits. 
With one iteration, accuracy is 16 bits in the mantissa, and with a second 
iteration, accuracy is 32 bits. 

Figure 4-20. Newton-Raphson Algorithm for Computing the Reciprocal Square Root 
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The TMS320C4x program to implement this algorithm is shown in 
Figure 4-20. Each step of the algorithm is labeled, and the corresponding 
accuracy achieved is noted at the end of the step. The algorithm takes only 
ten machine cycles (compared to 30 cycles on the 'C3x without a look-up 
table). 

4.12.2 Background on the Reciprocal Square Root 

In many applications, normalization of data values is necessary. Often, the 
normalizing factor is the square root of another quantity. For example, when 
one vector is given, the unit vector in the same direction as the original vec­
tor can be found by normalizing the original vector by the length ofthe vector. 
This involves division by a square root. The 'C40 provides a simple way to 
directly determine this quantity, instead of going through a two-step ap­
proach of finding the square root and then finding the reciprocal of the 
square root. 

Of course, given the result of this algorithm, the square root is found by a 
simple multiplication: 

v = v x[n] 

where x[n] is the estimate of 1/1V as determined by the Newton­
Raphson algorithm or some other algorithm. 
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The TMS320C40 supports five groups of powerful addressing modes. Six 
types of addressing may be used within the groups, which facilitates access 
of data from memory, registers, and the instruction word. This chapter de­
tails the operation, encoding, and implementation ofthe addressing modes. 
It also discusses the management of system stacks, queues, and deques 
in memory. The major topics in this chapter: 

Section Page 
5.1 Types of Addressing .................................. , 5-2 

• Register... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-3 
• Direct ............................................ 5-4 
• Indirect ........................................... 5-5 
• Immediate ........................................ 5-17 
• PC-Relative ...................................... 5-17 

5.2 Groups of Addressing Modes ........................... 5-19 
• General Addressing Modes ........................ , 5-19 
• Three-Operand Addressing Modes .................. 5-20 
• Parallel Addressing Modes ......................... 5-23 
• Conditional-Branch Addressing Modes ............... 5-24 

5.3 Circular Addressing ................................... 5-25 

5.4 Bit-Reversed Addressing .............................. , 5-30 

5.5 System Stack Management ............................ 5-31 
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Types of Addressing 

5.1 Types of Addressing 

5-2 

Five types of addressing allow access of data from memory, registers, and 
the instruction word: 

Sub-
&~~liQ!l ~ 

Q Register addressing 5.1.1 5-3 
Q Direct addressing 5.1.2 5-4 
Q Indirect addressing 5.1.3 5-5 
Q Immediate addressing 5.1.4 5-17 
Q PC Relative addressing 5.1.5 5-17 

Some types of addressing are appropriate for some instructions and not 
others. Forthis reason, the types of addressing are used in the four different 
groups of addressing modes as follows: 

Sub-
&~miQn ~ 

Q General addressing modes (G): 5.2.1 5-19 

• Register 

• Direct 

• Indirect 

• Immediate 
Q Three-operand addressing modes (T): 5.2.2 5-20 

• Register 

• Immediate 

• Indirect 

Q Parallel addressing modes (P): 5.2.3 5-23 

• Register 

• Indirect 
Q Conditional-branch addressing modes (8): 5.2.4 5-24 

• Register 

• PC-relative 

The six types of addressing are discussed first (subsections 5.1.1 through 
5.1.5, beginning on the next page), followed by the five groups of addressing 
modes (section 5.2, beginning on page 5-19). 
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5.1.1 Register Addressing 

In register addressing, a CPU register contains the operand, as shown in 
this example: 

ABSF Rl ; Rl = IRll 

The syntax for the CPU registers, the assembler syntax, and the assigned 
function for those registers are listed in Table 5-1. 

Table 5-1. CPU Register/Assembler Syntax and Function 

Register Machine Assembler Assigned 
Value Syntax Function 

OOh RO Extended-precision register 
01h R1 Extended-precision register 
02h R2 Extended-precision register 
03h R3 Extended-precision register 
04h R4 Extended-precision register 
05h R5 Extended-precision register 
06h R6 Extended-precision register 
07h R7 Extended-precision register 
1Ch R8 Extended-precision register 
1Dh R9 Extended-precision register 
1Eh R10 Extended-precision register 
1Fh R11 Extended-precision register 

08h ARO Auxiliary register 0 
09h AR1 Auxiliary register 1 
OAh AR2 Auxiliary register 2 
OBh AR3 Auxiliary register 3 
OCh AR4 Auxiliary register 4 
ODh AR5 Auxiliary register 5 
OEh AR6 Auxiliary register 6 
OFH AR7 Auxiliary register 7 

10h DP Data-page pointer 
11h IRO Index register 0 
12h IR1 Index register 1 
13h BK Block-size register 
14h SP Active stack pointer 

15h ST Status register 
16h DIE DMA coprocessor interrupt enable 
17h liE Internal interrupt enable register 
18h IIF 1I0F pins and interrupt flag register 

19h RS Repeat start address 
1Ah RE Repeat end address 
1Bh RC Repeat counter 
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Types of Addressing - Direct 

5.1.2 Direct Addressing 

In direct addressing, the data address is formed by the concatenation of the 
16 least significant bits of the data page pOinter (DP) with the 16 least signifi­
cant bits of the instruction word (expr). This results in 65536 pages (64K 
words per page), giving you a large address space without requiring a 
change of the page pointer. The syntax and operation for direct addressing 
are listed below. 

Syntax: @expr 

Operation: address = DP concatenated with expr 

Figure 5-1 shows the formation of the data address. Example 5-1 gives an 
instruction example with data before and after instruction execution. 

Figure 5-1. Direct Addressing 

Instruction ---IIJI.·~~JI~IRllmlliiIT~~~~11I1 Word III 

DP~ 

(Data 
Page 
Pointer) 

Example 5-1. Direct Addressing 

5-4 

ADDI @OBCDEh,R7 

Before Instruction: 
DP = 108Ah 
R7 = 11h 
Data at 108A BCDEh = 1234 5678h 

After Instruction: 
DP = 108Ah 
R7 = 1234 5689h 
Data at 108A BCDEh = 1234 5678h 

Addressing 
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5.1.3 Indirect Addressing 

Indirect addressing is used to specify the address of an operand in memory 
through the contents of an auxiliary register, optional displacements, and in­
dex registers. This arithmetic is performed by the auxiliary register arithme­
tic units (ARAUs) and is unsigned. (All 32 bits of the auxiliary and index reg­
isters are used in indirect addressing.) 

The flexibility of indirect addressing is possible because the ARAUs on the 
TMS320C40 are used to modify auxiliary registers in parallel with opera­
tions within the main CPU. Indirect addressing is specified by a five-bit field 
in the instruction word, referred to as the mod field (in the left side of 
Table 5-2 on page 5-6 as well as in the examples that follow). A displace­
ment is either an explicit unsigned 5-bit or 8-bit integer contained in the in­
struction word or an implicit displacement of one. Two index registers, IRO 
and IR1, can also be used in indirect addressing, enabling the use of 32-bit 
indirect displacements. In some cases, an addressing scheme using circu­
lar or bit-reversed addressing is optional. The mechanism for generating ad­
dresses in circular addressing is discussed in Section 5.3, bit-reversed in 
Section 5.4. 

Table 5-2 lists the various kinds of indirect addressing, along with the value 
of the modification (mod) field, assembler syntax, operation, and function 
for each. The succeeding 18 examples show the operation for each kind of 
indirect addressing. 
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Table 5-2. Indirect Addressing 

Mod Field Syntax Operation Description 

Indirect Addressing with Displacement 

00000 *+ARn(disp) addr = ARn + disp With predlsplacement add 

00001 *- ARn(disp) addr = ARn - disp With predisplacement subtract 

00010 *++ARn(disp) ac;ldr - ARn + disp With predisplacement add and modify ARn = ARn + disp 

00011 *- - ARn(disp) addr = ARn - disp With predisplacement subtract and modify ARn = ARn - disp 

00100 *ARn++(disp) addr= ARn With postdisplacement add and modify ARn = ARn + disp 

00101 *ARn -- (disp) addr= ARn With postdisplacement subtract and modify ARn = ARn - disp 

00110 *ARn++(disp)% addr=ARn With postdisplacement add and circular 
ARn = circ(ARn + disp) modify 

00111 * ARn - - (disp)% add = ARn With postdisplacement subtract and 
ARn = circ(ARn - disp) circular modify 

Indirect Addressing with Index Register IRO 

01000 *+ARn(IRO) addr = ARn + IRO With preindex (IRO) add 

01001 *-ARn(IRO) addr = ARn - IRO With preindex (IRO) subtract 

01010 *++ARn(IRO) addr = ARn + IRO With preindex (IRO) add and modify ARn = ARn + IRO 

01011 * --ARn(IRO) addr = ARn - IRO With preindex~IRO) subtract and modify ARn = ARn - IRO 

01100 *ARn++(IRO) addr=ARn With postindex (IRO) add and modify ARn = ARn + IRO 

01101 * ARn - - (IRO) addr= ARn With postindex (IRO) subtract and modify ARn = ARn - IRO 

01110 *ARn++(IRO)% addr= ARn With postindex (IRO) add and circular 
ARn = circ(ARn + IRO) modify 

01111 *ARn -- (IRO)% addr=ARn With postindex (IRO) subtract and circular 
ARn = circ(ARn) -IRO modify 

LEGEND: 

addr = memory address 
ARn = auxiliary register ARO - AR7 
IRn = index register IRO or IR1 
disp = displacement (5 bits or 8 bits on 'C40) 
++ = add and modify 

= subtract and modify 
circ( ) = address in circular addressing 
% where circular addressing is performed 
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Table 5-2. Indirect Addressing (Concluded) 

Mod Field Syntax Operation Description 

Indirect Addressing with Index Register IR1 

10000 *+ ARn(IR1) addr = ARn + IR1 With preindex (IR1) add 

10001 * -ARn(IR1) addr = ARn - IR1 With preindex (IR1) subtract 

10010 * ++ ARn(IR1) addr = ARn + IR1 With preindex (IR1) add 
ARn = ARn + IR1 and modify 

10011 * --ARn(IR1) addr = ARn - IR1 With preindex (IR1) subtract 
ARn = ARn - IR1 and modify 

10100 * ARn ++ (IR1) addr=ARn With postindex (IR1) add 
ARn .. ARn + IR1 and modify 

10101 *ARn--(IR1) addr-ARn With postindex (IR1) subtract 
ARn = ARn - IR1 and modify 

10110 * ARn ++ (IR1)% addr .. ARn With postindex (IR1) add 
ARn = circ(ARn + IR1) and circular modify 

10111 * ARn -- (IR1)% addr=ARn With postindex (IR1) subtract 
ARn = circ(ARn - IR1) and circular modify 

Indirect Addressing (Special Cases) 

11000 *ARn addr=ARn Indirect 

11001 *ARn ++ (IRO)8 addr=ARn With postindex (IRO) add 
ARn = B(ARn + IRO) and bit-reversed modify 

LEGEND: 
addr = memory address 
ARn auxiliary register ARO - AR7 
IRn = index register IRO or IR1 
disp = displacement 
++ add and modify 

subtract and modify 
circ( ) = address in circular addressing 
% .. where circular addressing is performed 
B = where bit-reversed addressing is performed 
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Example 5-2. Auxiliary Register Indirect 
An auxiliary register (ARn) contains the address of the operand to be 
fetched. 

Operation: 
Assembler Syntax: 
Modification Field: 

ARn 

operand address = ARn 
*ARn 
11000 

Example 5-3. Indirect With Predisplacement Add 

31 

5-8 

The address of the operand to be fetched is the sum of an auxiliary register 
(ARn) and the displacement (disp). The displacement is either a 5-bit or 8-bit 
unsigned integer contained in the instruction word or an implied value of 1. 

Operation: operand address = ARn+ disp 
Assembler Syntax: * +ARn(disp) 
Modification Field: 00000 

31 

ARn 

o 

(+) 

7 4 0 
a-bit or 5-bit unsigned integer di~placement {' ~ 

o 
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Example 5-4. Indirect With Predisplacement Subtract 

disp 

The address of the operand to be fetched is the contents of an auxiliary reg­
ister (ARn) minus the displacement (disp). The displacement is either an 
8-bit unsigned integer contained in the instruction word or an implied value 
of 1. 

Operation: 
Assembler Syntax: 
Modification Field: 

operand address = ARn- disp 
*- ARn(disp) 
00001 

Example 5-5. Indirect With Predisplacement Add and Modify 

disp 

The address of the operand to be fetched is the sum of an auxiliary register 
(ARn) and the displacement (disp). The displacement is either an 8-bit un­
signed integer contained in the instruction word or an implied value of 1. Af­
ter the data is fetChed, the auxiliary register is updated with the address gen­
erated. 

Operation: 

Assembler Syntax: 
Modification Field: 

31 

operand address = ARn + disp 
ARn = ARn + disp 
*++ ARn(disp) 
00010 

o 
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Example 5-6. Indirect With Predisplacement Subtract and Modify 

disp 

The address of the operand to be fetched is the contents of an auxiliary reg­
ister (ARn) minus the displacement (disp). The displacement is either an 
a-bit unsigned integer contained in the instruction word or an implied value 
of 1. After the data is fetched, the auxiliary register is updated with the ad­
dress generated. 

Operation: operand address = ARn- disp 
ARn= ARn- disp 

Assembler Syntax: *- - ARn(disp) 
Modification Field: 00011 

31 o 

Example 5-7. Indirect With Postdisplacement Add and Modify 

5-10 

The address of the operand to be fetched is the contents of an auxiliary reg­
ister (ARn). After the operand is fetched. the displacement (disp) is added 
to the auxiliary register. The displacement is either an a-bit unsigned integer 
contained in the instruction word or an implied value of 1 . 

31 

Operation: operand address = ARn 
ARn = ARn+ disp 

Assembler Syntax: *ARn++ (disp) 
Modification Field: 00100 

ARn 

8 7 o 

31 o 

Addressing 
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Example 5-8. Indirect With Postdisplacemei7t Subtract and Modify 
The address ofthe operand to be fetched is the contents of an auxiliary reg­
ister (ARn). After'the operand is fetched, the displacement (disp) is sub-' 
tracted from the auxiliary register. The displacement is either all a-bit un­
signed integer contained in the instruction word or an implied value of 1. 

31 

Operation: operand address = ARn 
ARn= ARn - disp 

Assembler Syntax: *ARn-- (disp) 

Modification Field: 00101 

ARn 

8 7 o 

31 

Example 5-9. Indirect With Postdisplacement Add and Circular Modify 

disp 

The address of the operand to be fetched is the contents of an auxiliary reg­
ister (ARn). After the operand is fetched, the displacement (disp) is added 
to the contents of the auxiliary register using circular addressing. This result 
is used to update the auxiliary register. The displacement is either an a-bit 
unsigned integer contained in the instruction word or an implied value of 1. 

Operation: operand address = ARn 
ARn= circ(ARn+ disp) 

Assembler Syntax: 

Modification Field: 

31 

* ARn ++ (disp)% 

00110 

o 

5-11 
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Example 5-10. Indirect With Postdisplacement Subtract and Circular Modify 
The address of the operand to be fetched is the contents of an auxiliary reg­
ister (ARn). After the operand is fetched, the displacement (disp) is sub­
tracted from the contents of the auxiliary register through circular address­
ing. This result is used to update the auxiliary register. The displacement is 
either an 8-bit unsigned integer contained in the instruction word or an im­
plied value of 1 . 

Operation: operand address = ARn 
ARn= circ(ARn- disp) 

Assembler Syntax: 
Modification Field: 

31 

31 

* ARn- - (disp)% 
00111 

o 

Example 5-11. Indirect With Preindex Add 

31 

IRm 

5-12 

The address of the operand to be fetched is the sum of an auxiliary register 
(ARn) and an index register (IRO or IR1). 
Operation: 

Assembler Syntax: 

Modification Field: 

31 

ARn 

operand address = ARn+ IR m 

*+ ARn(IRm) 

01000 ifm = 0 
10000 ifm = 1 

o 

(+) 

Addressing 
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Example ~ 12. Indirect With Preindex Subtract 
The address of the operand to be fetched is the difference between an auxil­
iary register (ARn) and an index register (IRO or IR1). 
Operation: operand address = ARn- lAm 
Assembler Syntax: *- ARn(IRm) 
Modification Field: 01001 if m = 0 

10001 if m =1 

31 o 

ARn 

Example ~ 13. Indirect With Preindex Add and Modify 

IRm 

The address of the operand to be fetched is the sum of an auxiliary register 
(ARn) and an index register (IRO or IR 1). After the data is fetched, the auxil­
iary register is updated with the address generated. 
Operation: operand address = ARn+ IR m 

ARn = ARn+ IR m 
Assembler syntax: 
Modification Field: 

*++ ARn(lRm) 
01010 
10010 

ifm =0 
if m =1 
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Example ~14. Indirect With Preindex Subtract and Modify 

IRm 

The address of the operand to be fetched is the difference between an auxil­
iary register (ARn) and an index register (IRO or IR1). The resulting address 
becomes the new contents of the auxiliary register. 

Operation: operand address = ARn-IRm 
ARn= ARn-IRm 

Assembler Syntax: *- - ARn(IRm) 
Modification Field: 01011 if m = 0 

10011 if m =1 

31 o 

Example ~ 15. Indirect With Postindex Add and Modify 

IRm 

5-14 

The address of the operand to be fetched is the contents of an auxiliary reg­
ister (ARn). After the operand is fetched, the index register (IRO or IR1) is 
added to the auxiliary register. 

Operation: 

Assembler Syntax: 

Modification Field: 

operand address = ARn 
ARn=ARn+ IRm 

*ARn++ (IRm) 

01100 ifm=O 
10100 ifm = 1 

Addressing 
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Example 5-16. Indirect With Postilndex Subtract and Modify 

IRm 

The address of the operand to be fetched is the contents of an auxiliary reg­
ister (ARn). After the operand is fetched, the index register (IRO or IR1) is 
subtracted from the auxiliary register. 

Operation: operand address = ARn 
ARn= ARn -IRm 

Assembler Syntax: '" ARn- - (lAm) 

Modification Field: 01101 ifm = 0 
10101 ifm=1 

31 o 

31 o 

Example 5-17. Indirect With Postindex Add and Circular Modify 

IRm 

The address of the operand to be fetched is the contents of an auxiliary reg­
ister (ARn). After the operand is fetched, the index register (IRO or IR1) is 
added to the auxiliary register. This value is evaluated using circular ad­
dressing and replaces the contents of the auxiliary register. 

Operation: operand address = ARn 
ARn= circ(ARn+ lAm) 

Assembler Syntax: "'ARn++ (IRm)% 

Modification Field: 01110 ifm = 0 
10110 if m =1 
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Example 5-18. Indirect With Postindex Subtract and Circular Modify 

IRm 

The address of the operand to be fetched is the contents of an auxiliary reg­
ister (ARn). After the operand is fetched, the index register (IRO or IR1) is 
subtracted from the auxiliary register. This result is evaluated through circu­
lar addressing and replaces the contents of the auxiliary register. 
Operation: operand address = ARn 

ARn= circ(ARn-IRm) 
Assembler Syntax: *ARn--(IR m)% 
Modification Field: 01111 if m =0 

10111 if m = 1 

31 o 

31 o 

Example 5-19. Indirect With Postindex Add and Bit-Reversed Modify 

IRO 

5-16 

The address of the operand to be fetched is the contents of an auxiliary reg­
ister (ARn). After the operand is fetched, the index register (IRO) is added 
to the auxiliary register. This addition is performed with a reverse-carry prop­
agation and can be used to yield a bit-reversed (B) address. This value re­
places the contents of th~ auxiliary register. 

31 

Operation: operand address = ARn 

Assembler Syntax: 
Modification Field: 

31 

ARn 

ARn=B(ARI1+IRO) 
* ARI1++(IRO)B 
11001 

o (8) 
I 

(+) 

o 

Addressing 
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5.1.4 Immediate Addressing 

In immediate addressing, the operand is a 16-bit immediate value 
contained in the 16 least significant bits of the instruction word (expr). De­
pending upon the data types assumed forthe instruction, the immediate op­
erand may be a twos-complement integer, an unsigned integer, or a floating­
point number. This is the syntax for this mode: 

Syntax: expr 

Example 5-20 gives an instruction example with before- and after-instruc­
tion data. 

Example 5-20. Immediate Addressing 

Instruction 

SUBr 1,RO 

LDI OFFFFh, RO 

LDF 5.0,RO 

OR OFFFFh, RO 

5.1.5 p.e-Relatlve Addressing 

Before Instruction: After Instruction: 

RO = Oh RO = 00 FFFF FFFFh 

RO = Oh RO = 00 FFFF FFFFh 

RO=Oh 

RO=Oh 

RO = 02 2000 OOOOh 

RO = 00 0000 FFFFh 

PC-relative addressing is used for branching. Instructions of this type in­
clude Bcond, BconcO, BcondAF, BcondAT, DBconda,nd DBcondD (repeat 
blOCk), and LAJ (link and jump). It replaces the value of the PC with the con­
tents of the 16 or 24 least significant bits of the instruction word. The assem­
bler takes the 8rc (a label or address) specified by the user and generates 
a displacement. If the branch is a standard branch, this displacement is 
equalto [label - (PC +1)]. Ifthe branch is a delayed branch, this displace­
ment is equal to [Iabel- (PC + 3)]. 

The displacement is stored as a 16-bit signed integer in the least significant 
bits of the instruction word. 

Syntax: expr 

Example 5-21 gives an instruction example with before- and after-instruc­
tion data. 

Example 5-21. PC-Relative Addressing 

BU NEWPC pc=l,NEWPC= 5,displacement= 3 

Before Instruction: After Instruction: 
PC = 1h PC= 5h 



Types of Addressing - PC Relative 

Figure 5-2. 

(a) 

31 

10 1 1 0 

(b) 
31 

10 1 1 0 

(c) 

31 

10 111 

(d) 
31 

10 1 1 0 

5-18 

The 24-bit addressing mode is used to encode the program control instruc­
tions (e.g., BR, BRD, CALL, RPTB, RPTBD, LAJ). Depending on the in­
struction, the new PC value is derived by adding a 24-bit signed value in the 
instruction word with the present PC value. Bit 24 determines the type of 
branch (0=0 for a standard branch or 0=1 for a delayed branch). Some of 
these instruqtions are encoded in Figure 5-2. 

Encoding for 24-8il PC-Relative Addressing Mode 

BR, BRD: unconditional branches (delayed and not delayed) 
25 23 

o 0 0101 sro 

CALL: unconditional subroutine call 
23 

o 0 1 01 src 

RPTB; RPRBD: repeat block (not delayed and delayed) 

o 

o 

~ 0 

1 0 0101 sro 

LAJ: link and jump (return address in extended-precision register R11) 
~ 0 

o 0 1 1 I src 

Addressing 
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5.2 Groups of Addressing Modes 

Six types of addressing (covered in Section 5.1, beginning on page 5-2) 
form these four groups of addressing modes: 

Subsection Page 

0 General addressing modes (G) 5.2.1 5-19 

0 Three-operand addressing modes (T) 5.2.2 5-20 

0 Parallel addressing modes (P) 5.2.3 5-23 

0 Conditional-branch addressing modes (B) 5.2.4 5-24 

5.2.1 General Addressing Modes 

Instructions that use the general addressing modes are general-purpose in­
structions, such as ADDI, MPYF, and LSH. Such instructions usually have 
this form: 

dst operation src ~ dst 

where the destination operand is signified by dstand the source operand 
by src; operation defines an operation to be performed with the general ad­
dressing modes to specify certain operands. Bits 31 - 29 are zero, indicating 
general addressing mode instructions. Bits 22 and 21 specify the general 
addressing mode (G) field, which defines how bits 15 through 0 are to be 
interpreted for addressing the src operand. 

Options for bits 22 and 21 (G field) are as follows: 

o 0 register (all CPU registers unless specified otherwise) 
o 1 direct 
1 0 indirect 
1 1 immediate 

If the src and dst fields contain register specifications, the value in these 
fields contains the CPU register addresses as defined by Table 5-1. For the 
general addressing modes, the following values of ARn are valid for indirect 
addressing: 

ARn, 0 ::;; n::;; 7 

Figure 5-3 shows the encoding for the general addressing modes. The no­
tation modn indicates the modification field that goes with the ARn field. Re­
fer toTable 5-2 for further information. 

5-19 
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Figure 5-3. Encoding for General Addressing Modes 

31 2928 2322 2120 1615 1110 87 54 o 
0 0 0 operation 0 0 dst 00000000000 I src 

0 0 0 operation 0 1 dst direct 

0 0 0 operation dst modn I ARn I disp 

0 0 0 operation 0 1 dst Immediate 

G Destination Source Operands 

5.2.2 Three-Operand Addressing Modes 

The 19 three-operand instructions on the 'C40 use the eight address forms 
listed in Table 5-3: 

Table 5-3. Three-Operand Instruction Address Forms 
lYpe 1t 

5-20 

T src1 addressing modes src2 addressing modes dst* 
00 register mode (any CPU register) register mode (any CPU register) Rx 

01 indirect mode (disp = 0, 1, IRO, IR1) register mode (any CPU register) Rx 

10 register mode (any CPU register) indirect mode (disp = 0, 1, IRO, IR1) Rx 

11 indirect mode (disp = 0, 1, IRO, IR1) indirect mode (disp = 0, 1, IRO, IR1) Rx 

T src1 addressing modes src2 addressing modes dst* 
00 register mode (any CPU register) 8-bit signed immediate Rx 

01 register mode (any CPU register) indirect mode * +ARn(5-bit unsigned Rx displacement) 

10 indirect mode * +ARn(5-bit unsigned 8-bit signed immediate Rx displacement) 

11 indirect mode *+ARn1 (5-bit un- indirect mode * +ARn2(5-bit un- Rx signed displacement) signed displacement) 

t The 'C40 recognizes either type 1 or type 2 instructions; the 'C30 recognizes only type 1. * Rx = any register in the CPU (primary) register file for the respective processor. 

The object values differ for three-operand instructions, depending on the 
assembler used: 
Q the TMS320C3x assembler recognizes only type 1 formats and sets bits 

31-28 to 00102. 
(J the TMS320C4x assembler recognizes both types and sets bits 31-28 

to 00102 for type 1 and to 00112 for type 2. 

Addressing 
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The 'C4x processor executes both types (1 and 2). The 'C30 executes only 
the type 1 format. The three-operand instructions MPYSHI3 and MPYUHI3 
are unique to the 'C40. 

All instructions except four can use all four of the type 2 address forms 
shown in Table 5-3. These exceptions, which can use only address forms 
2 and 4 in type 2, are the floating-point instructions ADDF3, CMPF3, 
MPYF3, and SUBF3. 

The remaining 15 three-operand instructions are ADDC3, ADDI3, AND3, 
ANDN3, ASH3, CMPI3, LSH3, MPYI3, MPYSHI3, MPYUHI3, OR3, 
SUBB3, SUBI3, TSTB3, and XOR3. 

Note that the 3 can be omitted from a three-operand instruction mnemonic. 

Bits 22 and 21 specify the three-operand addressing mode (T) field, which 
defines how bits 15 - 0 are to be interpreted for addressing the srcoperands. 
Bits 15 - a define the src1 address, and bits 7- 0 define the src2 address. 

Figure 5-4 and Figure 5-5 show the encoding for 'C4x three-operand ad­
dressing (the 'C30 recognizes only the format in Figure 5-4). The notation 
modm or modn indicate that the modification field goes with the ARm or 
ARn field, respectively. Refer to Table 5-2 (page 5-6) for further informa­
tion. 

The a-bit signed immediate value supports left shifts, right shifts, and 
memory increment and decrement operations. The immediate value is not 
available for floating-point operations. 

These instructions greatly help reduce code size, both assembled and com­
piled. They also give noticeable performance improvements in DSP and 
other computationally intensive applications and general-purpose code. 
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Figure 5-4. Encoding for Type 1 Three-Operand Addressing Modes ('CSO and 'C40) 

31 28 27 23 22 21 20 16 15 13 12 11 10 8 7 5 4 3 2 0 

0 0 1 0 operation 0 0 dst 0 o 0 I src1 0 0 0 src2 

0 0 1 0 operation 0 1 dst modn I ARn 0 0 0 src2 

0 0 1 0 operation 1 0 dst 0 o 0 I src1 modn ARn 

0 0 1 0 operation 1 1 dst modn I ARn modm ARm 

T src1 src2 

Figure 5-5. Encoding for Type 2 Three-Operand Addressing Modes (,C40 Only) 

31 28 27 23 22 21 20 16 15 13 12 10 8 7 3 2 o 
0 0 1 1 operation 0 0 dst 0 0 0 Rn immediate 

0 0 1 1 operation 0 1 dst 0 0 0 Rn disp I ARn 

0 0 1 1 operation 1 0 dst disp ARn immediate 

0 0 1 1 operation 1 1 dst disp ARn disp I ARm 

T src1 src2 
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5.2.3 Parallel Addressing Modes 

Instructions that use parallel addressing, indicated by II (two vertical bars), 
allow for the greatest amount of parallelism possible. The destination oper­
ands are indicated as d1 and d2, signifying dst1 and dst2, respectively (see 
Figure 6-4). The source operands, signified by src1 and src2, use the ex­
tended-precision registers. The parallel operation to be performed is called 
operation. 

Figure 5-6. Encoding for Parallel Addressing Modes 

31 30 29 26 25 24 23 22 21 19 18 16 15 11 10 87 32 0 

11 0 1 operation 1 p 1 d1 1 d2 1 src1 src2 modn ARn modm ARm 1 

src3 src4 I 
The parallel addressing mode (P) field specifies how the operands are to 
be used, i.e., whether they are source or destination. The specific relation­
ship between the P field and the operands is detailed in the description of 
the individual parallel instructions (see Chapter 11). However, the operands 
are always encoded in the same way. Bits 31 and 30 are set to the value of 
10, indicating parallel addressing mode instructions. Bits 25 and 24 specify 
the parallel addressing mode (P) field, which defines how bits 21 - 0 are to 
be interpreted for addressing the srcoperands. Bits21 -19are used to de­
fine the sra1 address, bits 18 - 16 to define the src2 address, bits 15 - 8the 
sra3 address, and bits 7 - 0 the src 4 address. The notations modn and 
modm indicate which modification field goes with which ARn or ARm (au­
xiliary register) field, respectively. The parallel addressing operands are 
listed below. 

src1 = Rn 
src2=Rn 
d1 
d2 
P 
src3 
sr04 

(0 s n s 7 for extended-precision registers RO - R7) 
(0 s n s 7 for extended-precision registers RO - R7) 
If 0, dst1 is RO. If 1, dst1 is R1. 
If 0, dst2 is R2. If 1, dst2 is R3. 
OS PS3 
indirect (disp = 0, 1, IRO, IR1) 
indirect (disp = 0, 1, IRO, IR1) 

As in the three-operand addressing mode, indirect addressing in the parallel 
addressing mode allows for displacements of 0 or 1 and the use of the index 
registers (IRO and IR1). The displacement of 1 is implied and is not explicitly 
coded in the instruction word. 

In the encoding shown for this mode in Figure 5-6, ifthe src3and sra4fields 
use the same auxiliary register, both addresses are correctly generated, but 
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only the value created by the src3field is saved in the auxiliary. register spe­
cified. The assembler issues a warning if you specifiy this condition is speci­
fied by the user. 

5.2.4 Conditional-Branch Addressing Modes 

Instructions using the conditional-branch addressing modes (Bcond, 
BconaD, CALLcond, DBcond, and DBconoD) can perform a variety of con­
ditional operations. Bits 31 - 27 are setto the value of 0 1101 , indicating con­
ditional-branch addressing mode instructions. Bit 26 is set to 0 or 1 ; the for­
mer selects DBcond. the latter Bcond. Selection of bit 25 determines the 
conditional-branch addressing mode (B). If B = 0, register addressing is 
used; if B = 1. PC-relative addressing is used. Selection of bit 21 sets the 
type of branch: D = 0 for a standard branch or D = 1 for a delayed branch. 
The condition field(cond) specifies the condition checked to determine what 
action to take, i.e., whether or notto branch (see Table 11-8 on page 11-12 
for a list of condition codes). Figure 6-6 shows the encoding for conditional­
branch addressing. 

Figure 5-7. Encoding for Conditional-Branch Addressing Modes 

DBcond(D): 
31 26 25 24 22 21 20 16 15 5 4 o 
10 1 1 0 1 1 I e I ARn 0 cond 0 00000000001 srcreg 

10 1 1 0 1 1 I e I ARn 0 cond immediate (PC relative) 

Bcond (D): 
31 20 16 15 5 4 0 
0 1 1 0 1 cond 0 00000000 o 0 srcreg 

0 1 1 0 1 cond immediate (PC relative) 

CALLcond: 
31 26 25 24 2221 20 16 15 5 4 0 
10 1 1 1 o olelooo 0 cond 000000000001 srcreg 

10 1 1 1 o olel 000 0 cond immediate (PC relative) 
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5.3 Circular Addressing 
Many algorithms, such as convolution and correlation, require the imple­
mentation of a circular buffer in memory. In convolution and correlation, the 
circular buffer is used to implement a sliding window that contains the most 
recent data to be processed. As new data is brought in, the new data over­
writes the oldest data. The key to the implementation of a circular buffer is 
the implementation of a circular addressing mode. This section describes 
the circular addressing mode of the TMS320C40. 

The block-size register (BK) specifies the size of the circular buffer. The bot­
tom of the circular buffer is specified by the first 1 (one) bit (counting from 
the most significant bit to the least significant bit) in the lower 16 bits of the 
BK register, plus a user-selected auxiliary register (ARn). With the location 
of the first 1 bit specified as bit N, the address at the top of the buffer is re­
ferred to as the effective base (EB) and is equal to bits 31 through (N+ 1) of 
ARn with bits N through 0 of EB being zero. 

Figure 5-8 illustrates the relationships among the block-size register (BK), 
the auxiliary registers (ARn), the bottom of the circular buffer, the top of the 
circular buffer, and the index into the circular buffer. 
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Figure 5-8. 

New 
ARn 
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ARn 

Flowchart for Circular Addressing 

BK 

Top of Buffer + 1 (low address) 

LEGEND: 

ARn 
BK 
EB 
H 

Index 

New 
Index 

= auxiliary register n 
= block-size register 
= effective base 
= high-order bits 

Circular 

Addressing 

Algorithm 

Logic 

31 

First 1 at+Location N 

N+1 N o 

Bottom of Buffer + 1 (high address) 

L 
L' 
LSB 
N 

= low-order bits 
= new low-order bits 
= least significant bit 
= bit value 
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In circular addressing, index refers to the N LSBs of the auxiliary register 
selected, and step is the quantity being added to or subtracted from the 
auxiliary register. Follow these two rules when you use circular addressing: 

[J The step used must be less than or equal to the block-size. 

[J The first time the circu lar queue is addressed, the auxiliary register must 
be painting to an element in the circular queue. 

The algorithm for circular addressing is as follows: 

If 0 ~ index + step < BK: 
index = index + step. 

Else if index + step ~ BK: 
index = index + step - BK. 

Else if index + step < 0: 
index = index + step + BK. 

Figure 5-9 shows how the circular buffer is implemented. It illustrates the 
relationship of the quantities generated and the elements in the circular 
buffer. 

Figure 5-9. Circular Buffer Implementation 

Address Data 

31 N + 1 N 0 

Effective Base (EB) f::';i[:[H)~!':;:i';:i:iYii:",:,':':Hlo;U36::"'1 ~ 

31 N + 1 N 0 

Auxiliary Register (ARn) I: H~'~~,Hli C/;VCrJ -4 

31 N + 1 N 0 

I:,~:~,~:.~·'!,~'.'.~ •• · •••• i.,,·."·",I· ••• ,,' •• ',·,' •• ~$B.··.f3~ .·i·i:.'.',.·.' .•• "1 ~ 

5-27 



Circular Addressing 

Figure 5-10. 

Figure 5-10 gives an example of the operation of circular addressing. As­
suming that all ARs are four bits, let ARO = 00002, and BK = 01102 (block­
size of 6). This example shows a sequence of modifications and the result­
ing value of ARO. It also shows how the pointer steps through the circular 
queue with a variety of step sizes (both incrementally and decrementally). 

Circular Addressing Example 

*ARO ++ (5)% ARO = 0 (Oth value) 
*ARO ++ (2)% ARO 5 (1st value) 
*ARO- - (3)% ARO 1 (2nd value) 
*ARO++(6)% ARO 4 (3rd value) 
*ARO - -% ARO = 4 (4th value) 
*ARO ARO = 3 (5th value) 

Value Data Address 

Oth --? 

2nd --? 

5th --? 

4th,3rd --? 

1st --? 
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Element 0 

Element 1 

Element 2 

Element 3 

Element 4 

Element 5 (Last Element) 

Last Element + 1 

o 

2 

3 

4 

5 

6 
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Circular addressing is especially useful for the implementation of FIR filters. 
Figure 5-11 shows one possible data structure for FIR filters. Note that the 
initial value of ARO points to h(N -1). and the initial value of AR1 points to 
x(O). Circular addressing is used in the TMS320C40 code for the FIR filter 
shown in Figure 5-12. 

Figure 5-11. Data Structure for FIR Filters 
Impulse Response 

ARO -7 

~ AR1 

Figure 5-12. FIR Filter Code Using Circular Addressing 

* Initialization 

* 
LDI 
LDI 
LDI 

* 
* 
TOP LDF 

STF 

LDF 
LDF 

* 
* Filter 
* 

RPTS 
MPYF3 

I I ADDF3 
ADDF 

* 
STF 
B 

N,BK 
H,ARO 
X,ARl 

IN, R3 
R3,*AR1++% 

O,RO 
O,R2 

Load block size. 
Load pointer to impulse response. 
Load pointer to bottom of input 
sample buffer. 

Read input sample. 
Store with other samples. 
and point to top of buffer. 
Initialize RO. 
Initialize R2. 

N - 1 ; Repeat next instruction. 
*ARO++%,*AR1++%,RO 
RO,R2,R2 
RO,R2 

R2,Y 
TOP 

Multiply and accumulate. 
Last product accumulated. 

Save result. 
Repeat. 
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5.4 Bit-Reversed Addressing 
Bit-reversed addressing on the TMS320C40 enhances execution speed 
and program memory for FFT algorithms that use a variety of radices. One 
auxiliary register points to the physical location of a data value. I RO specifies 
one-half the size of the FFT; e.g., the value contained in IRO must be equal 
to 2n-1 where n is an integer and the FFT size is 2n. When you add IRO to 
the auxiliary register by using bit-reversed addressing, addresses are gen­
erated in a bit-reversed fashion. The largest index for bit reversed is OOFF 
FFFFh. 
To illustrate this kind of addressing, assume 8-bit auxiliary registers. Let 
AR2 contain the value 0110 00002 (9610)' This is the base address of the 
data in memory. Let IRO contain the value 0000 10002 (8). Figure 5-13 
shows a sequence of modifications of AR2 and the resulting values of AR2. 

Figure 5-13. Bit-Reversed Addressing Example 
*AR2++(IRO)B AR2 0110 0000 (Oth value) 
*AR2++(IRO)B AR2 0110 1000 (1st value) 
*AR2++(IRO)B AR2 0110 0100 (2nd value) 
*AR2++(IRO)B AR2 0110 1100 (3rd value) 
*AR2++(IRO)B AR2 0110 0010 (4th value) 
*AR2++(IRO)B AR2 0110 1010 (5th value) 
*AR2++(IRO)B AR2 0110 0110 (6th value) 
*AR2 AR2 0110 1110 (7th value) 

Table 5-4 shows the relationship of the index steps and the four LSBs of 
AR2. As you can see, you can find the four LSBs by reversing the bit pattern 
of the steps. 

Table 5-4. Index Steps and Bit-Reversed Addressing 

Step Bit Pattern Bit-Reversed Bit-Reversed 
Pattern Step 

0 0000 0000 0 
1 0001 1000 8 
2 0010 0100 4 
3 0011 1100 12 

4 0100 0010 2 
5 0101 1010 10 
6 0110 0110 6 
7 0111 1110 14 

8 1000 0001 1 
9 1001 1001 9 
10 1010 0101 5 
11 1011 1101 13 

12 1100 0011 3 
13 1101 1011 11 
14 1110 0111 7 
15 1111 1111 15 
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5.5 System and User Stack Management 

The TMS320C40 provides a dedicated system stack pointer (SP) for build­
ing stacks in memory. The auxiliary registers can also be used to build a vari­
ety of more general linear lists. This section discusses the implementation 
of the following types of linear lists: 

Stack A linear list for which all insertions and deletions are made at one 
end of the list. 

Queue A linear list for which all insertions are made at one end of the 
list, and all deletions are made at the other end. 

Dequeue A double-ended queue linear list for which insertions and dele-
tions are made at either end of the list. 

The system stack pointer (SP) is a 32-bit register that contains the address 
of the top of the system stack. The system stack fills from low-memory ad­
dress to high-memory address (see Figure 5-14). The SP always points to 
the last element pushed onto the stack. A push performs a preincrement, 
and a pop perfo-rms a postdecrement of the system stack pointer. 

The program counter is pushed onto the system stack on subroutine calls, 
traps, and interrupts. It is popped from the system stack on returns. The sys­
tem stack can be pushed and popped with the PUSH, POP, PUSHF, and 
POPF instructions. 

Figure 5-14. System Stack Configuration 

Low Memory 

SP ~ 

High Memory 
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5.5.1 Stacks 

Stacks can be built from low to high memory or high to low memory. Two 
cases for each type of stack are shown. You can build stacks by using the 
preincrementldecrement and postincrementldecrement modes of modify­
ing the auxiliary registers (AR). You can implement stack growth from high 
to low memory in two ways: 

Case 1: Store to memory using*- - ARn to push data onto the stack and 
reads from memory using * ARn ++ to pop data off the stack. 

Case 2: Store to memory using * ARn - - to push data onto the stack 
and read from memory using * ++ ARn to pop data off the stack. 

Figure 5-15 illustrates these two cases. The only difference is that in case 
1 , the AR always points to the top of the stack, and in case 2, the AR always 
points to the next free location on the stack. 

Figure 5-15. Implementations of High-to-Low Memory Stacks 

Low Memory Low Memory 

ARn ~ 

High Memory High Memory 

(a) Case 1 (b) Case 2 
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You can implement stack growth from low to high memory in two ways: 

Case 3: Store to memory usi-ng * ++ ARn to push data onto the stack and 
reads from memory using * ARn - - to pop data off the stack. 

Case 4: Stores to memory using * ARn ++ to push data onto the stack and 
reads from memory using *- - ARn to pop data off the stack. 

Figure 5-16 shows these two cases. In the case 3, the AR always points to 
the top of the stack. In case 4, the AR always points to the next free location 
on the stack. 

Figure 5-16. Implementations of Low-to-High Memory Stacks 

Low Memory Low Memory 

ARn --t 

ARn --t 

High Memory High Memory 

(a) Case 3 (b) Case 4 

5.5.2 Queues and Oequeues 

The implementations of queues and dequeues is based upon the manipu­
lation of the auxiliary registers for user stacks. For queues, two auxiliary 
registers are used: one to mark the front of the queue from which data is 
popped and the other to mark the rear of the queue where data is pushed. 

For dequeues, two auxiliary registers are also necessary. One is used to 
mark one end of the dequeue, and the other is used to mark the other end. 
Data can be popped or pushed from either end. 
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The TMS320C40 provides a complete set of constructs that facilitate soft­
ware and hardware control of the program flow. Software control includes 
repeats, branches, calls, traps, and returns. Hardware control includes 
reset and interrupts. Because programming includes a variety of constructs, 
you can select the one suited for your particular application. 

Several interlocked operations instructions provide flexible multiprocessor 
support and, through the use of external signals, a powerful means of 
synchronization. They also guarantee the integrity of the communication 
and result in a high-speed operation. 

The TMS320C40 supports a nonmaskable external reset signal and a 
number of internal and external interrupts. These functions can be pro­
grammed for a particular application. 

This chapter discusses the following major topics: 

Section Page 

6.1 Repeat Modes ....................................... , 6-2 

• Initialization ................................. 6-2/6-4 

• Operation...................... . . . . . . . . . . . . . . . . .. 6-4 

6.2 Delayed Branches .................................... 6-7 

6.3 Calls, Traps, Branches, Jumps, and Returns .............. 6-9 

6.4 Unifying Traps and Interrupts ........................... 6-11 

6.5 Interlocked Operations .......... , ..... " ............... 6-13 

6.6 Reset Operation ...................................... 6-18 

6.7 Interrupts .............. ; ............................. 6-23 

• Interrupt Control Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-24 

• Prioritization and Control ........................... 6-24 
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6.1 Repeat Modes 

The repeat modes of the TMS320C40 can implement zero-overhead loop­
ing. For many algorithms, most execution time is spent in an inner kernel 
of code. Using the repeat modes allows these time-critical sections of code 
to be executed in the shortest possible time. 

The TMS320C40 provides three instructions to support zero-overhead 
looping: RPTB, RPTBD (repeat a block of code/delayed) and RPTS (repeat 
a single instruction): 

o RPTB and RBTBD causes a block of code to be repeated a specified 
number of times, and 

o RPTS causes a single instruction to be repeated a number of times and 
reduces the bus traffic by fetching the instruction only once. 

Three registers (RS, RE, and RC) are associated with the updating of the 
program counter when it is updated in a repeat mode, as described in 
Table 6-1 below. 

Table 6-1. Repeat-Mode Registers 

Register Function 

RS Repeat start address register. Holds the address of the first instructionof 
.. " . the block of code to be repeated~ , ... 

RE Repeat end address register. Holds the address of the last instruction 
of the block of code to be repeated. 

He Repeat-count register. Contains one less than the number of limes .. 
. '. the block remains to be repeated . .".'. 

6.1.1 Repeat-Mode Initialization 

6-2 

Two bits are important to the operation of RPTB, RPTBD and RPTS: the 
RM and S bits. 

o The RM (repeat-mode flag) bit in the status register specifies whether 
the processor is running in the repeat mode. 

• If RM = 0, fetches are not made in repeat mode. 
• If RM = 1, fetches are made in repeat mode. 

o The S bit is internal to the processor and cannot be programmed, but 
this bit is necessary to fully describe the operation of RPTB and RPTS. 

• If RM = 1 and S = 0, RPTB or RPTBD is executing. Program fetches 
are from memory. 

• If RM = 1 and S = 1, RPTS is executing. After the first fetch (from 
memory), program fetches are from the instruction register (IR). 
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The correct operation of the repeat modes requires that all of the above reg­
isters and status register fields be initialized correctly. The RPTB, RPTBD, 
and RPTS instructions perform this initialization in slightly different ways 
(see subsections 6.1.2 and 6.1.3). 

6.1.2 RPTB and RPTBD Initialization 
The execution sequence of RPTB src or RPTBD src is nearly the same: 
1} Loads the start address of the block into RS (repeat start address regis­

ter). 
a) For RPTB, this is the next address following the instruction: 

PC of RPTB + 1 ~ RS 
or 

b) For RPTBD, this is the fourth address following the instruction: 
PC of RPTBD + 4 ~ RS 

2) Loads the end address of the block into RE (repeat end address regis­
ter). 
a) In PC-relative mode, the 24-bit src operand plus RS is the end ad­

dress: 
For RPTB, 

src+ PC of RPTB + 1 ~ RE 
or 

For RPTBD, 
src+ PC of RPTBD + 3 ~ RE 

b) In register mode, the contents of the srcregister is the end address: 
contents of src register ~ RE 

3} Sets the status register to indicate the repeat mode of operation. 
1 ~ RM status register bit (repeat mode flag) 

4} Indicates that this is the repeat block mode of operation. 
o ~ S bit (bit is internal to processor; not programmable) 

The last bit of information required is the number of times to repeat the block. 
The value is determined by properly initializing the RC (repeat count) regis­
ter. Because the execution of RPTB and RPTBD does not load the RC, you 
must load this register yourself. A typical setup of the block repeat operation 
is shown below. 

The repeat modes repeat a block of code at least once in a typical operation. 
The repeat counter should be loaded with one less than the number of times 
to execute the block; i.e., an RC value of 0 executes the block of code one 
time, or an RC value of 4 would execute the block five times. All block re­
peats initiated by RPTB or RPTBD can be interrupted. 
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6.1.3 RPTS Initialization 

When RPTS src is executed, the following sequence of operations occurs: 

1) PC + 1 ~ RS 

2) PC + 1 ~ RE 

3) 1 ~ RM status register bit 

4) 1 ~ S bit 

5) src ~ RC (repeat count register) 
. The RPTS instuction loads all registers and mode bits necessary for the op­
eration of the single instruction repeat mode. Step 1 loads the start address 
of the block into RS. Step 2 loads the end address into the RE (end address 
of the block). Since this is a repeat of a single instruction, the start address 
and the end address are the same. Step 3 sets the status register to indicate 
the repeat mode of operation. Step 4 indicates that this is the repeat single­
instruction mode of operation. Step 5 loads src into RC. 

Repeats of a single instruction initiated by RPTS are not interruptible, be­
cause the RPTS fetches the instruction word only once and then keeps it 
in the instruction register for reuse. An interrupt would cause the instruction 
word to be lost. The refetching of the instruction word from the instruction 
register reduces memory accesses and, in effect, acts as a one-word pro­
gram cache. If it is necessary to have a single instruction that is repeatable 
and interruptible, you can use the RPTB instruction. 

6.1.4 Repeat"Mode Operation 
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Information in the repeat-mode registers and associated control bits is used 
to control the modification of the PC when the fetches are being made in re­
peat mode. The repeat modes compare the contents of the RE register (re­
peat end address register) with the program counter (PC). If they match and 
the repeat counter is nonnegative, the repeat counter is decremented, the 
PC is loaded with the repeat start address, and the processing continues. 
The fetches and appropriate status bits are modified as necessary. Note that 
the repeat counter (RC) is never modified when the repeat-mode flag (RM) 
is o. The maximum number of repeats occurs when RC "" 0 8000 0001 h. 
This will result in 0 8000 0001 h repetitions. The detailed algorithm for the 
update of the PC is shown in Figure 6-1. 

The RPTB and RPTS are four-cycle instructions. These four cycles of over­
head are incurred only on the first pass through the loop. All subsequent 
passes through the loop are accomplished with zero cycles of overhead. In 
Example 6-1, the block of code from STLOOP to ENDLOP is repeated six­
teen times. 
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Example 6-1. RPTB Operation 

Figure 6-1. Repeat-Mode Control Algorithm 

Using the repeat block mode of modifying the PC facilitates analysis of what 
would happen in the case of branches within the block. Assume that the next 
value of the PC will be either PC + 1 or the contents of the RS register. It is 
thus apparent that this method of block repeat allows branching within the 
repeated block. Execution can go anywhere within the user's code via inter­
rupts, subroutine calls, etc. For proper modification of the loop counter, the 
last instruction of the loop must be fetched. By writing a 0 into the repeat 
counter or writing 0 into the RM bit of the status register, you can stop 
the repeating of the loop prior to completion. 
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Since the block repeat modes modify the program counter, other instruc~ 
tions cannot modify the program cou nter at the same time. Two rules apply: 

Rule 1: The last instruction in the block (or the only instruction 
in a block of size one) cannot be a Bcond, DBcond, CALL, 
CALLcond, TRAPcond, RETlcond, RETScond, IDLE, RPTB, 
or RPTS. Example 6-2 shows an incorrectly placed standard 
branch. 

Rule 2: None of the last four instructions from the bottom of the 
block (or the only instruction in a block of size one) can be a 
Bcond a BRD, or DBcondD, RPTBD, LAJ, LAJcond, LAT cond, 
BcondAF, BcondAT, or RETlcond. Example 6-3 shows an incor­
rectly placed delayed branch. 

If either of these rules is violated, the PC will be undefined. 

Example 6-2. Incorrectly Placed Standard Branch 
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repeat counter with 15 
E:-:ecuteblock of code 
from STLOOP.toENDLOP 16 times 

Block repeats (RPTB and RPTBD) are nestable. Since all of the control is 
defined by the RS, RE, RC, and ST registers, these registers must be saved 
and stored in order to nest block repeats. The status register RM bit can be 
used to determine whether the block repeat mode is active. For example, 
if you write an interrupt service routine that requires the use of RPTB or 
RPTBD, it is possible that the interrupt associated with the routine may oc­
cur during another block repeat. The interrupt service routine can check the 
RM bit. If this bit is set, the interrupt routine saves RS, RE, RC, and ST. The 
interrupt routine can then perform a block repeat. Before returning to the in­
terrupted routine, the interrupt routine restores RS, RE, RC, and ST. If the 
RM bit is not set, you don't need to save and restore these registers. 
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6.2 Delayed Branches 

The TMS320C40 offers two main types of branch ing: standard and delayed. 
Standard branches empty the pipeline before performing the branch; this 
guarantees correct management of the program counter and results in a 
TMS320C40 branch taking four cycles. Included in this class are repeats, 
calls, returns, and traps. 

Delayed branches without annulling do not empty the pipeline but, rather, 
guarantee that the next three instructions will execute before the program 
counter is modified by the branch. Delayed branches with annulling may 
conditionally annul the next three instructions. The result is a branch that re­
quires only a single cycle, thus making the speed of the delayed branch very 
close to the optimal block repeat modes of the TMS320C40. However, un­
like block repeat modes, delayed branches may be used in situations other 
than looping. Every delayed branch has a standard branch counterpart that 
is used when a delayed branch cannot be used. The delayed branches with­
out annulling are BcondD, BRD, and DBcondD. Those with annulling are 
BcondAT and BcondAF. 

Conditional delayed branches use the conditions, reflected in the status reg­
ister, that existed at the end of the instruction preceding the branch. They 
do not depend upon the instructions following the delayed branch. Delayed 
branches without annulling guarantee thatthe next three instructions will ex­
ecute, regardless of other pipeline conflicts. 
When a delayed branch is fetched, it remains pending until the three 
instructions that follow are executed. None of the three instrutions im­
mediately after a delayed branch can be any of the following (see 
Example 6-4): 

Bcond 
BcondD 
BcondAFt 
BcondATt 
BR 

BRD 
DBcond 
o BcondD 
CALL 
CALLcond 

IDLE 
LAJ 
LAJcond 
LATcond 
RETlcond 

RETlcondD 
RETScond 
RPTB 
RPTBD 
RPTS 
TRAPcond 

t 8condAF and BcondAT are described in Section 6.3 on page 6-9. 
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Incorrectly used delayed branches can leave the PC undefined. 

Delayed branches disable interrupts until the three instructions following the 
delayed branch are completed. This is independent of whether or not the 
branch is taken. 

Example 6-4. Incorrectly Placed Delayed Branches 
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(J The BcondAT and BcondAF instructs both branch if conditions are 
true, but 
• BcondAT executes but annuls (cancels effect of- exceptfortime . 

delay) the execute phase of the next three instructions following 
BcondAT. Then it takes the branch. If condis false, execution con­
tinues immediately after the BcondAT. 

• BcondAF first executes the next three instructions following the 
BcondAF. Then it takes the branch. If cond is false, execution con­
tinues immediately after the BcondAF but the execution phase of 
the first three instructions are annulled. 
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6.3 Calls, Traps, Branches, Jumps and Returns 
Calls and traps provide a means of executing a subroutine or function while 
. providing a return to the calling routine. 

The CALL, CALLcond, and TRAPcond instructions store the value of the 
PC on the stack before changing the PC's contents. The RETScondor RE­
Tlcond (standard or delayed) instructions return execution from traps and 
calls using the value on the stack. 
a CALL places the next PC value on the stack and places the src (sou rce ) 

operand into the PC. The src is a 24-bit PC-relative or register value. 
Figure 6-2 shows CALL response timing. 

a CALLcond is similar to the CALL instruction (above) except that (1) it 
executes only if a specific condition is true (the 20 conditions - includ­
ing unconditional - are listed in Section 11.2 on page 11-10 ) and (2) 
the src is either a PC-relative displacement or in register addressing 
mode. 

a TRAPcond also executes only if a specific condition is true (same con­
ditions as for the CALLcond instruction). When it executes, (1) inter­
rupts are disabled with 0 written to bit GIE of the ST, (2) the next PC 
value is stored on the stack, and (3) a vector is retrieved from one of the 
addresses from 20h to 3Fh and loaded into the PC. The particular ad­
dress corresponds to a trap number in the instruction. Using RETlcond 
or RETlcondD to return re-enables interrupts if the status register's GIE 
bit was set previously. 

a RETScond returns execution from any of the above three instructions 
by popping the top of the stack to the PC. For RETScond to execute, 
the specified condition must be true. Conditions are the same as for the 
CALLcond instruction. 

a RETlcondreturns from traps or calls in the same way as the RETScond 
(above) does with the addition that RETlcqndalsocopies the PGIE and 
PCF bit values into the GIE and CF bits ofthe status register. Conditions 
are the same as for the CALLcond instruction. 

a RETlcondD returns from traps or calls the same way as the RETlcond 
(above) does with the addition that RETlcondD also first executes the 
next three instructions immediately following the RETlcondD. Condi­
tions are the same as for the CALLcond instruction. 

a Link and jump (LAJ) , link and jump conditional (LAJcon~, and link and 
trap conditional (LATcon~ each provide a return address in extended­
precision register R 11. 
• After it executes the three instructions that follow it, LAJ jumps to 

an address derived by the concatenation of the most significant 8 
bits of the PC and the 24-bit src address in the instruction. 
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• LAJcond destination address is either PC-relative (a displace"' 
ment) or the contents of a specified register. If the condition is true, 
LAJcondfirst executes the three instructions following the LAJcond 
before making the jump. If the condition is not true, execution con­
tinues immediately after the LAJcond instruction. 

• After it executes the three instructions that follow it, LATcond calls 
one of the 512 available trap vectors pointed to by the trap vector 
table pointer (TVTP) in Section 3.2 on page 3-15. The vector value 
is loaded into the PC. 

Functionally, calls and traps accomplish the same task: namely, a subfunc­
tion is called and executed, and control is then returned to the calling func­
tion. Traps offer several advantages: 
1) Interrupts are automatically disabled when a trap is executed. This al­

lows critical code to execute without risk of being interrupted. Thus, 
traps are usually terminated with a RETlcondor RETlcondD instruction 
to re-enable interrupts if the status register GIE bit was set previously. 

2) You can use traps to indirectly call functions. This is particularly benefi­
cial when a kernel of code contains the basic subfunctions to be used by 
applications. In this case, the functions in the kernel can be modified 
and relocated without recompiling each application. 

Figure 6-2. CALL Response Timing 

Fetch CALL I 
H3 

H1 

Store PC 
on Stack 

Fetch First 
I Instruction I 

of CALL 

ADDR --------------~(vector AddressX FiW6~n~a~B>----

Data --~--------------~~(----~------
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6.4 Unifying Traps and Interrupts 

Traps and interrupts on the TMS320C4x are unified in all forms of operation 
except initialization. 

6.4.1 Initialization 

At initialization: 
Q Traps are always triggered by a software mechanism, either with 

TRAPcond (conditional trap) or LATcond (link and trap conditionally 
delayed). 

a Interrupts are triggered by hardware events (Le., external interrupts, 
DMA interrupts, or communication channel interrupts). 

6.4.2 Operation 

Figure 6-3 shows the unified flow of traps and interrupts. 

For an interrupt, step (1) in the figure happens after completion of the last 
instruction that was fetched before completion of the interrupt flush. This 
guarantees later restoration of correct flag values. 

Figure 6-3. Unified Flow of Traps and Interrupts 

(1 ) 

(2) 

(3) 

Interrupt Received 
Trap Executed 

(TRAPcondor LATcond) 

Return Executed 
(RETlcond or RETlcondD) 
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LATcond (link and trap conditionally) is a delayed instruction that provides 
a single-cycle trap that is very useful for error detection and correction. 
Since LAT cond is a delayed instruction, the three instructions following 
LATcondshould not modify the GIE or CF status register bits (this could re­
sult in storing incorrect values of these two bits). 

The RETlcondand RETlcondD instructions manipulate the status flags as 
shown in step (3) in the figure. RETlcondD provides a delayed return from 
a trap or interrupt. Since traps and interrupts are unified, the RETlcondpro­
vides a return from either. 

In general, you should not directly modify the PGIE or PCF status register 
bits except when putting the status register on a stack for recursive inter­
rupts or traps. 
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6.5 Interlocked Operations 

One of the most common parallel processing configurations is the sharing 
of global memory by multiple processors. In order for multiple processors 
to access this global memory and share data in a coherent manner, some 
sort of arbitration or handshake is necessary. The TMS320C40 interlocked 
operations meet this requirement for arbitration. More details are given in 
Section 7.7 on page 7-39. Examples in this section show you how inter­
locked operations can be used to implement: 
Cl A busy-waiting loop used to synchronize processors at the software lev­

el (Example 6-5, page 6-15), 
Cl A counter shared between cooperative processors defining the number 

of times a task should be done by the processors (Example 6-6 on page 
6-15), 

Cl Semaphores used to ease the programming of critical sections 
(Example 6-7 and Example 6-8 on page 6-16). 

The TMS320C40 has five instructions referred to as interlocked operations. 
Through the use of external signals, these instructions provide powerful 
synchronization mechanisms. They also guarantee the integrity of the com­
munication and result in a high-speed operation. The interlocked-operation 
instruction group is listed in Table 6-2. 

Table 6-2. Interlocked Operations 
Instruction Description 

.•• Load {Ipating-point. value from. memory jnto.a .register, 
ihterlockedWhen· external memotyaccessed 

Load integer from memory into a register, interlocked 
when external memory accessed 

Load floating-point value frorn rnernofyinto a. register, 
interlocked when external memory accessed 

Store floating-point value from a register to memory, 
interlocked when external memory accessed 

. Storeiriteger from· a registertomemory,· interlocked 
~1)~l'1l:'1xtl:?fnc:lll11emory acc~ss~.P . .. 

Signal interlocked 
src ~ dst 

Signal interlocke~ .... 
Clear interlock··· 

src ~ dst 
Clear interlock 

src.·.-4dsf i 
Clear interlocKi> 

The interlocked operations use the global- and local-bus signals, LOCK and 
LLOCK, to reflect a currently executing interlocked operation. This signal is 
active (low) when any of the interlocked instructions in Table 6-2 are ex­
ecuting. 
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The external timing for the interlocked loads and stores is the same as for 
standard load and stores. You can extend the interlocked loads and stores 
like standard accesses by using the appropriate ready signal (RDYx or 
LRDYx). 

The LOFI and LOll instructions perform the following actions: 
1) Pull (L)LOCK low. 
2) Execute an LDF or LDI instruction. 
3) Extend the read cycle until the appropriate ready signal is received. 

Complete the instruction. 
4) Leave (L)LOCK active low until changed by an STFI, STII, or SIGI. 

The read/write operation is identical to any other read/write cycle except for 
the special use of (L)LOCK. The src operand for LDFI and LDII is always 
a direct or indirect memory address. (L)LOCK is set to ° only if the src is lo­
cated off-chip (Le., STRB or LSTRB, is active). If on-chip memory is ac­
cessed, then (L)LOCK is not asserted, and the operation is as an LDF or LDI 
from internal memory. 

The STFI and STII instructions perform the following operations: 
1) Begin a write cycle. The state of (L)LOCK does not change. If it is low, 

an interlocked operation occurs. If high, the operation is as if an STF or 
STI is performed (not interlocked). 

2) Execute an STF or STI instruction and extend the write cycle until the 
appropriate ready is signaled. 

-:-:-;,-:-=~ 

3) After the write cycle, bring (L)LOCK inactive (high). 

As in the case for LDFI and LDII, the dstof STFI and STII affects (L)LOCK. 
If dstis located off-chip (STRB(O, 1) or LSTRB(O, 1) is active), (L)LOCK is set 
to a 1. If on-chip memory is accessed, then (L)LOCK is not asserted, and 
the operations are as a STF or STI to internal memory. 

The SIGI instruction functions as follows: 
1) Pulls (L)LOCK low. 
2) Executes an LDI instruction. 
3) Extends the read cycle until the appropriate ready signal is received. 

Completes the instruction. 
4) Brings (L)LOCK back inactive high. 

Interlocked operations can be used to implement a busy-waiting loop, to 
manipulate a multiprocessor counter, to implement a simple semaphore 
mechanism, orto perform synchronization between two TMS320C40s. The 
following examples illustrate the usefulness of the interlocked operations in­
structions. 
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Example 6-5 shows the implementation of a busy-waiting loop. If location 
LOCK is the interlock for a critical section of code, and a nonzero means the 
lock is busy, the algorithm for a busy-waiting loop can be used as shown. 

Example 6-5. Busy-Waiting Loop 

Example 6-6 shows how a location COUNT may contain a count of the 
number of times a particular operation needs to be performed. This opera­
tion may be performed by any processor in the system. If the count is zero, 
the processor waits until it is nonzero before beginning processing. The ex­
ample also shows the algorithm for modifying COUNT correctly. 

Example 6-6. Task Counter Manipulation 

Figure 6-4 illustrates multiple TMS320C40s sharing global memory and 
using the interlocked instructions as in Example 6-7 and Example 6-8. 
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Figure 6-4. Multiple TMS320C40s Sharing Global Memory 

LOCK 

TMS320C40 #1 1-='=-4_'-------' 

Local 
.···.Memory 

Example 6-7. Implementation of V(S) 

Example 6-8. Implementation of P(S) 
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Sometimes it may be necessary for several processors to access some 
shared data or other common resources. The portion of code that must ac­
cess the shared data is called a critica/section. 

To ease the programming of critical sections, semaphores may be used. 
Semaphores are variables that can take only nonnegative integer values. 
Two primitive, indivisible operations are defined on semaphores (with S be­
ing a semaphore): 

V(8) : 8+1"-"78 

P (8) : P: if (8 0), go to P 

else S - 1 "-"7 8 

Indivisibility of V(S) and P(S) means that when these processes access and 
modify the semaphore S, they are the only processes doing so. 

To enter a critical section, a P operation is performed on a common sema­
phore, e.g., S (S is initialized to 1). The first processor performing P(S) will 
be able to enter its critical section. All other processors are blocked because 
S has become O. After leaving its critical section, the processor performs a 
V(S), thus allowing another processor to execute P(S) successfully. 

The TMS320C40 code for V(S) is shown in Example 6-7, and code for P(S) 
is shown in Example 6-8. Compare the code in Example 6-8 to the code 
in Example 6-6. 
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6.6 Reset Operation 

The TMS320C40 supports a nonmaskable external reset signal (RESET), 
which is used to perform system reset. This section discusses the reset op­
eration. 

At powerup, the state of the TMS320C40 processor is undefined. You can 
use the RESET signal to place the processor in a known state. This signal 
must be asserted low for 10 or more H1 clock cycles to guarantee a system 
reset. H 1 is an output clock signal generated by the TMS320C40 (see Chap­
ter 13 for more information). 

Reset affects the other pins on the device in either a synchronous or 
asynchronous manner. The synchronous reset is gated by the 
TMS320C40s internal clocks. The asynchronous reset directly affects the 
pins, and it is faster than the synchronous reset.Table 6-3 shows the state 
of the TMS320C40s pins after RESET = O. Each pin is described according 
to whether the pin is reset synchronously or asynchronously. 

Table 6-3. Pin Operation at Reset 

Signal Pins Type Description 

. < Global Bus Externallntertace (BOpins) ........... .. ·.}.· .. i.·.···y 
D(31- 0) 32 I/OfT Synchronous reset. Placed in high-impedance state. 

DE 1 I Reset has no effect. 

A(30 - 0) 31 OfT Synchronous reset. Placed in high-impedance state. 

AE 1 I Reset has no effect. 

STAT(3 -0) 4 0 Synchronous reset. Set to all ones. 

LOCK 1 0 Synchronous reset. Set to one. 

STRBO 1 OfT Synchronous reset. Set to one. 

R/WO 1 OfT Synchronous reset. Set to one. 

PAGEO 1 OfT Synchronous reset. Set to zero. 

RDYO 1 I Reset has no effect. 

CEO 1 I Reset has no effect. 

STRBi 1 OfT Synchronous reset. Set to one. 

R/Wi 1 OfT Synchronous reset. Set to one. 

PAGE1 1 OfT Synchronous reset. Set to zero. 

RDY1 1 I Reset has no effect. 

CEi 1 I Reset has no effect. 

Table Continued on Next Page 
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Table 6-3. Pin Operation at Reset (Continued) 

Table Continued on Next Page 
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Table 6-3. Pin Operation at Reset (Continued) 

Signal Pins Type Description 
i><>i' ';.';j ............. ...... ............~v. UI, ,Porfft'-:'~:"~";;:";;:;(12 ._, ,,,,t#,,."!' ... ,,,, ... IJ"'<71 

.•.•.•.•.....• ·····i 
••••• 

C1 D(7- 0) 8 I/O Synchronous reset. Placed in high-impedance state. 

CREQ1 1 I/O Asynchronous reset. Placed in high-impedance state. 

CACK1 1 I/O Asynchronous reset. Placed in high-impedance state. 

CSTRB1 1 I/O Asynchronous reset. Placed in high-impedance state. 

CRDY1 1 I/O A~y"v'll VII0US reset. Placed in high-i",tJt:uGt"vt: state. 
>iii" .''''-.... . .. ' ." ~ 'v, , ..... "" '.' . ." •. . .••••••...•.••.•. ". " .. '. ..i<'''", Port 2. !(12pins).ii}»··..i .. 

C2D(7- 0) 8 I/O Synchronous reset. Placed in high-impedance state. 

CREQ2 1 I/O p.~_l'lchronous reset. Placed in high-impedance state. 

CACK2 1 I/O Asynchronous reset. Placed in high-impedance state. 

CS'I I'i!jL 1 I/O Asynchronous reset. Placed in high-impedance state. 

CRDY2 1 I/O Asynchronous reset. Placed in high-impedance state. 
·····ii\ ....... Cnmm,. .:. Port 3 '"'''''' , .... '" (12 pins) .. ............../ .. .... " .... .. .'. . ... 

C3D(7- 0) 8 I/O Synchronous reset. Placed in high-impedance state. 

CREQ3 1 I/O Asynchronous reset. Placed in high-impedance state. 

CACK3 1 I/O Asynchronous reset. Placed in high-impedance state. 

CSTRB3 1 I/O Asynchronous reset. Placed in high-impedance state. 

CRDY3 1 I/O Asynchronous reset. Placed in high-impedance state. 

• .. · ... ··.·.<i •. · ...•. ·.· .. ·· .. ·.· ... ·.· Cnmm, . :- Port4:i"v.-:c. .. .J(12pins) ......../ ..... 

C4D(7- 0) 8 I/O Synchronous reset. Placed in high-impedance state. 

CREQ4 1 I/O Asynchronous reset. Placed in high-impedance state. 

CACK4 1 I/O Asynchronous reset. Placed in high-impedance state. 

CSTRB4 1 I/O Asynchronous reset. Placed in high-impedance state. 

CRDY4 1 I/O Asynchronous reset. Placed in high-impedance state. 
............ 

•••.•.•.•.•.•. i<.<(.;O{"" ':ivtrPort 51; ;t<;d,,1(;6 (12 pins) ..... ii 
C5D(7- 0) 8 I/O Synchronous reset. Placed in high-impedance state. 

CREQ5 1 I/O Asynchronous reset. Placed in high-impedance state. 

CACK5 1 I/O Asynchronous reset. Placed in high-impedance state. 

CSTRB5 1 I/O Asynchronous reset. Placed in high-impedance state. 

CRDY5 1 I/O Asynchronous reset. Placed in high-II IltJt:UGtI IvC state. 

Table Concluded on Next Page 
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Table 6-3. Pin Operation at Reset (Concluded) 

X1 1 0 Reset has no effect. 

X2ICLKIN 1 Reset has no effect. 

H1 
Synchronous reset. Will go to its initial state when 
makes a 1 to 0 transition. 

H3 
Synchronous reset. Will go to its initial state when 
makes a 1 to 0 transition. 

TCK 1 I Reset has no effect. 

TOO 1 0 Reset has no effect. 

TOI 1 Reset has effect. 

TMS 1 Reset has no effect. 

1 Reset has no effect. 

1 I/O Undefined. 

6-21 



Reset Operation 

6-22 

.. , ..... ··~»>.(··';"'~·""'··I·«·'l«·~··! ~.~".; .. ~'< ..... .; !X' .. ~.~ 

At system reset, the following additional operations are performed: 
Cl Timer registers (Section 9.10 on page 9-45) are set. 

• Timer global control register set to zero except that bit DATIN is set 
to the value on pin TCLK. 

• Timer counter and timer period registers set to zeroes. 
Cl Communications port control registers (subsection 8.4.1 on page 8-9) 

set to zeroes. 

Cl External memory interface control registers (Section 7.2 on page 7-6) 
are set to 3E39 FFFOh. 

Cl DMA channel control register, DMA transfer counter, and DMA auxiliary 
transfer counter (subsection 9.3.1 on page 9-7) are set to zeroes .. 

Cl The following CPU registers are loaded with zeroes (each described in 
Chapter 3): 

• ST (CPU status register) 

• liE (CPU internal interrupt enable register) 

• IIF (interrupt flag register; controls pins 1I0F(3--D)) 

• DIE (DMA internal enable register) 

• IVTP (interrupt-:-vector table pointer) 

• TVTP(trap-vector table pointer) 
Q Then the reset vector is read from its location and loaded into the PC. 

This vector contains the start address of the system reset routine. 

Q Execution begins. Refer to Section 12.1 on page 12-3 for an example 
of a processor initialization routine. 

Multiple TMS320C40s driven by the same system clock may be reset and 
synchronized. When the 1-to-0 transition of RESET occurs, the processor 
is placed on a well-defined internal phase, and all of the TMS320C40s will 
come up on the same internal phase. 
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6.7 Interrupts 

The TMS320C40 supports multiple internal and external interrupts, which 
can be used for a variety of applications. This section discusses the opera­
tion of these interrupts. Additional information regarding internal interrupts 
can be found in Section 8.4 (page 8-8), Section 8.6 (page 8-17), Table 8-1 
(communication ports on page 8-10), Section 9.9 (OMA on page 9-40), and 
Section 9.10 (timers on page 9-45). 

The four external interrupts (IIOFQ-IIOF3 as shown in Figure 6-6) are en­
abled at the liE register (subsection 3.1.9, page 3-10). They are synchro­
nized internally. They are sampled on the falling edge of H1 and passed 
through a series of H1/H3 delays internally. Once synchronized, the inter­
rupt input will set the corresponding interrupt flag register (IIF) bit if the inter­
rupt is active. These are the external interrupts and their corresponding in­
terrupt vectors (the latter shown in Figure 6-6 on page 6-27): 

IIOF Pin & Interrupt 
Interrupt Vector Location 

1I0FO IVTP + 003h 

1I0F1 IVTP + 004h 

1I0F2 
1l0F3 

IVTP + OOSh 
IVTP +006h 

These interrupts are prioritized in that one is selected over the other if both 
come on the same clock cycle (IIOFO the highest, IIOF1 next, etc.). When 
an interrupt is taken, the status register ST(GIE) bit is reset to 0, disabling 
any other incoming interrupt (except NMI- nonmaskable interrupt). This 
prevents any other interrupt (IIOF0-3) from assuming program control until 
the ST(GIE) bit is set back to 1. The NMI (an incoming low on pin AJ5, signal 
NMI) is not masked by the ST(GIE) bit. On a return from an interrupt routine, 
the RETI and RETlcond instructions place the value that is in the ST(PGIE) 
bit into the ST(GIE) bit, returning it to its value before the context switch. 

Even though the NMI is nonmaskable, it is temporarily masked during de­
layed branches and multicycle CPU operations. NMI is a negative-going, 
edge-triggered, latched interrupt. 

External interrupts can be effectively either edge- or level-triggered, de­
pending on how the TYPE fields are set in the IIF register (see Table 3-6 
on page 3-13). An external interrupt must be held low for at least one H1 IH3 
cycle to be recognized by the TMS320C40. For level-triggered interrupts, 
if the interrupt is held low for between one and two cycles, then only one in­
terrupt is recognized. If the interrupt is held low two or more cycles, more 
than one interrupt may be recognized, depending on how rapidly interrupts 
are serviced. 

6-23 



Interrupts - Prioritization and Control 
~.:>!:M.~;so»';£;-':'~~'m~~.:.'?;Y.:0~~.:>,*s~s~ ... ~~:;.~;.;~&m~·;:;,;?,:,~""'.sY.i'+o;o».~y;~X';·;·~»'X:»"'·;«O;-;-M·; ...... ·;o."'&N;·;';:;'h··;: .... ;~».X!;«.;o; .. ~~9:>S!>~~~?l>w.s-:« .. :;?;s« .. Y»l>; ..... ;-;·;s .. .;~';O'·.·;:M·;·;..y;·;.;· .. ;·;.;·;-; ....... ·;.;.;.;~y;.;.;.;O+ .. ~:~~»'m?~xs:: 

6.7.1 Interrupt Control Bits 

When a particular interrupt is processed by the CPU or OMA controller, the 
corresponding interrupt flag bit is cleared by the internal interrupt acknowl­
edge signal. It should be noted, however, that for level-triggered interrupts, 
if IIOFn is still low when the interrupt acknowledge signal occurs, the inter­
rupt flag bit will be cleared for only one cycle and then set again because 
IIOFn is still low. Accordingly, it is theoretically possible that, depending on 
when the IIFregister (described in subsection 3.1.1 0 on page 3-12) is read, 
this bit may be zero even though IIOFn is zero. When the TMS320C40 is 
reset, zero is written to the interrupt flag register, thereby clearing all pend­
ing interrupts. 

The interrupt flag register bits may be read and written to under software 
control. If, at the IIF register, FUNCx = 0 and TYPEx = 1, then external pin 
IIOFxcan be written to. Writing a 1 tothe IIF register FLAGx bit has the same 
effect as an incoming interrupt received on the corresponding pin. In this 
way, all interrupts may be triggered and/or cleared through software. Since 
the interrupt bits also may be read (TYPEx = 0), the interrupt pins may be 
polled in software when an interrupt-driven interface is not required. 

Internal interrupts operate in a similar manner. In the IIF register, the bit cor­
responding to an internal interrupt (e.g., TINTO, TINT1) may be read and 
written to through software. Writing a 1 sets the interrupt latch, and writing 
a ° clears it. All internal interrupts are one H1/H3 cycle in length. 

The CPU global interrupt enable bit (GIE), located in the CPU status register 
(ST), controls all CPU interrupts. All OMA interrupts are controlled by the 
OMA enable register bits and the SYNC bits of the OMA channel control reg­
isters (described in Figure 9-2 and Table 9-1 on page 9-8). The OMA in­
terrupts are not dependent upon ST(GIE) and are local to the OMA. 

To provide for maximum performance in servicing interrupts, the interrupt 
acknowledge (lACK) instruction is provided. lACK drives the lACK pin and 
performs a dummy read. The read is performed from the address specified 
by the lACK instruction operand. When lACK is used, it typically is placed 
in the early portion of an interrupt service routine. For certain applications, 
it may be better suited at the end of the interrupt service routine or be totally 
unnecessary. 

6.7.2 Prioriti.zation and Control 
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The prioritization of interrupts is handled by the CPU according to the inter­
rupt vector table shown in Figure 6-6. Prioritization is according to position 
in the table - those with displacements closest to the IVTP base address 
are higher in priority (Le., NMI is higher than TINTO, which is higher than 
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IIOFO, etc.). Note that interruptTINTO is located at IVTP + 2 while the TINT1 
vector is after the communication port and DMA coprocessor interrupts at 
IVTP + 2Bh. 

Prioritization means an interrupt in a higher position in the interrupt vector 
table (Figure 6-6) will be accepted over one in a lower position when both 
are received in the same clock cycle. It does not mean, for example, that 
IIOF3 must wait until service routines for IIOF2, IIOF1 , and IIOFO are com­
pleted (when ST(GIE) = 1}. 

If the DMA coprocessor is not using interrupts for synchronization of trans­
fers, it will not be affected by the processing ofthe CPU interrupts.lfthe CPU 
is involved in a pipeline conflict (branch, register, or memory), it will not re­
spond to the interrupts until that conflict is resolved. It is therefore possible 
to interrupt the CPU and DMA coprocessor simultaneously with the same 
or different interrupts and, in effect, synchronize their activities. For exam­
ple, it may be necessary to cause a high-priority DMA coprocessor transfer 
that avoids but conflicts with the CPU, i.e., makes the DMA coprocessor a 
higher priority than the CPU. This may be accomplished by using an inter­
rupt that causes the CPU to trap to an interrupt routine that contains an IDLE 
instruction. Then, if the same interrupt is used to synchronize DMA 
coprocessor transfers, the DMA coprocessor transfer counter can be used 
to generate an interrupt and, thus, return control to the CPU following the 
DMA coprocessor transfer. 

Since the DMA coprocessor and CPU share the same set of interrupt flags, 
the DMA coprocessor may clear an interrupt flag before the CPU can re­
spond to it. For example, if the CPU interrupts are disabled, the DMA 
coprocessor can respond to interrupts and thus clear the associated inter­
rupt flags. 

Note the following situations: 

Q If there is a delayed branch in the pipeline, interrupts are held pending 
until after the branch. 

Q If the interrupt occurs in the first cycle of the fetch of an instruction, the 
fetched instruction is discarded (not executed), and the address of that 
instruction is pushed to the top of the system stack. 

Q If the interrupt occurs after first cycle of the fetch (in the case of a multi­
cycle fetch due to wait states), that instruction is executed, and the ad­
dress of the next instruction to be fetched is pushed to the top ofthe sys­
tem stack. 

Q If no program fetch is occurring, then no new fetch is performed. 

After the address of the appropriate instruction has been pushed, the inter­
rupt vector is fetched and loaded into the PC, and executed continues. 
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Figure 6-5. Interrupt-Vector Table (IVT) 

IVTP + OOOh ",i;;::R~~~rVe~""':""'" Note 1 IVTP + 01Dh ICFULL4 

IVTP + 001h NMI Note 2 IVTP + 01Eh ICRDY4 

IVTP + 002h TINTO Note 3 IVTP + 01Fh OCRDY4 

IVTP + 003h 1I0FO 

) Note4 

IVTP + 020h OCEMPTY4 

IVTP + 004h 1I0F1 IVTP + 021h ICFULL5 
NoteS 

IVTP + OOSh 1I0F2 IVTP + 022h ICRDY5 

IVTP + 006h 1I0F3 IVTP + 023h OCRDY5 

IVTP + 007h IVTP + 024h OCEMPTY5 
• IVTP + • IVTP + 02Sh DMA INTO 
• 

IVTP + OOCh IVTP + 026h DMA INT1 

IVTP + OODh ICFULLO IVTP + 027h DMA INT2 

IVTP + OOEh ICRDYO IVTP + 028h DMA INT3 Note 6 

IVTP + OOFh OCRDYO IVTP + 029h DMA INT4 

IVTP + 010h OCEMPTYO IVTP + 02Ah DMA INTS 

IVTP + 011 h ICFULL1 IVTP + 02Bh 

IVTP + 012h ICRDY1 IVTP + 02Ch 

IVTP + 013h OCRDY1 IVTP + 

IVTP + 014h OCEMPTY1 IVTP + 
Note 5 

IVTP + 015h ICFULL2 IVTP + • 
IVTP + 016h ICRDY2 IVTP + 

• IVTP + 017h OCRDY2 IVTP + 

IVTP + 018h OCEMPTY2 IVTP + • 
IVTP + 019h ICFULL3 IVTP + 

IVTP + 01Ah ICRDY3 IVTP + 

IVTP + 01Bh OCRDY3 IVTP + 03Eh 

IVTP + 01Ch OCEMPTY3 IVTP + 03Fh 

Notes: 1 ) Reserved for the reset vector when IVTP = 0000 OOOOh and RESETLOC(1,O) = 0 02 or 
when IVTP=08000 OOOOh and RESETLOC(1,O) = 1 02' See Table 3-8. 

2) NMI (non-maskable interrupt) is discussed in Section 9.9, page 9-40. 
3) Timer interrupts TINTO and TINT1 are enabled and programmed by the liE register (subection 

3.1.9, page 3-10) and monitored at the IIF register (subection 3.1.10, page 3-12). 
4) External pins 1I0FO-II0F5 are programmed in the DIE register (subsection 3.1.8, page 3-8) 

and the IIF register (subection 3.1.1 0, page 3-12). 
5) The communication port I/O buffers full/ready interrupts are enabled by the DIE and liE re-

gisters and also discussed in Table 8-1, page 8-10 (OUTPUT LEVEL & INPUT LEVEL bits). 
6) DMA interrupts are enabled at the liE register and DMA channel control register (at bits TCC 

and AUX TCC explained in Table 9-1 on page 9-8). 
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The TMS320C40 allows the CPU and DMA coprocessor to respond to and 
process interrupts in parallel. Figure 6-6 shows interrupt processing flow. 
The interrupts are polled. and the CPU and DMA coprocessor begin pro­
cessing them. In the interrupt flow pertaining to the CPU (left side of figure). 
the interrupt flag corresponding to the highest priority enabled interrupt is 
cleared. and GIE is setto O. The CPU completes all fetched instructions. The 
interrupt vector is fetched and loaded into the PC. and the CPU continues 
execution. The DMA coprocessor cycle (right side of figure) is similar to that 
for the CPU. After the pertinent interrupt flag is cleared. the DMA coproces­
sor proceeds according to the status of the SYNCH bits in the DMA 
coprocessor global control register. 

Figure 6-6. Interrupt Processing 

No 

6-27 



6-28 Program Flow Control 



Chapter 7 

E~,ternal Bus 0eeration 
: Ill: mmmmm:m mil I; I I :mmm IlIm:;: I : I It ::mm:m:: I 1:1: :m:: I I: I I II I : 1:1 I: ; : : ::: :m:m:::::mm:m: I:: :: : ::: :I 1m III: a ; m:m:m:: mm II 

The TMS320C40 has two identical80-pin parallel external interfaces: the 
global memory interface and the local memory interface. Each interface 
has the following features: 

a separate 80-pin configurations, each with its own 32-bit data bus and 
31-bit address bus, 

a single-cycle reads and pipelined writes, 

Q independent enable signals for data, address, and control lines, 

a bus-request and bus-lock signaling for share memory parallel 
processing, 

Q user-controlled mapping of addresses to either of two sets of indepen­
dent strobes for different speed memories, 

a look-ahead bus status signals for defining current and requested bus 
operations for parallel processing arbitration, 

a selectable wait states (both software- and hardware-controlled), 

Q signals that indicate when memory page boundaries are crossed.This­
supports 
• page-mode and static-column decode DRAMs, 
• high-speed SRAM banks, and 
• slower-speed memory banks and I/O devices. 

Note: Description Covers Both Interfaces in this Chapter 

This chapter covers both the global memory interface and the local memory 
interface. However, only the global memory interface is shown throughout 
this chapter because it is identical in every way to the local memory inter­
face except that (1) they have different positions in the memory map, and 
(2) the control signals for the local memory interface have an additional 
"L" prefix (as described in Figure 7-1 on page 7-3). 
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Global (and Local) Memory Interface Control Signals 

7.1 Global (and Local) Memory Interface Control Signals 

As explained in the Note on page 7-1, this text covers the global memory 
interface control signals; it also applies to the local memory interface control 
signals (with the exceptions stated in the note). 

Figure 7-1. Global and Local Memory Interface Control Signals 

• 

} • 
• 
• 

• " 32 NOTE: The signals used in this figure are 
r • for the global memory interface. Howev-

• er, local memory interface signals have 
• J 31 the same configuration except that an r-
• additional"L" (for local) prefix is added for 

• ) 
( 4 each signal (e.g. RlWO becomes LRIWO, 

• and STRBO becomes LSTRBO, etc.) . 

• 

} • 
• 

As shown in Figure 7-1 , the global memory interface has two sets of control 
signals, STRBO and STRB1. The global memory port control registers 
(Section 7.2 on page 7-6) define which set of registers is active. 
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Table 7-1. Global Memory Interface Control Signals 

Signalt Type§ Description 

R!W(O,1) O/Z Specifies memory read (active high) or write (active low) mode. 

STRB(0,1) O/Z Interface access strobe. 

PAGE(0,1) O/Z Memory-page enable signal for STRB(O, 1) accesses. 

RDY(0,1) I Indicates external memory is ready to be accessed. 

CE(O,1 ) I 
Control signal enable for R!Wx, STRBx, ancLPAGEx signals. When 
high (a one), it places the correspondingj![Wx, STRBx, and PAGEx 
signals in high-impedance state (x=O for CEO and x=1 for CE1). 

DE I When high (a one), places data lines D31 - 0 in high-impedance state. 

AE I 
When high (a one), places address lines A30 - 0 in high-impedance 
state. 

STAT(3 -0):1: 0 Four lines to define status or function of the memory port as shown in 
Table 7-2 (next page). 

LOCK:I: 0 
Indicates if an interlocked access is underway (0 = access underway; 
1 = access not underway). LOCK is changed only by the interlocked in-
structions. 

t This table applies to both the global memory interface and local memory interface (local memory 
interface signals have an additional "L" prefix). The numbers in parentheses mean that either a 
o (zero) or a 1 can follow the prefix shown to the left of the parentheses. A zero indicates STRBO 
control signals (shown in Figure 7-1), and a one indicates STRB1 control signals. 

§ 0 = output; I = input; Z = high impedance (three-stated). 
:I: STAT(3 - O)and LOCK cannot be placed in the high-impedance state by an external control sig­

nal. 

7-4 

Table 7-2 on the next page shows how pins STAT3 to STATO define the cur­
rent status of the global memory port. For many bus accesses, these signals 
provide information about the access that is about to begin. The code for a 
SIGI instruction read is useful for distinguishing between a SIGI read and 
a LOll or LOFI read. 

The bus idle status code is 11112 (bottom of Table 7-2), which simplifies 
modular shared-bus multiprocessor interfaces, because pull-up resistors 
can be used to signal the idle condition when processor cards are not at­
tached to the shared bus. 

External Bus Operation 
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Table 7-2. GlObal Memory Port Status for STRBO and STRB1 Accesses 

Statue 

t This table applies to both the global memory interface and local memory 
interface (for local memory interface signals, add an additional "L" prefix 
such as LSTAT3, LSTAT2, etc.). 
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7.2 Memory Interface Control Registers 

7-6 

As explained in the Note on page 7-1, this text covers the global memory 
interface control signals; it also applies to the local memory interface control 
signals (with the exceptions stated in the note). 

Figure 7-2 shows the memory map for both the global and local memory 
interface control registers. Each register can be programmed to control its 
respective memory interface by defining: 

D page sizes for the two strobes, 
D when strobes are active, 
D wait states, 
D other operations that control the memory interface. 

Table 7-3 (on page 7-8) describes the fields in these registers. 

At reset, the binary values shown above each bit in Figure 7-1 are written 
to the global memory interface control register. Values in bits 3 - 0 are the 
values at these bits' respective pins (AE, DE, CE1, and CEO). This reset 
condition has the following effects (for the local and global bus): 

D STRBO and STRB1 (LSTRBO and LSTRB1) page sizes are set to 
001112 (256 words). 

D STRBO and STRB 1 (-;-;LS=T=R~BO and LSTRB 1) wait states are set to 7 
cycles. 

o STRBO and STRB 1 (LSTRBO and LSTRB 1) accesses require an exter­
nal ready signal and an internal ready signal generated by the software 
wait-state generator. 

D STRBO (LSTRBO) is active for all addresses over the global (local) 
memory interface. 

D Back-to-back reads that switch from STRBO to STRB1 (or STRB1 to 
STRBO) result in the insertion of a single cycle between these reads. 

As shown in Figure 7-2, fields STRB1 SWW and STRBO WW are both set 
to 112 to allow the internal ready signal to be generated by ROY wtcnt (on­
chip wait-state counter) and external ROY. 

External Bus Operation 
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Figure 7-2. Format for the Memory-Interface Control Registers 

00010 OOOOh ~B]!iil~~~~ifi!~~ 
00010 0001h 

00010 oo03h 

00010 0004h m·· .I,:,~.·I·· ~. ~~~~~~tm~!I 

RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW 

RWRW RW RWRWRW RW RW RW RW R R R R 

NOTES: 1. The register cell fi~ure (immediately above) contains global memory interface control 
register mnemonics. However, local memory interface control register mnemonics 
can be visualized by adding an "L" prefix to each mnemonic in the figure (e.g., LSTRB 
SWW, LCEO, etc.). 

2. The 1 s and Os above each bit are the binary values written to the register at reset. 
The values at bits 3 - 0 are defined by the values of their respective external pins (AE, 
DE, CE1, and CEO). 

3. These registers are shown in the overall memory map in Figure 3-9 and Figure 3-10 
on pages 3-19 and 3-20, respectively. 

4. RW = readlwrite; R = read. 
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Table 7-3. Bit Definitions for Both Memory Interface Control Registers 

Bit No. Mnemonict Descriptiont 

0 CEO 
Value of external pin CEO (after it passes through an inter-
nal synchronizer). The value is not latched. 

1 CE1 
Value of external pin e'E1 (after It passes through an inter-
nal synchronizer). The value is not latched. 

2 DE 
Value of external pin DE (after it passes through an internal 
synchronizer). The value is not latched. 

3 AE 
Value of external pin AE (after it passes through an internal 
synchronizer). The value is not latched. 

Software wait states for STRBO access. In conjunction 

4-5 STRBOSWW 
with STRBO WTCNT, this field defines the mode of wait-state 
generation. Actual wait states are explained in Section 7.4 
and in Table 7-7 on page 7-16. 

Software wait states for STRB1 access. In conjunction 

6-7 STRB1 SWW 
with STRB1 WTCNT, this field defines the mode of wait-state 
generation. Actual wait states are explained in Section 7.4 
and in Table 7-7 on page 7-16. 

Software wait-state count for STRBO accesses. Specifies 
8-10 STRBO WTCNT the number of cycles to use when software wait states are 

active. Three-bit range is from 0002 (zero) to 1112 (seven). 

Software wait-state count for STRB1 accesses. Specifies 
11 -13 STRB1 WTCNT the number of cycles to use when software wait states are 

active. Three-bit range is from 0002 (zero) to 1112 (seven). 

Page size for STRBO accesses. Specifies number of MSBs 
14-18 STRBO PAGESIZE of the address to use to define the bank size for STRBO ac-

cesses. See range table in Table 7-4 on page 7-9. 

Page size for STRB1 accesses. Specifies number of MSBs 
19-23 STRB1 PAGESIZE of the address to use to define the bank size for STRB1 ac-

cesses. See range table in Table 7-4 on page 7-9. 

Specifies address ranges over which STRBOt and STRB 1 t 
24-28 STRB ACTIVE are active. See ranges in Table 7-5 on page 7-10 for STRB 

ACTIVE and Table 7-6 on page 7-11 for LSTRB ACTIVE. 

Inserts a single cycle between back-to-back reads that 

29 STRB SWITCH switch from STRBO to STRB1 (or vice versa). 
When a 1, insert cycle. 
When a 0, don'finsert cycle. 

30-31 Reserved Read as zeroes. 

t Mnemonics used are for the global memory interface control register. For the local memory interface control 
register, add the prefix "L" to each mnemonic (e.g., LCEO, LCE1, LSTRB1, etc.). The description remains 
the same for the local memory interface control register. 
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Table 7-4. Page Size as Defined by STRBOl1 PAGESIZE Bits t 

STRBx External Address Bus External Address Bus 
PAGESIZE Bits Defining the Bits Defining Page Size 

Field* Current Page Address on a Page (32-Bit Wds) 

00000-
00110 Reserved Reserved Reserved 

00111 30-8 7-0 28 = 256 

01000 30-9 8-0 29 = 512 

01001 30-10 9-0 210 = 1K 

01010 30-11 10-0 211 = 2K 

01011 30-12 11-0 212 = 4K 

01100 30-13 12-0 213 = 8K 

01101 30-14 13-0 214 = 16K 

01110 30-15 14-0 215 = 32K 

01111 30-16 15-0 216 = 64K 

10000 30-17 16-0 217 = 128K 

10001 30-18 17-0 218 = 256K 

10010 30-19 18-0 219 = 512K 

10011 30-20 19-0 220 = 1M 

10100 30-21 20-0 221 = 2M 

10101 30-22 21-0 222 = 4M 

10110§ 30-23 22-0 223 = 8M 

10111 30-24 23-0 224 = 16M 

11000 30-25 24-0 225 = 32M 

11001 30-26 25-0 226 = 64M 

11010 30-27 26-0 227 = 128M 

11011 30-28 27-0 228 = 256M 

11100 30-29 28-0 229 = 512M 

11101 30 29-0 230 = 1G 

11110 None 30-0 231 = 2G 

11111 Reserved Reserved Reserved 

t Mnemonics used are for the global memory interface control register. For the local memory interface control 
register, add the prefix "L" to each mnemonic (e.g .• LSTRBO PAGESIZE, LSTRB1 PAGESIZE, etc.). The de­
scription remains the same for the local memory interface control register. 

:/: The "x" in STRBx means that the data in the columns are for STRBO or STRB1 as well as for LSTRBO and 
LSTRB1, as explained in the note above. 

§ An STRBx PAGESIZE field of 101102 is depicted in Figure 7-4 on page 7-13. 
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Table 7-5. Address Ranges Specified by STRB ACTIVE Bits t 

STRBACTIVE STRBO Active 
STRBO Active 

STRB1 Active 
Address 

Field Address Range Range Size 
Address Range 

00000-
Reserved Reserved Reserved 01110 

01111 8000 0000 - 8000 FFFF 216 = 64K 8001 0000 - FFFF FFFF 

10000 8000 0000 - 8001 FFFF 217 = 128K 8002 0000 - FFFF FFFF 

10001 8000 0000 - 8003 FFFF 218 = 256K 8004 0000 - FFFF FFFF 

10010 8000 0000 - 8007 FFFF 219 = 512K 8008 0000 - FFFF FFFF 

10011 8000 0000 - 800F FFFF 220 = 1M 8010 0000 - FFFF FFFF 

10100 8000 0000 - 801 F FFFF 221 = 2M 8020 0000 - FFFF FFFF 

10101 8000 0000 - 803F FFFF 222 = 4M 8040 0000 - FFFF FFFF 

10110 8000 0000 - 807F FFFF 223 = 8M 8080 0000 - FFFF FFFF 

10111 8000 0000 - 80FF FFFF 224 = 16M 81000000 - FFFF FFFF 

11000 8000 0000 - 81 FF FFFF 225 = 32M 8200 0000 - FFFF FFFF 

11001 8000 0000 - 83FF FFFF 226 = 64M 8400 0000 - FFFF FFFF 

11010 8000 0000 - 87FF FFFF 227 = 128M 8800 0000 - FFFF FFFF 

11011 8000 0000 - 8FFF FFFF 228 = 256M 9000 0000 - FFFF FFFF 

11100 8000 0000 - 9FFF FFFF 229 = 512M AOOO 0000 - FFFF FFFF 

11101 8000 0000 - BFFF FFFF 230 = 1G COOO 0000 - FFFF FFFF 

111·10 8000 0000 - FFFFFFFF 231 = 2G None 

11111 Reserved Reserved Reserved 

t Address ranges specified by the LSTRB ACTIVE bits are listed in Tl'lble 7-6. 
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Table 7-B. Address Ranges Specified by LSTRB ACTIVE Bitst 

LSTRBO Active 
LSTRBAC- LSTRBO Active 

Address 
LSTRB1 Active 

TIVE Field Address Range Range Size 
Address Range 

00000- Reserved Reserved Reserved 
01110 

01111 0000 0000 - OOOOFFFF 216 .84K 0001 0000 - 7FFFFFFF 

10000 0000 0000 - 0001 FFFF 217 -128K 0002 0000 - 7FFFFFFF 

10001 0000 0000 - 0003FFFF 218 == 256K 0004 0000 - 7FFFFFFF 

10010 0000 0000 - 0007FFFF 219 == 512K 0008 0000 - 7FFFFFFF 

10011 0000 0000 - OOOFFFFF 2?0 = 1M 00100000 -7FFFFFFF 

10100 0000 0000 - 001 FFFFF 221 _ 2M 0020 0000 - 7FFFFFFF 

10101 0000 0000 - 003FFFFF 222 =4M 0040 0000 - 7FFFFFFF 

10110 0000 0000 - 007FFFFF 223 • 8M 00800000 - 7FFFFFFF 

10111 0000 0000 - OOFFFFFF 224 = 16M 0100 0000 - 7FFFFFFF 

11000 0000 0000 - 01 FFFFFF 225 = 32M 0200 0000 - 7FFFFFFF 

11001 0000 0000 - 03FFFFFF 226 -84M 0400 0000 - 7FFFFFFF 

11010 0000 0000 - 07FFFFFF 227 = 128M 0800 0000 - 7FFFFFFF 

11011 0000 0000 - OFFFFFFF 228 = 256M 1000 0000 - 7FFFFFFF -11100 0000 booO - 1 FFFFFFF 229 =512M 2000 0000 - 7FFFFFFF 

11101 0000 0000 - 3FFFFFFF 230 = 1G 4000 0000 - 7FFFFFFF 

11110 0000 0000 - 7FFFFFFF 231 = 2G None 

11111 Reserved Reserved Reserved 

t Address ranges specified by the STRB ACTIVE bits are listed in Table 7-5. 
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7.3 Use of the Global Memory Interface Registers 

7.3.1 Mapping Addresses to Strobes 

Figure 7-3 demonstrates the rela.tionship between the STRB ACTIVE bits 
(defined in Table 7-3, page 7-8) and the address ranges over which sig­
nals STRBo and STRB1 are active. Note that the address ranges of SiRBx 
and LSTRBx also ~vern the ranges of their associated signals RDVx, 
rR15Yx, RNJx, LRlWx, PAGEx, LPAGEx, etc. (where x = 1 or 0). 

Figure 7-3. Effects of STRB ACTIVE on Global Memory Bus Memory Map 

80000000h 

FFFF FFFFh 

80000000h 

803FFFFFh • 
80400000h ' 

FFFF FFFFh 

, 
STRBO 
active 

(a) STRB ACTIVE = 111102 (b) STRB ACTIVE = 101012 

NOTE: Shown here are two examples for the global memory map. The entire 'C40 
memory map (local and global) is shown in Figure 3-9 on page 3-19. Note that 
the highest address for LSTRB1 (local bUs) is 7FFF FFFFh. 

Example (a) of Figure 7-3 shows the reset condition (STRB ACTIVE = 
111102)' In this case, signal STRBO is active over the entire address range 
of the global memory bus (see Table 7-4 for lookup table of STRBACTIVE). 
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Example (b) of Figure 7-3 shows the global memory bus memory map 
when STRB ACTIVE = 101012. In this case, STRBO is active from address­
es 8000 OOOOh - 803F FFFFh, and STRB1 is active from addresses 
80400000h - FFFFFFFFh (as shown in Table 7-4 for an STRB ACTIVE of 
101012). 

7.3.2 Page Size Operation 

Figure 7-4. STRBx PAGESIZE Fields Example 
f9o;«o;.·.;.·o;o·)···<·< ~: .... ( .. , .. ~ ':"':iI¥"~ •.. ': ': • :": .• «.<"'.~~ .... o;.'~<)'_.< __ , 

I External Address External Address I 
! r the Current Page -I- Address on a Page -I , 1- Bus Bits Defining Bus Bits Defining II 

I '30 23' 22 I 
€ ~ 
,:

!,i.:. NOTE: This figure represents an STRBx PAGESIZE field value of 101102 (as! 
. shown in Table 7-4 on page 7-9). , 

1 i 1 
~ :c 
j I 
! ! .. ~. ~'~ ___ ~~""""'......vN."NHW'O""'''''''''''''''''_~"NHN'N~~~~ ...... .,.."..,~~, ............. 'NN~~ 

The TMS320C40 external interface allows you to specify (using a 31-bit ad­
dress) independent page sizes for the different sets of external strobes. This 
capability, shown in the example in Figure 7-4, gives yo.u a great deal of 
flexibility in the design of external high-speed, high-density memory sys­
tems and the use of slower external peripheral devices. 

The STRBO PAGESIZE and STRB1 PAGESIZE fields in the memory inter­
face control register (shown in Figure 7-2 on page 7-7) work in the same 
manner to specify the page size for the corresponding strobe. Table 7-4 
(page 7-9) illustrates the relationship between the PAGESIZE field and the 
bits of the address used to define the current page and the resulting page 
size. Page size begins at 256 words (with external address-bus bits 7 - 0 
defining the address on a page, and ranges up to 2G words with external 
address bus bits 30 - 0 defining the location on a page. The example in 
Figure 7-4 shows how a pagesize field value of 1 01102 is translated into bits 
30 - 23 defining the current page and bits 22 - Odefining address on a page. 
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Changing from one page to another causes a cycle to be inserted in the ex- . 
ternal access sequence in order for external logic to reconfigure itself appro­
priately. The memory interface control logic keeps track of the address used 
forthe last access for each STRB. When an access begins, the PAGE signal 
corresponding to the active STRB goes inactive (high) if the access is to a 
new page. The PAGEO and PAGE1signais are independent of one another, 
each having its own page-size logic. 

At reset, the page-control logic is initialized so that the extra cycle is inserted 
for the first access to the two strobe interfaces. 

The local memory interface has a similar set of control registers. 
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7.4 Programmable Wait States 

Control wait-state generation by manipulating memory-mapped control reg­
isters associated with both the global and local interfaces. Use the STRBx 
WTCNT field to load an internal timer, and use the STRBx SWW field to se­
lect one of the following four modes of wait-state generation: 

Q External ROY 

Q WTCNT-generated ROY wtcnt 

Q Logical-AND of ROY and RDYwtcnt 

Q Logical-OR of ROY and ROY wtcnt 

Application of wait states and ready are covered in Section 13.4 on page 
13-27. 

The four modes are used to generate the internal ready signal, RDYint, that 
controls accesses. As long as RDYint = 1 , the current external access is ex­
tended. When RDYint::: 0, the current access completes. Since the use 
of programmable wait states for both external interfaces is identical, only the 
global bus interface is described in the following paragraphs. 

RDY wtcnt is an internally generated ready signal. When an external access 
is begun, the value in WTCNT is loaded into a counter. WTCNT may be any 
value from 0 through 7. The counter is decremented every H1/H3 clock 
cycle until it becomes o. Once the counter is set to 0, it remains set to 0 until 
the next access. While the counter is nonzero, ROY wtcnt ::: 1. While the 
counter is 0, ROY wtcnt = o. 
Table 7-7 is the truth table for each value of SWW, showing the different val­
ues at ROY, ROY wtcnt, and ROYint. 

7-15 



Programmable Wait States 
~;m~~#.~~~*~~~~~>'~~9.:x:::;:~.::;m~;:;';:;';li%%:;St;s:;:;:~.w.«-:;:;s:;~;~m~.:*;.;:~~»;r:s.;,;~':,;.~::~:;s:~~;::,».~».;:;:~:;:;s~::~~~;r«-~->!:-.:::~ 

Table 7-7. Wait-State Generation for Each Value of SWW 

SWW 
ROY ROYwtcnt ROYint ROYint Value 

00 0 0 0 
00 0 1 0 RDYint is dependent only upon RDY. 
00 1 0 1 RDY wtcnt is ignored. 
00 1 1 1 

01 0 0 0 
01 0 1 1 RDYint is dependent only upon 
01 1 0 0 RDY wtcnt. RDY is ignored. 
01 1 1 1 

10 0 0 0 RDYint is the logical-OR (electrical-10 0 1 0 
10 1 0 0 AND, since these signals are low 

10 1 1 1 true) of RDY and RDYwtcnt. 

11 0 0 0 RDYint is the logical-AND (electrical-11 0 1 1 
11 1 0 1 OR, since these Signals are low true) 

11 1 1 1 of RDY and RDY wtcnt. 
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Figure 7-5. STRB and RDY Timing 

H1 

I 
I 

I I I 

\ 
I I 

Ii 
I I 
I 

\ I / I 
I 

Note: Dotted lines emphasize the relationships between signals that is further 
explained in the accompaning text below. 

Throughout this chapter, no distinction is made between global and local 
interface signals and between STRBO and STRB1, except for clarity. 

As shown in Figure 7-5, STRB changes on the falling edge of H1, and RDY 
is sampled on the falling edge of H 1. Throughout the other timing diagrams 
in this section, the following general rules apply to the logical timing of the 
parallel external interfaces: 

1) Changes of RIW are always framed by STRB. 
2) A page boundary crossing for a particular STRB results in the corre-

sponding PAGE signal going high for one cycle. 
3) R/W transitions are always on an H1 rising. 
4) STRB transitions are always on an H1 falling. 
5) RDY is always sampled on an H1 falling. 
6) On a read, data is always sampled on an H1 falling. 
7) On a write, data is always driven out on H1 falling. 
8) On a write, data is always stopped from being driven on H1 rising. 
9) Following a read, the status, and PAGE signal change on H1 falling. The 

address changes on H1 's falling edge. 
10) Following a write, status and PAGE signals change on H1 falling; the 

address changes on H1 rising. 
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11) The fetch of an interrupt vector over an external interface is identified by 
the status signals for that interface (STAT or LSTAT) as a data read. 

12) The interlocked operation status signals (LOCK and LLOCK) have the 
same timing as the STAT and LSTAT status signals, respectively. 

13) Any time PAGE goes high, STRB goes high. 

Figure 7-6 illustrates a read, read, write sequence. This figures assumes 
that all three accesses are to the same page and that they are STRB1 ac­
cesses. This timing diagram illustrates that back-to-back reads to the same 
page are single-cycle accesses. When the transition from a read to a write 
is done, STRB goes high for one cycle in order to frame the RIW signal 
changing. 

Figure 7-6. Read Same Page, Read Same Page, Write Same Page Sequence 

H1 j l 1 1 1 1 1 1 I l 
I I I I I I I I I 

R/WO I 

STRBO I 

RDYO 

PAGEO I 

I I I 

R/W1 \ :r: 
i I 

I 

STRB1 :/ , :\ :/ 
, , 

~ 
, 
r-\ I L ~ 

I L RDY1 

I 

I C PAGE1 
I 

D31-DO~ 0 < ) 

A30- AD X X >C 
STAT3- STATO, (STRB1 read) 

LOCK 
(STRB1 read) (STRB1 write) 
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Figure 7-7 shows that STRB goes high between back-to-back writes. As in 
Figure 7-6, STRB goes high between a write and a read, and it frames the 
RIW transition. 

Figure 7-7. Write Same Page, Write Same Page, Read Same Page Sequence 

H1 ~ ~ 1 ~ l 1 l J l 1 l , , , 

RIWO ' 

STRBO ' 

RDYO , 

PAGEO ' 

RlW1 , :; 
~ :1 :\ 

, 
:\ STRB1 :1 

RDY1 \ 
, 1 \ 1 \ 

PAGE1 ' 

D31 -DO i--< ) < > 0-
A30- AO : X X X , 

STAT3 - STATO, ' (STRB1 write) (STRB1 write) (STRB1 read) 
LOCK' 

Note: Strobe and Ready Further Defined 

Strobe and ready are discussed from the application viewpoint in Sections 
13.3 (page 13-20) and 13.4 (page 13-27) respectively. 
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Figure 7-8 shows that going from one page to another on b~ck~to~back 
reads causes an extra cycle to be inserted, and the transition is signaled by 
PAGE going high for one cycle. Also, STRB1 goes high for one cycle. 

Figure 7-8. Read Same Page, Read Different Page, Read Same Page Sequence 

H1 1 1 J 1 I 1 I 1 1 , , , , , , , 

RIWO 

STRBO 

RDYO 

" 
PAGEO 

RIW1 

STRB1 / '\ '/ : , 

~ 
, , 

RDY1 L ~ r-\ L , , 

PAGE1 / \ 
, , 

D31 -DO 7-C) U ~ , , , 
, 

A30- AO X X >C 
STAT3 - STATO, (STRB1 read) (STRB1 read) (STRB1 read) 

LOCK 
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Figure 7-9. 

Timing 
. SX1W'I' 

Figure 7-9 shows that on back-to-back writes, when a page switch oc­
curs, it is signaled with PAGE going high for one cycle. 

Write Same Page, Write Different Page, Write Same Page Sequence 

H1 1 1 1 
RIWO 

., 
STRBO 

ROVO 

PAGEO 

RIW1 

STRB1 / '\ / \J , 
ROV1 :=\ L \ L : 

PAGE1 / \ 
031 - 00 > < > C 
A30- AO X X 
STAT3-
STATO, (STRB1 write) (STRB write) (STRB1 write) 
LOCK 
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Timing 
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Figure 7-11". Read Different Page. Read Different Page. Write Same Page Sequence 

H1 f l I l l 1 l l l 1 ~ I I I 

RIWO \:l 
STRBo \:::i 

ROVO 

PAGEO 

RIW1 

, 

:\ 
STRB1 \ / \ I \....i 
ROV1 \ L. \ L. 

PAGE1 '\ '/ '\ 
031-00 

, I , 

0 0 Q 
A30- AO X X 

STAT3 - STATO, 
LOCK (STRB1 read) X (STRB1 read) X (STRB1 write) 

7-23 



Timing --
Figure 7-12. Write Different Page, Write Different Page, Read Same Page Sequence 

H1 l 1 ~ l 1 l ~ 1 I l , , , , 

RIWO 
., 

STRBO 

ROVO 

PAGEO 

RlW1 / 
STRB1 / '\ '/ '\ 
ROY1 ~ I.. \ I.. \ 

'/ '\ ,. 
PAGE1 

031 - DO ) < ) C 
A30- AO X X 

STAT3 - STATO. (STRB1 write) 
LOCK (STRB1 write) (STRB1 read) 

7-24 External Bus Operation 



7-25 



Timing 

Figure 7-14to Figure 7-18 illustrate the idle bus cycles. Idle bus cycle tim­
ing is similar to read cycle timing. The primary differences are that no data 
is read, STRB is held high, and ROY is ignored. 

Figure 7-14. Read Same Page, Idle One eyclfl, Read Same Page Sequence 

H1 1 1 1 
RIWO 

STRBO 

ROYO 

PAGEO 

RIW1 

I 

STRB1 'I \ I LJ 
I 

I 

IJ ROY1 ~ / ~ 
PAGE1 

031 - 00 < ) < H 
I 

A30- AO X X >C 
I 

I 

STAT3 - STATO. (STRB1 read) X idle X (STRB1 read) >C LOCK 
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Figure 7-15. Write Same Page, Idle One Cycle, Write Different Page Sequence 

H1 1 1 I 1 I 1 I 1 I 1 , , , , , , , , , 

RlWO 

STRBO 

RDYO 

PAGEO 

R/W1 '/ \ 
" 

STRB1 / \ 
RDY1 :\ / 

PAGE1 / \ 
D31-DO 

> ( 

A30- AO X X 
STAT3-

(STRB1 write) X (idle) X (STRB1 write) STATO. 
LOCK 
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Figure 7-16~ Idle, Read Different Page, Idle Sequence 

H1 1 1 1 1 J 1 1 1 1 , , , , , , 
RIWD 

STRBO 

FiDYo 

PAGED 

RIW1 , , 

STRB1 '\ '/ ,. \J 
ROY1 \ / 

I. 

PAGE1 / \ 
031-00 ( > 
A30- AO X X x: , 

$TAT3 - STATO, (idle) X (STRB1 read) X (idle) >C LOCK 
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Figure 7-17. Idle, Write Same Page, Idle Sequence 

1 1 1 1 1 1 1 1 l 
R/WO 

STRBO 

RDYO~' ____ ~ __ -r ____ ~ __ ~ ____ ~ __ ~ ____ ~--~----~--~ 

PAGEO_' ________ ~--------------~--------~--------~--__ 

R/W1 I 

STRB1 I 1\ 1/ 
RDY1 I \ / 

PAGE1 I 

D31-DO~, --~--~--~--~{~~------~)~~--~---r 
A30- AO =x~ __ ~x _______________ ~x ______ __ 

STAT3-S~~b~:J(~ __ (id_le_) __ ~)(~ ____ (S_T_R_B1_w_r_ite_) ____ ~)(~ _______ (i_dl_e) ______ _ 
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Figure 7-18. Write Different or Same Page, Idle, Idle Sequence 

H1 ! 1 1 1 1 1 1 1 , , , , , , , , 

RIWO 

STRBO 

RDYO 

PAGEO 

RIW1 '/ 
STR81 '/ 

RDY1 =\ / 
PAGE1 

D31 - DO ) 
A30- AD X X 

STAT3 - STATO, (STRB1 write) X (idle) X (idle) 
LOCK 
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Figure 7-19 illustrates an STRB1 read followed by an STRBO read when 
STRB SWITCH = O. This mode allows the reads to be back to back, with no 
cycles inserted between the reads when the back-to-back reads are activat­
ing different strobes. 

Figure 7-19. Read Same Page on STRB1, Read Same Page on STRBO, Read Same Page on STRB1 
Sequence When STRB SWITCH = 0 

1 1 1 1 1 , 

RIWO 

STRBO \'-I._...a......Ji 
RDYO \ / 

PAGEO 

RIW1 

STRB1 

PAGE1 

D31 - DO 

A30 - AO ..,.. ____ -'X"' _____ ..JX"'--,. ___ _ 
STAT3 - STATO, (STRB1 read) 

LOCK _____ ..1 
(STRBO read) (STRB1 read) 
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Figure 7-20 illustrates an STRB1 read followed by an STRBO read when 
STRB SWITCH = 1. In this mode, a cycle is inserted between back-to-back 
reads that activate different strobes. If your system memory configuration 
is such that bus conflicts can occur during back-to-back reads on different 
strobes, this mode provides one cycle between these strobe transitions to 
avoid the bus conflicts. 

Figure 7-20. Read Same Page on STRBt, Read Same Page on STRBO, Read 
Same Page on STRBt Sequence When STRB SWITCH = t 

H1 l 1 1 1 1 1 1 1 1 
RIWO 

STRBO 

RDYO \ 
PAGEO ________ ----------~--~----~----~----------._----~ 

STRB1 ' / 

RDY1~ /: \ 
PAGE1 

D31 - DO +-<:->-------i-...(\----J)........,--r---.;..-....(( 
A30- AO X X'-______ _ 

STAT3-
STATO, (STRB1 read) (STRBO read) (STRB1 read) 

LOCK I 
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Figure 7-21 is similar to Figure 7-19 except that the second read using 
STRB1 is to a different page than the first read (using STRB1). 

Figure 7-2t. Read Same Page on STRBt, Read Same Page on STRBO, Read Different Page on 
STRBt Sequence When STRB SWITCH = 0 

H1 ! 1 1 1 1 1 1 , , 

RIWO 

STRBO \ 
i 

/ 
ROYO : \ / : 

PAGEO 

RIW1 

STRB1 '/ \ 
ROY1 ~ / \ 

PAGE1 / \ 

1 , 

031 - 00 < ) < > C 
A30- AO X X 

STAT3-
STATO, (STRB1 read) (STRBO read) (STRB1 read) 
LOCK 
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Figure 7-22 is similar to Figure 7-20 except that the second read using 
STRB1 is to a different page than the first read (using STRB1). 

Figure 7-22. Read Same Page on STRB1, Read Same Page on STRBO, Read Different Page on 
STRB1 Sequence When STRB SWITCH;:;: 1 

Hi ! 1 1 1 1 1 1 1 1 , 

R/WO 

STRBO \"--Io..~/ 
ROYO \ / 

PAGEO 

R/W1 

STRB1 '/ '\ 
, 

ROY1 ~ L ~ , 

PAGE1 / \ 
, 

031 - 00 -7-( ) ( ) C , 

A30- AO X X 
STAT3-
STATO, (STRB1 read) (STRBO read) (STRB1 read) 
LOCK 
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Figure 7-23. Write Same Page on STRBt, Write Same Page on STRBO, Read Same Page on STRBt 
Sequence 

H1 1 I 1 1 1 I 1 I 1 I 1 , , , , , , , , , , 

R/WO, \ / 
i \ / STRBO' 

RDYO ~ L : 
PAGEO' 

---------.------------~----------------~-----

RDY1 ' \ / \ 
PAGE1, 

~--~--~----~--~--~--~~--~--~--------~ , : 0 D31-DO~~ __ ----~----~~~~------~J)~~----~~ 
A30 - AO .... ' _____ -'x"-_____ --.Jx X 

STAT3 - STATO. '(STRB1 write) (STRBO write) (STRB1 read) 
LOCK~'--~------J~~--~----~--~-~~--~--~~--~ 
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Figure 7-24. Read With One Wait State 
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RIWO 

STRBO 

RDYO 

PAGEO 

R/W1 

STRB1 

PAGE1 

D31 - DO 

A30- AO 

STAT3 - STATO, 
LOCK 

1 1 
I 

(STRB1 read) 

1 1 1 1 1 

(STRB1 read) 

I+-- extra cycle ---.! 
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Timing 

Figure 7-25. Write With One Wait State 

H1 1 I 1 I 1 I 1 I 1 
I I I I I I I I 

R/WO I 

STRBO I 

ROYO I 

PAGEO~I ____ --' ______ ~ __________ -T ____ ~~ ____ ~ ____ ~ ____ --'_ 

R/W1 I 

, I 

STRB1 J 
I 

ROY1~' ~/_~ __ ~ ____ ~J' 

PAGE1 ~I ____ ~ ____ ~ ____________ ~ __________ ~ ______ ~~ ____ _ 

031 - DO :>>--:....--...:.....~('---:-_~~ ___ -...-__ ,.....)>-~ 
I 

A30 - AO =><"--~-----:-------------.------:-------:------C 
I 

STAT3 - STATO. :X' (STRB1 write) X LOCK ."--_____________________________ ~. ~.~------

I I 
I+- extra cycle -+I 
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7.6 Using Enabled Signals to Control Signal Group 

Figure 7-26. Using Enabled Signals to Put Signal Groups in a High-Impedance State 

H1 1 1 1 1 1 1 1 1 1 
I 

I I I I I I 
I I 

signal group ~ k : 
(1)H (2) 14 ~I 1 I 

I 1 

signal group enable I V :, 
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Figure 7-26 shows the use of an enable signal to control the corresponding 
signal group. For example, signal OE controls the global external-interface 
signals 031-00. The enable signals are unsynchronized inputs that turn off 
the corresponding output buffers. Some time period (shown by period (1) 
in Figure 7-26) after the enable signal goes high, the corresponding signal 
group goes into a high-impedance state. Then, some time period after the 
enable signal goes low (period (2) in Figure 7-26), the signal group comes 
out of a high-impedancestate. Of course, if the signal group is already in 
a high-impedance state before the enable signal goes high, the group will 
come out of the high-impedance state (when the enable signal goes low) 
only if the signal group is in a state requiring it to do so. For example, a data 
bus that was not being driven will be driven after being enabled if an access 
is pending for the data bus. 

If you intend to use internally generated wait states, be certain that 
nothing inappropriate occurs when a bus is disabled. This is because 
it is possible to have a bus in a high-impedance state and with internally gen­
erated wait states. In this case, data that is written will not be seen external­
ly, and data that is read will be whatever value is sampled on the high-impe­
dance bus. 
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Interlocked Instnlctions 

7.7 Interlocked-Instructions Definition and Bus Timing 
The LOCK and LLOCK bus-lock signals are manipulated by the interlocked 
instructions LOll, LOFI, ,STII, STFI, and SIGI. As noted, the timing of the 
LOCK and LlOCK pins is the same as pins STAT(3 - 0)andLSTAT(3 - 0). 
Instructions LOll, LOFI, ,STII, STFI, and SIGI manipulate the bus-lock sig­
nals only when an external memory access is made. 

Exceptforthe manipulation ofthe bus-locked signals, the LOll (Load Integer 
Interlocked) and LOFI (Load Floating Point Interlocked) instructions are like 
(in all ways) the comparable LOI (Load Integer) and LOF (Load Floating 
Point) in terms of the operation performed and the bus operation. LOll and 
LOFI perform as follows: 
1) The read cycle is begun, and the appropriate bus-lock signal is:placed in 

the active-low state. 
2) The read cycle is extended until the appropriate ready signal rs active. 
3) Throughout the read cycle and to its conclusion, the bus-lock signal is 

kept in an active-low state until modified by a subsequent STII, STFI, or 
SIGI instruction. 

Figure 7-27 is an example of an LOll or LOFI external access. 
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Interlocked Instructions 

Figure 7-27. LDII or LDFI External Access 

H1 1 1 1 1 1 1 1 1 1 1 , , 

RIWO 

STRBO 

ROVO 

PAGEO 

, 

RIW1 \"",-,,--..----.---......J' r 
STRB1 

ROV1 ~ / \ / , 

PAGE1 c , 
031 - DO ~ > < > < ~~----~----_.---J~ 
A30- AO X X 

STAT3 - (STRB1 read) 
STATO ...,.... ___ -' 

(STRB1 read) (STRB1 write) 

.' LOll or LOFI external access 
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Interlockedlnsuucuons 

Except for manipulation of the bus-locked signals, the STII (Store Integer 
Interlocked) and STFI (Store Floating Point, Interlocked) instructions are 
the same as the comparable STI (Store Integer) and STF(Store Floating 
Point) in terms of execution and bus operation. STII and STFI operate as 
follows: 
1) The store cycle is begun, and the appropriate bus-lock signal is kept in 

its current state. In most cases, the interlocked store is preceded by an 
interlocked load, and the bus-lock signal is kept low. Otherwise, the bus­
lock signal is high, and the interlocked store looks like a not-interlocked 
store. 

2) The store cycle is extended until the appropriate ready signal is active. 
3) When the corresponding STRB goes high at the end of the store cycle 

(the corresponding STAT(O-3) also changes at this time), the corre­
sponding bus-lock signal also goes high. 

An STII or STFI instruction to internal memory has no effect on the bus-lock 
signals. 

Figure 7-28 is an example of an STII or STFI external access following the 
previous interlocked load (shown in Figure 7-27) and an idle cycle. This is 
the timing for an interlocked load/interlocked store sequence. 
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Figure 7-28. sm or STFI External Access 

Hi 1 1 r 1 r 1 r 1 r 1 r 1 
I I I I I I I I I I I I 

RIWO 

STRSO 

ROYO 

PAGEO 

I 

R/W1 \ r 
STRS1 

ROY1 ~ C\ I '\ 'I 
PAGE1 

~ ( ~ 031 - 00 
I I 

I I I I 

A30- AO : X: : X: : X : : x: 
STAT3- (STRSi read) 

STATO 
(STRSi write) 

LOCK 

I~ ~ LOll or LOFI external access 
I I I I 

I STII or STFI external access I~ ~I 
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Interlocked Instructions 

The SIGI instruction (signal interlocked) is similar to the LOll and LOIF in­
structions. The SIGI functions as follows: 
1) The read cycle is begun, and the appropriate bus-lock signal is placed in 

the active-low state. 
2) The read cycle is extended until the appropriate ready signal is active. 
3) When the read operation is complete, the bus-lock signal is brought 

high with the same timing as the status signals changing. 

Figure 7-29 is an example of a SIGI external access. 
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Figure 7-29. SIGI External Access Timing 

H1 1 1 1 l 1 1 1 1 r l , , , , , , , , 

RIWO 

STRBO 

ROVO 

PAGEO 

RIW1 \ /: 
STRB1 / \ / 
ROV1 ~ r-\ L ~ L , , 

PAGE1 C 
031 - 00 ~ ) ( ) ( H-, 

A30- AO X X >C 
STAT3 - (STRB1 read) (STRB1 SIGI read) (STRB1 write) 

STATO 

LOCK \ / 

'l1li .' SIGI external access 
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Interlocked Instructions 

The SIGI instruction can be used in a variety of ways. In some applications, 
you may wish to externally modify semaphores, perhaps with special-pur­
pose logic. If so,SIGI can be used to perform a single-cycle interlocked ac­
cess of the semaphore. The SIGI instruction can also be used simply to 
perform an external read and to signal that a particular point in your code 
has been reached. . 

Figure 7-30 illustrates timing for SIGI ifthe LOCK signal is already low. This 
could happen when a SIGI follows an LOll instruction. Since LOCK is al­
ready low, the only effect SIGI has on LOCK is to bring it high. 
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Figure 7-30. SIGI When LOCK Is Already Low 

H1 ! 1 I 1 I 1 I 1 
I I I I I I I I 

R/WO 

STRBO 

ROYO 

PAGEO 

RIW1 

STRB1 / 
ROY1 =-'\ / \ / \ / 

PAGE1 

I 

031 - 00 +-< ) < ) < ) 

A30- AO X X X 
STAT3- (STRB1 read) (STRB1 read) (STRB1 read) 

STATO 

\ __ ---..--...._1 
'+- LOll access -.. 
I I 

;.- SIGI access ~ 
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7.8 lACK Timing 

The lACK pin is affected by the lACK (interrupt acknowledge) instruction. 
The timing of the pin is similar to that of the LOCK pin when used by the SIGI 
instruction. In all respects (timing, extension with wait states, etc.) the lACK 
behaves like a LOCK or STAT signal. The only difference is that there is only 
one lACK pin. 

The timing for the lACK pin is shown in Figure 7-31. Like the interlocked in­
structions, the lACK instruction affects lACK only for an external access. 
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Figure 7-31. lACK Timing 

H1 1 1 ! 1 ! , , , , , 
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STRBO 

ROVO 

PAGEO 

R!W1 

STRB1 [J 
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PAGE1 

031 - DO +-< ) < H 
A30- AO 
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STAT3-

(STRB1 read) X(STRB1 lACK :ead) ><= STATO 

, 
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lACK external access '04 .' 
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Chapter 8 

Communication Ports 
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This chapter provides technical information for the communication ports of 
the TMS320C40 digital signal processor (DSP). This chapter is divided into 
the following major sections: 

Section Page 

8-2 8.1 Introduction 

8.2 Communication Port Features .......................... 8-3 

8.3 Operational Overview .................................. 8-5 

8.4 Communication Port Memory Map and Registers .......... 8-8 

• Communication Port Control Register (CPCRs) ....... 8-9 

• Input Port Register ................................ 8-9 

• Output Port Register ............................... 8-9 

8.5 Communication Port Operation ......................... 8-12 

• Port Arbitration Units (PAUs) ........................ 8-12 

• Module Reset ..................................... 8-14 

• Halting of Input and Output FIFOs ................... 8-15 

8.6 Coordinating Communication Port Activity 
with CPU and DMA Coprocessors ...................... 8-17 

8.7 Communication Port Timing ............................ 8-18 

• Timing Table and Figures ........................... 8-18 

• Synchronizer Timing .............................. 8-31 
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Introduction 

8.1 Introduction 

8-2 

A parallel processor system supports optimum system performance by dis­
tributing tasks between two or more processors. This sharing of tasks be­
tween two or more TMS320C40 DSPs requires that each be able to pass the 
results of its work to another; passing of results enables both DSPs to con­
tinue working. Processor-to-processor communication is critical in multipro­
cessor-system design. 

High-performance multiprocessing requires rapid transfer of data between 
processors. To ensure this rapid transfer of data, the TMS320C40 provides 
the following: 

o Shared memory - The 'C40 global- and local-memory interfaces 
enable easy construction of efficient multiprocessor-based shared 
memory systems. 

o High-speed communication ports - The 'C40's six high-speed bidi­
rectional communication ports provide rapid processor-to-processor 
communication on six dedicated communication interfaces. 

Although memory sharing has advantages in some applications, a shared 
bus seriously limits processor communication bandwidth for many applica­
tions. Using the high-speed communication ports eliminates this obstacle. 
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Communication Port Features 

8.2 Communication Port Features 

Key features of each TMS320C40 communication port: 

(J 160-megabit per second (5-megaword per second) bidirectional data 
transfer operations (at 40-ns cycle time) 

(J direct (glueless) processor-to-processor communication via eight data 
lines and four control lines 

(J buffering of all data transfers, both input and output 

(J automatic arbitration and handshaking to ensure communication syn­
chronization 

(J synchronization between the CPU or direct-memory access (DMA) 
coprocessor and the six communication ports via internal interrupts and 
internal ready signals 

(J support of a wide variety of multiprocessor architectures, including 
rings, trees, hypercubes, bidirectional pipelines, two-dimensional 
Euclidean grids, hexagonal grids, and three-dimensional grids. 
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Communication Port Features 

Figure B-1. Communication Port Block Diagram 
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8.3 Operational Overview 
The 'C40 contains six identical high-speed communication ports, each of 
which provides a bidirectional communication interface to an external de­
vice. Figure 8-1 shows the internal architecture of a single communication 
port. Each port contains the following components: 

I:) Input FIFO channel- provides an 8-level, 32-bit wide first-in-first-out 
(FIFO) input buffer that isolates the 'C40 from the port communication 
data bus and buffers data received from an external device via the bus. 

I:) Output FIFO channel- provides an 8-level, 32-bit wide FIFO output 
buffer that Isolates the 'C40 from the port communication data bus and 
buffers data to be sent to an external device via the bus. 

I:) Port arbitration unit (PAU) - handles the arbitration tasks associated 
with the movement of data between a 'C40 and an external device via 
the port communication data bus. Signals arbitrated and controlled by 
the PAU are shown in Figure 8-2. The PAU is described in detail in sub­
section 8.5.1 on page 8-12. 

I:) Communication port control register (CPCR) - allows you to con­
trol the communication port functions and data transfer operations be­
tween a 'C40 and an external device via the communication port data 
bus. 

Figure B-2. TMS320C40 Communication-Port Interface-Connection Example 

Figure 8-2 is an example of two 'C40 DSPs connected via their communi­
cation ports. This simple communication interface consists of the following 
bidirectional control and data lines: 

I:) CREQx- communication port token request. A 'C40 activates this sig­
nal to request the use of the communication port data bus. 
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Q CACKx - communication port token acknowledge. A 'C40 activates 
this signal to relinquish ownership of the communication port data bus 
upon receiving a CREQx from another 'C40. 

Q CSTRBx - communication port strobe. A sending 'C40 activates this 
signal to indicate that it has placed valid data on the communication port 
data bus. 

Q CRDYx- communication port ready. A receiving 'C40 activates this 
signal to indicate that it has received data via the communication port 
data bus. 

Q CxD(7-Q) - communication port data bus. This bus carries data 
bidirectionally between two 'C40s or between a 'C40 and some other 
device. 

Figure 8-2 shows two 'C40s connected via their communication ports. The 
communication port data bus, CD(7-Q), and its associated control signals 
transfer data in either direction between 'C40s A and B. The PAUs in the two 
'C40s cooperate to generate the signals and control sequences necessary 
to ensure orderly data transfers at the highest possible rate. To avoid con­
flicts on the bus, these PAUs arbitrate bus ownership, allowing only one 
DSP to transmit at any given time. Either of the PAUs can relinquish bus 
ownership when the other DSP has data to send. 

Signals CREQx and CACKx handle the handshaking arbitration between 
the two DSPs: 
1) The PAU that does not own the data bus (CxD(7-0)) activates CREQx 

to request bus ownership. 

2) The PAU owning the bus then activates CACKx to acknowledge the re­
quest and relinquish bus ownership to the requesting PAU. 

3) In this manner, these signals transfer a token (or priority) from one PAU 
to another, and the PAU receiving the token gains ownership of the bus. 

During a data transfer operation: 

1) The CPU or DMA coprocessor of the sending DSP writes data to the 
output FIFO (of a communication port) via a memory-mapped address 
(listed in Figure 8-3). 

2) The communication port then places the data on CxD(7-Q) and acti­
vates CSTRBx to signal the receiving communication port that the bus 
contains valid data. 

3) Upon receiving the data in its input FIFO, the receiving communication 
port activates CRDYx to indicate that it has received the data. 

4) The CPU or DMA coprocessor of the receiving DSP may then read the 
data from the input FIFO via a memory-mapped address (listed in 
Figure 8-3). 
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Each of the input and output FIFOs can buffer a maximum of eight 32-bit 
words. 

Buffering provided by the input and output FIFOs is very important. This 
buffering allows for a high degree ofdecoupling of computation and commu­
nication overhead. When 'C40s A and B are connected via their communi­
cation ports, the effective length of the FIFOs becomes 16 levels. This is be­
cause the output path from A to B is the concatenation of the eight levels 
of the output FIFO of A with the eight levels of the input FIFO of B. This also 
applies for the output path from B to A. 
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8.4 Communication Port Memory Map and Registers 

Figure 8-3 shows the memory mapforthe 'C40 communication port control 
registers (CPCRs) and their associated input FIFOs and output FIFOs. The 
lowest three addresses of each port's 16-address block are mapped to a 
CPCR and its associated input and output FIFOs. Fields (bits) within a 
CPCR are shown in Figure 8-4. 

Figure 8-3. Communication Port Memory Map 

8-8 

0010 0040h ~~~~ ........ --. ........ ==~ 
0010 0041 h r....~~~~~-:-:';-~~--I 
0010 0042h 

Reserved 

0010 0050h ~~~...."...C_P~C~R_1~~~--I 
0010 0051h 
0010 0052h ~~~~--~--~----~ 

0010 0060h 
0010 0061 h H~-___ ...,--""""~--:-'-I 

0010 0062h 

0010 0070h CPCR3 

0010 0071h 
0010 0072h 

Reserved 

0010 0080h CPCR4 

0010 0081h input port 4,FIFOposition 0 

0010 0082h output port 4, FIFO position 7 

Reserved 

0010 0090h 
0010 0091h 
0010 0092h 

Reserved 

0010 009Fh 
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For example, the addresses for communication port 0 point to (see 
Figure 8-3): 

o address 00010 0040h: CPCR 0 

o address 00010 0041 h: input port register 0, FIFO level 0 

o address 00010 0042h : output port register 0, FIFO level 7 

o address range 00010 0043h-0001 0 004Fh: reserved. 

8.4.1 Communication Port Control Registers (CPCRs) 
Figure 8-4 shows the format of a TMS320C40 CPCR, which contains con­
trol and status bits for its associated communication port. Table 8-1 lists the 
CPCR bits and fields and describes their functions. Figure 8-3 lists the 
memory locations of the CPCRs. 

If an output port that is full is written to, the peripheral bus interface latches 
the word written. On subsequent accesses to the peripheral bus, a not ready 
is given. This condition goes away when an empty position appears in the 
output FIFO. This resultsin the peripheral bus input latch being transferred 
to the output buffer at the communication port. 

8.4.2 Input Port Register 
This read-only register contains the contents of position 0 of the input FIFO, 
the oldest value in the FIFO. If this register is written to, its contents remain 
unchanged. 

8.4.3 Output Port Register 
This write-only register interfaces to position 7 of the output FIFO (level 7 -
the newest value in the FIFO). If this register is read, its contents remain 
unchanged, and the value read is undefined (garbage). 
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Figure 8-4. Communication Port Control Register (CPCR) 

12 11 10 9 8 7 6 5 4 3 2 0 .. BIT NUMBER 

R R R R R R R R R/W R/W R 

Notes: 1. CPCRs are shown in the memory map on page 8-8. Table 8-1 describes 
the various CPCR fields. 

2. xx = reserved bit (reacl/write as zero). 
3. R = read, W = write. 

Table B-1. CPCR Bit Functions 

Bit 
Field Name Function Nos. 

0-1 Reserved Undefined 

Port Direction. Bit determines the direction of data transfer 

2 PORTOIR 
operations for the communication port. 
• PORT OIR = 0: port is in the output mode 
• PORT OIR = 1: port is in the input mode. 

Input Channel Halt. 
• Write a 1 to ICH to halt the input channel. When the input 

3 ICH 
channel is halted, PORT OIR is set to zero. 

• Set ICH to 0 when the input channel is to be unhalted; 
otherwise, the input channel cannot signal externally when it is 
ready to receive. 

Output Channel Halt. 
• Write a 1 to this bit to immediately halt the output channel. 

4 OCH However, the communication port is still able to accept a token 
request from the input channel. 

• Set this bit to 0 to allow the output channel to transfer data. 

(Table concluded on next page) 

8-10 Communication Ports 



Communication Port Memory Map and Registers 
~;.-:x:;w~s::::~;~~%s::::::::x:;~~~.::::~n.;.';'»»~::%!l:>e:'m~;:;::::::-.::::::.~~~~m.~:::«.:::::;~.::%:;:;:~.::~:::;:;:;:;:;:;:;:;:;:;:~;:;~~;»:::;:;:::::;:~;o.;:;:.;:;:;:;::om;y,;:;:.:;m;sY.~Q».;:;w.~~:;:;:;:;:;:;:;:;:;:;w.».:*.;::';Mf~·~·l:'S:: "f:;';~*, ... ::s::es 

Table 8-1. CPCR Bit Functions (Concluded) 

Bit 
Field Name Function Nos. 

Output FIFO Level. Contents of this 4-bit field: 
.00002 (0): indicates an empty output FIFO. 
• 00012 (1): through 0111 2 (7): indicates the number of 
full positions in the output FIFO . 

• 11112 (15): indicates a full output FIFO 

An empty output buffer (OUTPUT LEVEL = 00002) causes an un-

5-8 OUTPUT LEVEL 
latched, positive level-triggered interrupt (OCEMPTY = 1) to be 
sent to the CPU. When the CPU or DMA coprocessor writes to 
the empty output FIFO, OCEMPTY is set to 0, and it remains in 
that state until the buffer is again empty. An output FIFO with one 
or more empty levels also causes an unlatched, positive level-
triggered interrupt (OCRDY = 1) to be sent to the CPU and the 
DMA coprocessor. This condition causes a READY/NOT READY 
signal to be generated when the CPU or DMA coprocessor at-
tempts to write to the output FIFO. 

Input FIFO level. Contents of this 4-bit field: 
.00002 (0): indicates an empty input FIFO . 
• 00012 (1): through 01112 (7): indicates the number of full 
positions in the input FIFO . 

• 11112 (15): indicates a full input FIFO. 

A full input FIFO (INPUT LEVEL = 11112) causes an unlatched, 
9-12 INPUT LEVEL positive level-triggered interrupt (ICFULL = 1) to be sent to the 

CPU. When the CPU or DMA coprocessor reads from the full input 
FIFO, ICFULL is set to 0 and remains in that state until the FIFO 
is again full. An input FIFO with one or more full levels also causes 
an unlatched, positive level-triggered interrupt (ICRDY = 1) to be 
sent to the CPU and the DMA coprocessor. This condition causes 
a READY/NOT READY signal to be generated when the CPU or 
DMA coprocessor attempts to read from the output FIFO. 

13-31 Reserved Undefined 
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8.5 Communication Port Operation 

8.5.1 Port Arbitration Units (PAUs) 
The PAU is responsible for arbitrating between two devices to determine 
which device has possession of the communication port data bus at any 
given time. This arbitration allows the bus ownership token to be passed 
back and forth between two devices connected via their communication 
ports. During this arbitration process, the PAU is in one of the four states 
listed in Table 8-2. 

Table B-2. PAU State Definitions 
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00 

01 

1 0 

PAU Status 

The PAU currently has possession of the bus owner­
ship token, and its associated communication chan­
nel is not in use. Under this condition, the PORT OIR 
bit of the associated CPCR is 0 (output). 

The PAU currently does not have possession of the 
bus ownership token and has not requested the to­
ken. Under this condition, the PORT OIR bit equals 1 
(input), and the OUTPUT LEVEL field equals 0 
(empty output FIFO). 

The PAU currently has possession of the bus owner~ 
ship token, and its associated communication chan­
nel is in use. Under this condition, the PORTOIR bit 
equals 0 (output), and the OUTPUT LEVEL field daes 
not equal 0). 

The PAU currently does not have possession of the 
bus ownership token but has requested the token. 
Under this condition, the PORT OIR bit equals 1 

, and the OUTPUT LEVEL field does 

Figure 8-5 shows the state diagram and controlling equations for the PAU 
state transitions. The figure also includes comments describing how the 
state transitions correspond to various system-level processes. 

To place data on the communication port data bus, the PAU must arbitrate 
between: 
a on-chip requests to output data on the communication channel data bus 

(CD(7- 0)) 
a external requests received via the CREQ line 

This arbitration is accomplished by passing the bus-ownership token be­
tween PAUs associated with different communication ports. The PAU con­
taining the token has ownership of the communication port data bus. At sys­
tem reset, half of the communication channels associated with a particular 
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'C40 have token ownership (communication ports 0, 1,2), and the other half 
(communication ports 3, 4, 5) do not. This token passing is done via the 
CREQ and CACK lines. 

Rgure 8-5. Communication Port Arbitration Unit State Diagram 

(Other PAU requests token; 
token released and 
passed using CACK) 

TOKRQ=1 

cu.,;,n", = 0; TOKRQ = 0 

To help understand the port arbitration scheme represented in Figure 8-5, 
consider a data transfer operation from 'C40 A to 'C40 B. The transfer be­
gins with PAU A in state 002 and PAU B in state 012' If PAU A receives a 
request (BUSRQ = 1) from its output buffer to use the communication port 
data bus, it allows the output buffer to transmit one word immediately and 
enter state 102. After the output buffer transmits one word, it removes the 
bus request (BUSRQ = 0), and PAU A returns to state 002' 

If PAU B receives a request from its output buffer to use the bus, it activates 
CREQ to request the token from PAU A. PAU A detects this request via the 
state variable TOKRQ and then activates the CACK line to transfer the bus 
ownership token to PAU B. PAU B then generates an internal bus acknowl­
edge (BUSACK) to indicate that it has gained bus ownership. As a result of 
this token transfer operation, PAU A enters state 012, and PAU B enters 
state 102. 
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Because a PAU always returns to state 002 after transmitting a single word, 
token passing can be accomplished by 'C40s A and B alternately transmit­
ting single words. This process provides a fair means of bus arbitration that 
prevents either of the output buffers (A's or B's) from being continually 
blocked. 

If an input buffer becomes full, it will not activate CRDY at the beginning of 
the transmission of the first byte that would overflow the buffer. This condi­
tion prevents data transfer operations in either direction until the situation is 
resolved. This can be done by reading data from the full input buffer. 

8.5.2 Module Reset 

8-14 

At system reset, the input and output channels both assume an empty state, 
causing all values in the input and output buffers to be lost. The CREQ, 
CACK, CSTRB, and CRDY signals assume an inactive (high) state and 
CxD(7-Q) enters its tristate mode (see Figure 8-14 and Figure 8-15 on 
page 8-30). These signals remain in these states as long as system reset is 
active and, following system reset, the value placed on CxD(7-Q) by the 
communication port that is configured for output is undefined. 

At system reset, communication ports 0, 1, and 2 assume the following 
states: 

Cl PAU is reset to state 002: The PAU has posseSSion of the bus owner-
ship token, and the channel is not in use. 

Cl ICROY = 0: The input channel is empty and is not ready to be read from. 

Cl ICH = 0: The input channel is not in its halted state. 

Cl OCROY = 1: The output channel is not full and is ready to be written 
to. 

Cl OCH = 0: The output channel is not in its halted state. 

Cl 'PORT OIR = 0: The communication port is configured for output opera­
tion. 

Cl INPUT LEVEL = 0: The input channel is empty. 

Cl OUTPUT LEVEL = 0: The output channel is empty. 

At system reset, communication ports 3, 4, and 5 assume the following 
states: 

Cl PAU reset to state 012: The PAU does not have possession of the bus 
ownership token, and the token is not requested. 

Cl ICROY = 0: The input channel is empty and is not ready to be read from. 
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o ICH = 0: The input channel is not in its halted state. 

o OCRDY = 1: The output channel is not full and is ready to be written 
to. 

o OCH = 0: The output channel is not in its halted state. 

o PORT DIR = 1: The communication port is configured for input opera­
tion. 

o INPUT LEVEL = 0: The input channel is empty. 

o OUTPUT LEVEL = 0: The output channel is empty. 

Based on these reset conditions, ports 0, 1, and 2 of one DSP should be 
connected to ports 3, 4, and 5 of the other. 

8.5.3 Halting of Input and Output FIFOs 

The halting of the input and output FIFOs of a communication channel is 
controlled by the ICH and OCH bits (input-channel and output-channel halt 
bits) of the communication port control register (Figure 8-4 on page 8-10). 
The goal of input FIFO halting is to halt the input FIFO as soon as possible, 
but without the loss of data being input. A summary of the halVunhalted con­
ditions is provided in Table 8--3 on page 8-16. 

When the input FIFO is halted, it will not signal a ready when the first incom­
ing byte is received. At that pOint, the data transfer is frozen until the input 
FIFO is unhalted or a system reset occurs. If the input FIFO is unhalted later, 
the transfer will continue without any loss of data. 

A communication port with an FIFO that is either halted or is full and inactive 
will not acknowledge a token request. This assures that the communication 
port's output channel remains open. 

If a communication port's input FIFO is halted during a token request from 
the communication port to which it is connected, then the token request is 
acknowledged before halting. 
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Table 8-3. Summary of Input and Output FIFO Halting 

Halted/Unhalted If the Port Has Token If the Port Does Not Have Token 

a. Won't signal ready when first byte is 

Input halted a. Won't release token received (transfer frozen) 

Output unhalted b. Will transmit data b. If halted after first byte is received, it 
will receive rest of word (will signal 
ready and then halt the input) 

a. Won't transmit data 
b. If halted after first byte 

Input unhalted sent, will complete word a. Will receive data 
Output halted transfer and then halt the b. Will not request token 

output 
c. Will release token 

a. Won't release token a. Won't signal ready when first byte is 
b. Won't transmit data received (transfer frozen) 

Input halted c. If halted after first byte b. If halted after first byte received, it will 
Output halted sent, will complete word receive rest of word and then halt the 
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transfer and then halt input 
the output c. Will not request token 

Output FIFO halting is analogous to input FIFO halting. Assume that DSP A 
output FIFO has OCH = 1. Then the output FIFO will be halted, based upon 
its current state. 

Q If communication port A does not have the token, the output FIFO is 
halted, and no request is made for the token. 

Q If communication port A has the token and is currently transmitting a 
word, then after the word is transmitted, no new transfers will be begun. 

Q If communication port A has the token and the input FIFO is not halted 
and the output FIFO is halted, then it will transfer the token when re­
quested by communication port B. 

Q If communication port A has the token and the input FIFO is halted and 
the output FIFO is halted, then it will not transfer the token when re­
quested by communication port B. 

Q When coming out of the halted state, if the communication channel still 
has the token, it may transmit data if necessary. If it needs the token, 
it will arbitrate for the token as usual. 
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8.6 Coordinating Communication Port Activity With CPU and 
DMA Coprocessors 

The communication ports support several principle modes of synchroniza­
tion: 

o a ready/not ready signal that can halt CPU and DMA accesses to a 
communication port 

o interrupts that can be used to signal the CPU and DMA 

The most basic synchronization mechanism is based on a ready/not-ready 
signal. If the DMA or CPU attempt to read an empty input FIFO or write to a 
full output FIFO, a not-ready signal is returned and the DMA or CPU contin­
ues to read or write until a ready signal is received. The ready signal for the 
output channel is OCRDY (output channel ready), which is also an interrupt 
signal. The ready signal for the input channel is ICRDY (input channel 
ready), which is also an interrupt signal. 

Interrupts are often a useful form of synchronization. Each communication 
port generates four different interrupt signals, as listed below (interrupt traps 
for these are shown in Figure 3-8 on page 3-16): 

o ICFULL (input channel full) 

o ICRDY (input channel ready) 

o OCRDY (output channel ready 

o OCEMPTY (output channel empty) 

The CPU can respond to all four of these interrupt signals. The DMA 
coprocessor can respond to the ICRDY and OCRDY interrupt signals. 
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8.7 Communication Port Timing 
In order to accurately describe the timing ofthe operation ofthe communica­
tion ports, it is important to differentiate between the internal signals applied 
to the pins and the external signal seen. All signals are buffered and can be 
placed in a high-impedance state. See Figure 8-6. 

In this discussion, internal signals applied to a buffer are identified by suf­
fixes: 
Q a suffix 'a' for processor A (for example, CSTRBa) 
Q a suffix 'b' for processor B (for example, CSTRBb) 
Q a suffix 'ab' for the external signal between the two connected commu­

nication ports (for example CSTRBab and CREQab) 
o a suffix followed by a single quote for the value that the processor sees 

by sampling the input pad (for example CPTRa') 

Figure 8-6. Signal-Naming Example 

Output CREQab Output 
Buffer - Buffer 

Enable Enable 

CREQa III 
~ CREQb .. ... 

CREQa' ..... ... CREQb' 
~ ,... 

8.7.1 Timing Table and Figures 
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Table 8-4 and the timing figures that follow depict timing sequences in com­
munication between TMS320C40s using their communication ports. 
Table 8-4 lists handshaking and communication during this intercommuni­
cation. Steps in the table are shown by numbers in the figures. Events 1 
through 36 in the table compose a token request and token transfer se­
quence. 
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Figure 8-7 Token Transfer Sequence (page 8-23). 
1) Atthe start, the communication port on processor A has the token and is 

idle. 
2) The communication port on processor B requests the token and, after 

receiving the token, transfers a word, one byte at a time: 
a) the first byte is bits 7-Q 
b) the second is bits 15-8 
c) the third is bits 23-16 
d) the fourth is 31-24 

3) Once a token-requesting communication port receives the token re-
quest acknowledge, it will always transmit a word. 

Figure 8-8 End of Token Transfer Sequence Followed by a Word Transfer 
and the Beginning of a Second Word Transfer (page 8-24). 

Figure 8-9 End of a Word Transfer Followed by a Word Transfer (page 
8-25). 

Figure 8-10 End of a Word Transfer Followed by an Idle State and Token 
Transfer (page 8-26). 
1) The communication port data bus becomes idle because the output 

FIFO on processor B is empty. 
2) The communication port on processor A requests the token, which is 

then transferred to it by the communication port on processor B. 
Figure 8-11 End of a Word Transfer Followed by an Overlapping Token 
Transfer (page 8-27). 
1) As shown, the token request is received by the communication port on 

processor B. 
2) The communication port on processor B sees the ready signal for the 

last byte of the word being transmitted. 
3) Then the communication port releases the token. 
4) However, the communication port will not release the token if the token 

request is received by the processor port B after the processor port B 
sees the ready Signal for the last byte of the word being transmitted. 

5) If the communication port on processor B does not have another word in 
the output FIFO to transmit, it will release the token. 

Figure 8-12 End of the Transfer of the Last Word in an Output FIFO Fol­
lowed by an Idle Condition Until Another Word Is Available to Be Transferred 
(page 8-28). This begins with a word transfer followed by an idle state due to 
an empty output FIFO. Then a word is written to the output FIFO and trans­
ferred. 

Figure 8-13 End of a Word Transfer Followed bya Not Ready Due to the 
Input FIFO Becoming Full, Continuing Once the Input FIFO Is No Longer 
Full (page 8-29). This shows the use of the ready line to generate wait 
states. 
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1) In this case, a word is transferred that fills the input FIFO of the commu­
nication port of processor A. 

2) At the beginning of transmission of the next word, the communication 
port on processor A does not signal that it is ready until the input FIFO is 
no longer full. 

Table 8-4. Handshaking Events in Communication Port Intercommunication 

tEvent 
Description No. 

1 B requests the token by bringing CREQb low. 

2 A sees the token request when CREQa' goes low. 

3 
After a type 1 delay from CREQa' falling, A acknowledges the request by bringing 
CACKa low. 

4 B sees the acknowledgement from A when CACKb' goes low. 

5 A switches CROYa from tristate to high on the first Hi rising after CACKa falling. 

6 A tristates CaD(7-Q) on the first Hi rising after CACKa falling. 

7 B switches CSTRBb from tristate to high after CACKb' falling. 

8 B brings CREQb high after a type 1 delay from CACKb' falling. 

9 A sees CREQa' go high. 

10 A brings CACKa high after CREQa' goes high. 

11 A tristates CSTRBa after CACKa goes high. 

12 A tristates CACKa after CREQa' goes high and after CACKa goes high. 

13 A switches CREQa from tristate to high after CREQa' goes high. 

14 B tristates CREQb after CREQb goes high. 

15 B switches CACKb from tristate to high after CREQb goes high. 

16 B tristates CROYb on Hi rising after CREQb goes high. 

17 B drives the first byte onto CbO(7-Q) on Hi rising after CREQb goes high. 

18 A sees the first byte on Ca'O(7-Q). 

19 B brings CSTRBb low on the second Hi rising after CREQb rising. 

20 A sees CSTRBa' go low, signaling valid data. 

21 A reads the data and brings CROYa low 

22 B sees CROYb' go low, signaling data has been read, 

23 B drives the second byte on CbO(7-0) after CROYb' goes low. 

24 A sees the second byte on Ca'O(7-0}. 

t Event No. corresponds to numbers in the timing diagrams that follow. 

Table Continued on Next Page 
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Table 8-4. Handshaking Events in Communication Port Intercommunication (Continued) 

Description 

28 

29 
30 

31 A reads the data and brings low. 

32 B sees CROYb' go low, signaling data has 

33 B drives the third byte on CbO(7-O) after 

34 A sees the third byte on CaO(7-O). 

35 

36 

37 after CSTRBa' goes high. 

38 

39 B brings CSTRBb low after CROYb' goes high. 

40 A sees CSTRBa' 

41 A reads the data and 

42 B sees CROYb' go low, co.".,,,,I1.,,, 

44 A sees the fourth byte on CaO(7-O). 

45 

t Event No. corresponds to numbers in the timing diagrams that follow. 

Table Concluded on Next Page 
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Table 8-4. Handshaking Events in Communication Port Intercommunication (Concluded) 

tEvent 
Description No. 

54 A sees CSTRBa' go high. 

55 A brings CRDYa high after CSTRBa' goes high. 

56 B sees CRDYb' go high. 

57 B drives the first byte of the next word onto CbD(7-Q) after a type 2 delay from 
CRDYb' falling (52). 

58 A sees the first byte of the next word on CaD(7-Q). 
59 Blowers CSTRBb after a type 2 delay from CRDYb' falling. 

t Event No. corresponds to numbers in the timing diagrams that follow. 
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These events are identified by event number in the following figures that de­
scribe the communication port timing. 
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Figure 8-7. Token Transfer Sequence 
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Figure 8-8. End of Token Transfer Sequence Followed by a Word Transfer and the Beginning of a 
Second Word Transfer 
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Figure 8-9. End of a Word Transfer Followed by a Word Transfer 
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Figure 8-10. End of a Word Transfer Followed by an Idle State and Token Transfer 
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Figure 8-11. End of a Word Transfer Followed by an Overlapping Token Transfer 
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Figure 8-12. End of the Transfer of the Last Word in an Output FIFO Followed by an Idle Condition 
Until Another Word Is Available to 8e Transferred 
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Figure 8-13. End of a Word Transfer Followed by a Not Ready Due to the Input FIFO Becoming Full, 
Continuing Once the (nput FIFO Is No Longer Full 
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Figure 8-14 illustrates the state of the signals of a communication port ini­
tialized by a reset as an output port (ports 0, 1, and 2 are configured as out­
put ports at reset). For this case, CREO and CRDY are in a high-impedance 
state. CACK and CSTRB are high, and undefined values are on CD(7-o)· 

Figure 8-14. Post-Reset State for an Output Port 
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CRDY ~-~--~-~--~-~--~--~-~--~-~--~-~-----

CD(7-Q) 

Figure 8-15 illustrates the state of the signals of a communication port ini­
tialized by a reset as an input port (ports 3, 4, and 5 are configured as input 
ports at reset). For this case, CREO and CRDY are high. CACK, CSTRB, 
and CD(7-o) are all in a high-impedance state. 

Figure 8-15. Post-Reset State for an Input Port 
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8.7.2 Synchronizer Timing 

The synchronizers used in the port arbitration unit are of two types. Type­
one synchronizers cause delays that vary from 1 to 2 machine clocks from 
the receiving of an input on a pin until the response on output pin (ignoring 
analog delays). Type-two synchronizer delays range from 1.5 to 2.5 ma­
chine clocks delay. 

Type-one synchronizers recognize an input when H 1 is high, then pass it 
through an H3-hlghIH1-high series of delays. The response is at the start 
of the following H3 high. 

The minimum type-one synchronizer delay of one machine clock will occur 
when the input changes just before H1 goes low. This delay is shown in 
Figure 8-16. 

The maximum type-one synchronizer delay of two machine clocks will oc­
cur when the input changes just after H1 goes low. This delay is shown in 
Figure 8-17. 

Figure 8-16. Type-One Synchronizer Minimum Delay 
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Figure 8-17. Type-One Synchronizer Maximum Delay 
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Type-two synchronizers first recognize an input when H1 is high, then 
pass it through an H3-hlghIH1-hlghIH3-hlgh series of delays. The re­
sponse is at the start of the following H1 high. 

The minimum type-two synchronizer delay of 1.5 machine clocks occurs 
when the input changes just before H1 goes low. This delay is shown in 
Figure 8-1a. 

The maximum type-two synchronizer delay of 2.5 machine clocks occurs 
when the input changes just after H1 goes low. This delay is shown in 
Figure 8-19. 

Using these two types of synchronizers, the synchronizer delays for the 
communication port signals are tabulated in Table 8-5. 

Figure 8-18. Type-Two Synchronizer Minimum Delay 
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Figure 8-19. Type-Two Synchronizer Maximum Delay 
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Table 8-5. Communication Port Signals and Synchronizer Delays 

Input Signal to Output Signal 
Delay Min. Delay Max. Delay 
Type (clock cycles) (clock cycles) 

CREQJ.. to CACKJ.. One 1 2 

CACKJ.. to CREQr One 1 2 

CRDY J.. to CD valid for a new word Two 1.5 2.5 

CACKJ.. to CSTRB active 0.5 1.5 

CRDY J.. to CSTRBJ.. between Two 1.5 2.5 back-to-back word transfers 
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Chapter 9 

DMA Coprocessor and 'C40 Timers 
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This chapter provides technical information for two important TMS320C40 
(,C40) functions: the direct memory access (DMA) coprocessor and the tim­
ers. Both are on-chip parts of the 'C40 digital signal processor (DSP). The 
first nine major sections of this chapter cover the DMA coprocessor; the last 
section covers the timers. 
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Note: DMA Programming Examples in Chapter 12 

Besides the descriptions of DMA operation in this section, programming 
examples and explanations are provided in Chapter 12. 
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Introduction 

9.1 Introduction 

9-2 

The primary benefit of the DMA coprocessor is to maximize sustained CPU 
performance by completely alleviating the CPU of burdensome I/O duties. 

The DMA coprocessor supports six DMA channels that perform transfers 
to and from anywhere in the processor's memory map. For example, trans­
fers can be made to/from on-chip memory, off-chip memory, and any of the 
six on-chip communication ports. The DMA coprocessor can automatically 
reinitialize its registers via linked lists stored in memory, allowing the DMA 
to run continuously without any intervention by the central processor unit 
(CPU). The DMA coprocessor can build up circular buffers in memory and 
perform linear and bit-reversed addressing. 

The DMA coprocessor provides you with an unprecedented level of per­
formance and flexibility for a DSP on-chip DMA coprocessor. The key fea­
tures of the 'C40 DMA coprocessor are: 

o six DMA channels for memory-to-memory transfers under unified 
mode; a special split mode supporting 12 DMA channels for communi­
cation port to/from memory transfers 

o autoinitialization of DMA channel control registers, via linked lists stored 
in memory, at the start of a block transfer 

o concurrent CPU and DMA coprocessor operation with DMA transfers 
at the same rate as the CPU (supported by separate internal DMA ad­
dress and data buses) 

o source and destination address registers with variable indices allowing 
stepping through matrices by row or column 

o bit-reversed addressing for FFTs 

o synchronization of data transfers via external and internal interrupts 
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9.2 DMA Coprocessor Functional Description 
The TMS320C40 DMA coprocessor improves data transfer rates in sys­
tems that must perform: 
a memory to memory transfers 
a data transfers from an I/O device to memory 
a data transfers from memory to an I/O device 
a transfers of data between the on-chip communication ports and 

memory. 
a data transfer of a single value to a block of memory for memory fill and 

initialization. 

The DMA coprocessor can transfer data in a linear fashion or in a bit-rev­
ersed fashion for FFT applications; it can transfer matrix data in a row or col­
umn fashion. 

The DMA coprocessor is a self-programming device that allows data trans­
fers to occur without any intervention from the CPU. This allows data to be 
moved onto and off of the 'C40 without any CPU distraction. The result is 
a processor which has a concurrent 110 rate that can keep up with the CPU's 
high computation rate. The address map of the DMA coprocessor registers 
is shown in Figure 9-1. The major registers of the DMA coprocessor are: 
(J control register 
a source register 
a source index register 
a destination register 
a destination index register 
o transfer counter register 
o link pointer register 

Subsections that describe these are listed in Figure 9-2 and in Section 9.3. 

The DMA coprocessor has dedicated on-chip DMA address and DMA data 
buses. All accesses made by the six DMA channels are arbitrated in the 
DMA coprocessor and take place over these dedicated buses. The DMA 
channels can run constantly or may be triggered by an external or internal 
interrupt, including an interrupt generated by the on-chip timers and com­
munication ports. 
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Figure 9-1. DMA Coprocessor Memory Map 
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0010 OODOh 

0010 00D8h ......,.."""--"-"-___ -"--\ 
0010 00D9h 

0010 OODFh !---...,.-_-_...., 
0010 OOEOh " ' DMAChA 

,'Registers,' 
(See exploded ' 

0010 00E8h !---'!'!'_"."'_V...;ie...;w...;)-,,-""""""'i 

0010 00E9h 

0010 OOEFh ......,.. __ _ 
0010 OOFOh 

0010 00F8h 
0010 00F9h 

0010 OOFFh '------...... 

9-4 

EXPLODED VIEW OF EACH CHANNEL 
REGISTER 

010 OOzOh 
010 OOz1h 
010 00z2h 
010 00z3h 
010 00z4h 
010 00z5h 
010 00z6h 
010 00z,7h 
010 00z8h 

DMA Ch.Control Register x 
Source Address x 
Source Address Index x 
Transfer Counter x 
Destination Address x 
Destination Address Index x 
Link Pointer x 
Auxiliary Transfer Counter x 
Auxiliary Link Pointer x 

x = channel number (e.g., a 1 for all 
registers in channel 1, a 2 for 
all registers in channel 2, etc.). 

z = corresponding hexadecimal digit 
for channel address (e.g., subst 
tute an "A" for DMA channel 0; "8" 
for DMA channel 1 , etc.). 

The subsections describing 
these registers are listed in 
Figure 9-2 and in Section 9.3 
on page 9-7. 

T 
DMA 
Ch. 
x 

1 
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Figure 9-2. Subsections Where DMA Channel Registers Are Described 

Memory Described 
Address DMA Register in Section 

010 OOzOh 
010 OOz1h 
010 00z2h 
010 00z3h 
010 00z4h 
010 00z5h 
010 00z6h 
010 00z7h 
010 OOz8h 

DMA Ch. Control Register x 
Source Address x 
Source Address Index x 
Transfer Counter x .. 
Destination Address x 
Destination Address Index x 
Link Pointer x 
Auxiliary Transfer Counter x 
Auxiliary Link Pointer x 

T 9.3.1 
9.3.2 
9.3.2 

DMA 9.3.3 
Ch. 9.3.2 
x 9.3.2 

1 
9.3.4 
9.3.3 
9.3.4 

On Page 

9-7 
9-16 
9-16 
9-18 
9-16 
9-16 
9-19 
9-18 
9-19 

x = channel number (e.g., all are 1 for channel 1 , all 2 for channel 2, etc.). 
z = corresponding hexadecimal digit for channel address (e.g., substitute 

"A" for DMA channel 0; "B" for DMA channel 1, etc. See Figure 9-1). 

For example, if a block of data is to be transferred from one region in memory 
to another region in memory: 
1) The source address register of a DMA channel is loaded with the ad­

dress of the source memory location. 
2) The destination address register of the same DMA channel is loaded 

with the address of the destination memory location. 
3) The transfer counter is loaded with the number of words to be trans­

ferred. 
4) If sequential memory accesses are required, the source address in­

dex register as well as the destination address Index register would 
be set to 1. 

5) The appropriate modes can be set up to synchronize the DMA 
coprocessor reads and writes to interrupts via the DMA channel control 
register. 

6) Then, the DMA coprocessor can be started via the DMA START field in 
the DMA channel control register. 

A DMA transfer consists of two steps: 
1) The source data value is read by the DMA channel and stored in a 

temporary register. 
2) The temporary register value is written to the destination address. 

During every data write, the transfer counter is decremented. The block 
transfer can be terminated when the transfer counter goes to zero and the 
write of the last transfer is complete. 

After a read by the DMA channel, the source-index register is added to the 
source-address register. After a write by the DMA channel, the destination-
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Index register is added to the destination-address register. (Both index 
registers contain signed values.) This allows forvariable step sizes or con­
tinual reads and/or writes fromlto memory. In the case of an index register 
equaling zero, the DMA coprocessor transfers data from/to a fixed location. 

At the completion of a block transfer, the DMA coprocessor can be pro­
grammed to do several things: 

o most importantly, autoinitialize itself at the start of the next block trans­
fer. Each DMA channel can read new control register values from mem­
ory (as well as the other registers in Figure 9-2), load these values into 
its register block, and, according to the values loaded, begin another 
block transfer. This autoinitialization is done without any intervention 
by the CPU. 

[J generated an interrupt to signal that the block transfer is complete 

[J stop until reprogrammed 

A special split-mode allows the DMA channels to have the source and desti­
nation paths split and bound to a communication port. In this mode, the 
DMA-channel source path (source-address register, source-index regis­
ter, transfer-counter register, and link-pointer register) forms the primary 
split channel and is used to move data from a location in the processor's 
memory map to a communication port. The DMA-channel destination 
path (destination-address register, destination-index register, auxiliary 
transfer-counter register, and auxiliary link-pointer register) is the auxiliary 
split channel and is used to move data from the same communication port 
to a location in the processor's memory map. 

Note: DMA Coprocessor Programming Examples in Chapter 12 

Besides the descriptions of DMA coprocessor operation in this section, pro­
gramming examples and explanations are provided in Chapter 12. 
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9.3 DMA Coprocessor Registers 

The DMA coprocessor has nine registers designated as follows (for loca­
tion, see Figure 9-2 on page 9-5): 
(J DMA channel control register (subsection 9.3.1) 
(J DMA-channel source-address register (subsection 9.3.2, page 9-16 ) 
Q DMA-channel source-address-index register (subsection 9.3.2, page 

9-16 ) 
Q DMA-channel destination-address register (subsection 9.3.2, page 

9-16 ) 
(J DMA-channel destination-address-index register (subsection 9.3.2, 

page 9-16) 
(J DMA-channel transfer-count register (subsection 9.3.3 on page 9-18) 
(J DMA-channel auxiliary-transfer-count register (subsection 9.3.3 on 

page 9-18) 
(J DMA-channellink-pointer register (subsection 9.3.4 on page 9-19) 
(J DMA-channel auxiliary-link-pointer register (subsection 9.3.4 on page 

9-19) 

Each DMA channel has one of each of these registers, discussed in the fol­
lowing paragraphs. 

9.3.1 DMA Channel Control Register 

The format of the DMA channel control register is shown in Figure 9-3. 
Table 9-1 defines the register bits, the bit names, and the bit functions. 

At reset, the DMA channel control register is set to zero. This makes the 
DMA channel lower priority than the CPU, sets up the source address and 
destination address to be calculated via linear addressing, and configures 
the DMA channel in the unified mode. 

When an external interrupt is used for DMA coprocessor transfer synchroni­
zation, the CPU is responsible for configuring external interrupts as edge­
or level-triggered interrupts (as set in the applicable FUNCx and TYPEx bits 
of the interrupt flag register (subsection 3.1.10 on page 3-12)). 
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Figure 9-3. DMA Channel Control Register 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 

RW R R RW-A RW R R RWSA RWS 

17 16 15 14 13 12 11 10 

RW-A RW-A RW-A RWSA RWSA RWS RWSA RWS 

9 8 7 6 5 4 3 2 1 0 

RWSA RWS RWSA RWS RWSA RWSA RWS RWS RWS RWS 

R - Bit may be read. 
W - Bit may be written. 
S - Bit is shadowed during autoinitialization (no changes take 

affect until autoinitialization is complete.) 
A - Bit is auxiliary for autoinitialization. 
xx - Reserved. 

Table 9-1. DMA Channel Control Register Bit Definitions 

Bit Mnemonic Read! Description Nos. Write 

DMA coprocessor priority. Defines the arbitration rules 

0-1 DMAPRI R/W to be used when a DMA channel and the CPU are re-
questing the same resource. Affects all DMA coproces-
sor modes. Rules listed in Table 9-2, page 9·14. 

Defines the transfer mode used by the DMA channel. Af-
2-3 TRANSFER MODE RIW fects unified mode and the primary channel in split mode. 

Bits defined in Table 9-3 on page 9·14. 

AUX TRANSFER Defines the transfer mode used by the DMA channel. Af-
4-5 MODE RIW fects the auxiliarychannel in split mode only. Bits defined 

in Table 9-3 on page 9·14. 

Table continued on next page 
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Table 9-1. DMA Channel Control Register Bit Definitions (Continued) 

Bit Mnemonic Read/ Description Nos. Write 

Determines the mode of synchronization to be used 
when performing data transfers, as shown in Table 9-4 
on page 9-15. 

6-7 SYNC MODE RIW Note: If a DMA channel is interrupt driven for both reads 
and writes, andthe interrupt for the write comes before 
the interrupt for the read, the interrupt for the write is 
latched by the DMA channel. After the read is complete, 
the write can be executed. 

If bit = 0, the link pointer is incremented during 
autoinitialization. 

If bit = 1, the link pointer is not incremented (it is static) 
during autoinitialization. 

8 AUTOINIT STATIC R/W This affects unified mode and primary channel in split 
mode. It is useful to keep the auxiliary link pointer con-
stant when autoinitializing from the on-chip communica-
tion ports or other stream-oriented devices (such as first-
in first-out (FIFO) memory buffers). 

AUX AUTOINIT Acts the same as for the AUTOINIT STATIC mode 
9 STATIC RIW above, except that this affects the auxiliary channel in 

split mode only. ' 

Has an effect only in the DMA coprocessor sync mode 
(bits 6-7 above). Affects the interrupt that is enabled by 
the DMA interrupt enable register (see Figure 3~, page 
3-8) used for DMA reads: 
If bit = 0, the interrupt is ignored, and the 

autoinitialization reads are not synchronized 

10 AUTOINIT SYNC RIW with any interrupt signals. 
If bit = 1, then the interrupt is recognized and is 

also used to synchronize the autoinitialization 
reads. -This affects the unified mode and the primary channel in 

split mode (see bit 14, SPLIT MODE). The effect of this 
bit and the SYNC MODE bit in autoinitialization is sum-
marized in Table 9-9 on page 9-37. 

Acts the same as the AUTOINIT SYNC bit above except 
that it affects DMA-coprocessor write autoinitialization 

11 
AUX AUTOINIT RIW sync in unified mode and the auxiliary channel in split 
SYNC mode. The effect of this bit and the SYNC MODE bits in 

autoinitialization is summarized in Table 9-9 on page 
9-37. 

Table continued on next page 
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Table 9-1. DMA Channel Control Register Bit Definitions (Continued) 

Bit Mnemonic Read/ Description Nos. Write 

If bit = 0, the source address is modified using 
32-bit linear addressing. 

12 READ BIT REV RIW If bit = 1, the source address is modified using 24-bit 
bit-reversed addressing. 

Affects unified mode and primary channel in split mode. 

If bit = 0, the destination address is modified using 
32-bit linear addressing. 

13 WRITE BIT REV R/W If blt=1, the destination address is modified using 
24-bit bit-reversed addressing. 

Affects unified mode and auxiliary channel in split mode. 

This controls the DMA coprocessor mode of operation. 
If bit = 0, DMA transfers are memory to memory. This is 

referred to as unified mode. 
If bit = 1, split mode is entered with the DMA split into 

two channels, allowing a single DMA channel to 
14 SPLIT MODE R/W perform memory-to-communication-port and co 

mmunication-port-to-memory transfers. 
The split mode may be modified by autoinitialization in 
unified mode or by autoinitialization by the auxiliary 
channel in split mode. Split mode is further described in 
Section 9.4. 

These bits define a communication port (0002 to 1012) 
to be used for DMA transfers. 
If SPLIT MODE = 0, then COM PORT has no affect on 

the operation of the DMA channel. 

15-17 COM PORT R/W If SPLIT MODE = 1, then COM PORT defines which of 
the six communication ports to use with the 
DMAchannel. 

The COM PORT may be modified by autoinitialization in 
unified mode or by autoinitialization by the auxiliary 
channel in split mode. 

Table continued on next page 
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Table 9-1. DMA Channel Control Register Bit Definitions (Continued) 

ait Mnemonic Read/ Description Nos. Write. 

Transfer counter interrupt control. 
If Tee = 1 , a DMA channel interrupt pulse is sent to the 

CPU after the transfer counter makes a transition 
to zero and the write ofthe lasttransfer is complete. 
If enabled, the corresponding DMA interrupt (OMA 
INTO-INTS) occurs as shown in Figure 3-8, 

18 TCC RIW p.3-16. 
If Tee = 0, a DMA channel interrupt pulse is not 

sent to the CPU when the transfer counter makes 
a transition to zero. 

Affects unified mode and the primary channel in split 
mode. DMA channel interrupts to the CPU are edge 
triggered. 

Auxiliary transfer counter interrupt control. 
If bit = 1, a DMA channel interrupt pulse is sent to the 

CPU after the auxiliary transfer counter makes a 
transition to zero and the write of the last transfer 
is complete. If· enabled, the corresponding DMA 

19 AUXTCC RIW interrupt (OMA INTO-INTS) occurs as shown in 
Figure 3-8, p. 3-16. 

If bit = 0, a DMA channel interrupt pulse is not 
sent to the CPU when the auxiliary transfer counter 
makes a transition to zero. 

Affects the auxiliary channel in split mode only. 

Transfer counter interrupt flag. 
This flag is set to 1 whenever the transfer counter makes 
a transition to zero and the write of the last transfer is 
completed. Whenever the DMA channel control register 

20 TCINT FLAG R is read, this flag is cleared unless the flag is being set by 
the DMA in the same cycle as the read (in such case, 
TCINT is not cleared). 
The TCINT FLAG is affected by the unified mode and the 
primary channel in split mode. 

Table continued on next page 
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Table 9-1. DMA Channel Control Register Bit Definitions (Continued) 

Bit Nos. Mnemonic Readl Description Write 

Auxiliary transfer counter interrupt flag. 
This flag is set to 1 whenever the auxiliary transfer 
counter makes a transition to zero and the write of the 
last transfer is completed. Whenever the DMA control 
register is read, this flag is cleared unless the flag is be-

AUXTCINT ing set by the DMA coprocessor in the same cycle as the 
21 FLAG R read (in such case AUX TCINT is not cleared). The AUX 

TCINT FLAG is affected by the auxiliary channel in split 
mode. 
Since only one DMA-channel interrupt is available for a 
DMA channel, you can determine what event had set the 
interrupt by examining the TCINT FLAG and the AUX 
TCINT FLAG. 

Starts and stops the DMA channel in several different 
ways (listed in Table 9-5, page 9-15). START affects 
the unified mode and the primary channel in split mode. 
If us~d to hold a channel in the middle of an autoinit se-
quence, the START and AUX START bits will hold the 
autoinit sequence. 

22-23 START RIW 
If the START or AUX START bits are being modified by 
the DMA channel (for example, to force a halt code of 
102 on a transfer-counter terminated block transfer) and 
a write is being performed by an external source to the 
DMA channel control register, internal modification of 
the START or AUXSTART bits by the OMA channel 
has priority. See TRANSFER MODE bits value of 0 12, 
(Table 9-3,). 

Starts and stops the DMA channel in several different 
24-25 AUXSTART RIW ways (listed in Table 9-5, page 9-15) AUX START af-

fects the auxiliary channel in split mode only. 

Indicates the status of the DMA channel as listed in 
Table 9-6, page 9,.16. STATUS is updated in the unified 
mode and by the primary channel in the split mode. Up-
dates are done every cycle. 

26-27 STATUS R The STATUS and AUX STATUS bits (Table 9-6) are 
used to determine the current status of the DMA chan-
nels and to determine if the DMA channel has halted or 
has been reset after writing to the START or AUX START 
bits. 

Table concluded on next page 
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Table 9-1. DMA Channel Control Register Bit Definitions (Concluded) 

Bit Nos. Mnemonic Read/ Description Write 

Indicates the status of the DMA channel as listed in 

28-29 AUX STATUS R 
Table 9-6, page 9-16. STATUS is updated by the auxil-
iary channel in split mode only. Updates are done every 
cycle. 

Priority mode of DMA channel access: 

PRIORITY o = Rotating priority as shown in Section 9.5 (on 
30 MODE R/W page 9-22). 

1 = Fixed priority as shown in Section 9.5. 
This bit is available only at DMA channel 0 (zero). 

31 Reserved. 
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Table 9-2. DMA PRI Bits and CPUIDMA Arbitration Rules 

DMA PRI 
Bit Nos: Effect 
1-0 

DMA coprocessor access is lower priority than the CPU access. If the 
0 0 DMA channel and the CPU are requesting the same resource, then the 

CPU will proceed. Bits are set this way at reset. 

If the DMA channel and the CPU are requesting the same resource, 
then the CPU will proceed. Then, after the CPU access is complete, if 

0 1 
the DMA coprocessor and CPU are again requesting the same re-
source, the DMA coprocessor will proceed. This priority rule provides a 
fair arbitration scheme by alternating CPU accesses with a DMA chan-
nel's access. 

1 0 Reserved. 

DMA coprocessor access is higher priority than the CPU access. If the 
1 1 DMA channel and the CPU are requesting the same resource, then the 

DMA will proceed. 

Table 9-3. TRANSFER MODE and AUX TRANSFER MODE Field Description 

TRANSFER MODE 
Bit Nos: Effect 3-2 

5-4 
Transfers are notterminated by the transfer counter, and no 
autoinitialization is performed. TCINT (transfer counter interrupt) can still 

0 0 be used to cause an interrupt when the transfer counter makes a transi-
tion to zero. The DMA channel continues to run. Note that the address 
continues incrementing while the transfer count rolls over to its maxi-
mum value of OFFFF FFFFh. 

Transfers are terminated by the transfer counter. No autoinitialization is 
0 1 performed. A halt code of 102 is placed in the START field when trans-

fers are completed. 

1 0 Autoinitialization is performed when the transfer counter goes to zero 
without waiting for CPU intervention. 

The DMA channel is autoinitialized when the CPU restarts the DMA 
coprocessor by using the DMA register in the CPU. When the transfer 

1 1 counter goes to zero, operation is halted until the CPU starts the DMA 
coprocessor by using the START field in the DMA channel control 
register (bits 22-23 and 24-25, Table 9-5). A halt code of 102 is placed 
in the START field by the DMA coprocessor. 
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Table 9-4. SYNCH MODE Field Description 

SYNCH MODE 
Bit Nos: Effect 
7-6 

0 0 No synchronization. Interrupts are ignored. 

0 1 Source synchronization. A read will not be performed until an enabled 
interrupt occurs. 

1 0 
Destination synchronization. A write will not be performed until an enabled 
interrupt occurs. 

Source and destination synchronization. A read is performed when an en-
abled interrupt occurs. Then, a write is performed when an enabled inter-

1 1 rupt occurs. The interrupts used are specified by the DMA READ and DMA 
WRITE fields of the DMA interrupt enable (DIE) register (subsection 3.1.8 
on page 3-8). 

Table 9-5. START and AUX START Field Description 

START 
Bit Nos: Effect 23-22 
25-24 

DMA channel reset. DMA channel read or write cycles in progress are com-
pleted (not aborted); any data read is ignored. Any pending (not started) 

0 0 read or write is canceled. The DMA channel is reset so that when it starts, 
a new transaction begins; that is, a read is performed. In this start mode, 
stopping is immediate with no other registers loaded. 

Halts the DMA channel on the first available read or write boundary. If the 
read orwrite has begun, the read or write is completed before stopping (i.e., 

0 1 in the middle or at the end of a DMA channel transfer). If a read or write has 
not begun, no read or write is started. In this start mode, stopping is immedi-
ate with no other registers loaded). 

Halts the DMA channel on the first available transfer boundary. If a DMA 
transfer has begun, the entire transfer is completed, including both cycles 

1 0 (both read and write operations), before stopping. If a transfer has not be-
gun, none is started. In this start mode, stopping is immediate with no other 
registers loaded. 

DMA start. Writing 112 to this field starts the DMA process using the values 
in the channel's DMAchannel registers (Figure 9-1). If the DMA is in auto-

1 1 initialization, all DMA registers are loaded before starting the operation. 
The DMA coprocessor starts from reset if previously reset (START bits = 
002) or restarts from the previous state if previously halted (START bits = 
012 or 102)' 
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Table 9-6. STATUS and AUX STATUS Field Description 

STATUS 
Bit Nos: Meaning 27-26 
29-28 

DMA process is in the middle of the DMA transfer (between the write and 
0 0 read operations). This is the value at RESET. after a halt on a transfer 

boundary, or after a block transfer. 

0 1 
DMA process is being held (for any reason) in the middle of a DMA transfer; 
that is. in the middle of the read/write operation. 

1 0 Reserved. 

1 1 DMA channel is not being held or reset. 

9.3.2 DMA Channel Address and Index Registers 

9-16 

As shown in Figure 9-4, both the DMA coprocessor source-address and 
destination-address registers have an associated index register. After each 
DMA channel read (source address) or write (destination address), the 
corresponding (source or destination) address generator adds the index 
register to the address register and places the result in the address register. 
In this way, the address register acts as accumulator because it retains the 
sum of itself and its index register. 

Address Register + Index Register -7 Address Register 

The values in these registers are undefined at reset. 

Depending upon bits 12 and 13 (READ BIT REV and WRITE BIT REV) of 
the DMA channel control register, the addition may be either: 

o linear (normal addition): READ BIT REV = ° orWRITE BIT REV = 0, 
or 

o bit reversed (reverse carry propagation): READ BIT REV = 1 or 
WRITE BIT REV = 1. 

Both index values (source or destination) are signed values. 
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Figure 9-4. OMA-Coprocessor Address Generation 

DMA Address Bus 

DMA Address Bus ....--

(a) Source Address Register Operation 

Dest. Address 0 + 
+ 
+ 
+ 
+ 
+ 

Dest. Index 0 

(b) Destination Address Register Operation 
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9.3.3 DMA Channel Transfer-Counter and Auxiliary-Transfer-Count 
Registers 

These registers contain the number of words to be transmitted. 

Figure 9-5 shows the six transfer counters and the six auxiliary transfer 
counters. Each auxiliary transfer counter is used when the DMA channel is 
in split mode (described in Section 9.4 on page 9-20). The values in these 
registers are set to zero at reset. 

The counters are decremented after completing the address fetch for the 
write portion of a transfer. The TCINT FLAG and AUX TCINT FLAG (bits 20 
and 21 of the DMA channel control register, Figure 9-3 on page 9-8) are 
not set untilthe counter is decremented and the write of the last transfer is 
completed. Correspondingly, the interrupt will not be seen by the CPU inter­
rupt controller until the transfer counter is decremented and the write of the 
last transfer is completed. 

The decrementer checks for equality with zero after the decrement is per­
formed. As a result, if the count register has a value of 1, then the DMAchan­
nel can be halted after only one transfer is performed. The count is treated 
as an unsigned integer. Transfers may be halted when a zero count is de­
tected after a decrement. If the DMA coprocessor channel is not halted after 
the transfer reaches zero, the counter will continue decrementing below 
zero. 

Figure 9-5. DMA Coprocessor Transfer-Count Registers 

t x = DMA channel number (0-5) 
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9.3.4 DMA-Channel link-Pointer and Auxiliary-link-Pointer Registers 

The link pointers specify the address from which to load the new DMA chan­
nel register values when autoinitialization is performed. When a channel 
has exhausted its counter, it will (if appropriately configured) use the link 
pointer to reload itself. Figure 9-6 illustrates the DMA coprocessor link ad­
dress registers. The values in these registers are undefined at reset. 

For example, under autoinitialization, the steps to load the channel registers 
for DMA channel 0 (as shown in Figure 9-1 on page 9-4) would be: 
1) Get link pointer for next DMA operation. Pointer is memory address con­

taining contents of first DMA channel 0 register (channel control regis­
ter as shown in Figure 9-1 on page 9-4). 

2) Bring in contents pointed to by pointer and write to address 01 0 OOAOh 
(first word of DMA channel 0 registers as shown in Figure 9-1). 

3) Increment link pointer. (Skip this step if AUTOINIT STATIC bit = 1.) 
4) Bring in next word and write to address 010 OOA 1 h. 
5) Repeat until entire block of registers is loaded for DMA channel o. 

Figure 9-6. DMA Coprocessor Link Pointer Registers 

DMA Address Bus 

Increment as 
specified in the 

AUTOINIT STATIC 
and AUX 

AUTOINITIC 
STATIC bits 

t x = DMA channel number (0-5) 
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9.4 DMA Channels in Unified and Split Modes 
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Unified and split mode are depicted in separate diagrams (Figure 9-7 and 
Figure 9-8 on the next page). The split mode transforms one DMA channel 
into two DMA channels: 
a Primary Channel: one dedicated to reading data from a location in the 

memory map (external/internal) and writing it to a communication port 
a Auxiliary Channel: one dedicated to receiving data from a communi-

cation port and writing it to a location in the memory map 

To accommodate the six communication ports, all six DMA channels can 
support this split mode (DMA channels 0-5). 

The SPLIT MODE bit (bit 14 of the DMA channel control register, 
Figure 9-3) controls the DMA unified or split mode: 
a For unified mode (Figure 9-7): Set SPLIT MODE bit to 0 (zero) 
a For split mode (Figure 9-8): Set SPLIT MODE bit to 1 

The COM PORT field of the DMA channel control register (bits 15-17 as 
shown in Figure 9-3) defines which communication port is used (port 0-:-5). 
Figure 9-8 shows typical operations using one communication port. 
a The transfer counter register controls the primary channel transfers. 
a The auxiliary transfer counter register controls the auxiliary channel 

transfers (both these registers shown in Figure 9-1, page 9-4). 

DMA channel arbitration in split mode is described in subsection 9.5.3 on 
page 9-24. 
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Figure 9-7. Typical Unified Mode DMA Channel Configuration 

Figure 9-8. Typical Split-Mode DMA Configuration 

PRIMARY 
CHANNEL 

AUXILIARY 
CHANNEL 

1111111 .. 1---..... CREQ 

----..... CACK 
1111111 .. 1---..... CSTRB 

'111I11I11~ _____ CRDY 

II.H~~C CD(7-Q) 

Memory Pointed to by DMA 
Source Address Register 

Memory Pointed to by DMA 
Destination Address Register 

Memory Pointed to by DMA 
Source Address Register 

Memory Pointed to by DMA 
Destination Address Register 
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9.5 DMA Coprocessor Internal Priority Schemes 

Within the DMA coprocessor, two priority schemes are used to designate 
which channel is serviced next: 
Q a fixed priority scheme with channel 0 always having the highest priority 

and channel 5 the lowest, . 
Q a rotating priority scheme which places the just-serviced channel at the 

bottom of the priority list. 

Select the desired scheme by setting bit 30 (PRIORITY MODE) of DMA 
channel O's DMA channel control register (Figure 9-3 and Table 9-1 on 
page 9-8): 
Q PRIORITY MODE = 0 = rotating priority 
Q PRIORITY MODE = 1 = fixed priority 

9.5.1 Fixed Priority Scheme 

This scheme provides a fixed priority (unchanging) for each channel as fol­
lows: 

Highest priority 0 
1 
2 
3 
4 

Lowest priority 5 

To set up this scheme, set the PRIORITY MODE bit (bit 30) of channel O's 
DMA channel control register to 1 (one). 

9.5.2 Rotating Priority Scheme 
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In a rotating priority scheme, the last channel serviced becomes the lowest 
priority channel. The other channels sequentially rotate through the priority 
list with the next lowest channel from the just-serviced channel becoming 
the highest priority on the following request. The priority rotates every time 
the most-recent priority-granted channel completes its access. Figure 9-9 
and. Figure 9-11 illustrate the rotation of priority across several DMA co­
processor accesses. At system reset, the channels are ordered from high­
est to lowest priority (0, 1,2,3,4,5). 

To set up this scheme, set the PRIORITY MODE bit (bit 30) of channel O's 
DMA control register to 0 (zero). 

The DMA coprocessor handles channel arbitration on an access-by-access 
basis; that is, a DMA channel must contend for both the read and the write 
access in unified mode. 
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Figure 9-9. Rotating Priority Mode Example of the DMA Coprocessor 

Service Service Service Service 

Highest priority ch. 0 3 t5 - servicel 0 
1 t4_ servicel 0 1 

t2- servicel t5 1 t2 
3 0 t2 3 I t4 1 3 t4 

! Lowest priority ch. t5 .. t2 • t4 ... t5 Ll t DMA channel requesting an access 

Each service is one read access or write access. See 
Figure 9-10 for an example of a readlwrite seqUence. 

~-~. 

At the start of the example in Figure 9-9, channels 2, 4, and 5 are requesting 
service. Since channel 2 has the highest priority, it is serviced first. It then 
becomes the lowest priority channel. The highest priority channel then be­
comes channel three. On the following services, channels 4 and 5 are taken 
care of in a similar fashion. Each service means one read access or one 
write access. Figure 9-10 shows the entire read and write sequence. 

Figure 9-10. DMA Read and Write Sequence Example 

1 st 2nd 3rd 4th 5th 6th 7th 
Service Service Service Service Service Service Service 

o 3 t5_ DMA 0 3 t5_ DMA 0 1 DMA t4_DMA 0 Rd l1 DMA t4_DMA 0 Wr l1 
t2-- Rd

l 

t5 Rd l 1 t2--W
rl 

t5 Wr l 1 t2 
3 0 t2 3 0 t2 3 

t4 1 3 t4 1 3 t4 
t5 .. t2 .t4 ... t5 .. t2 .t4 ... t5 

t DMAchannel requesting an access 

Another way to visualize the rotation of priorities is shown in Figure 9-11. 
This example shows the same results as in Figure 9-9. It helps to make 
clear the rotating nature ofthe priority scheme. Priority decreases from high­
est to lowest in a clockwise direction. The priority rotates in a counter clock­
wise direction with the most recently serviced channel ending up in the low­
est priority position. 

9-23 



DMA Internal Priority Schemes 

Figure 9-11. Example of a Priority Wheel 

1st 
Highest Service 

2,.d 
Service 

3rd 
Service 

4th 
Service Priority ~ 

Channel '-. --..-------..-------..:~----......... 

'0 "'a '5t '0 

/
5tO 1(20 4t/4 0 0/50 1 
4t 2t 1 5t 3 1 4 2 

Lowest 3 0 2 3 
Priority -'------"'--------'------
Channel 

t DMA channel requesting an access 

With the rotating priority scheme, any DMA channel requesting service is 
guaranteed to be recognized after a number of higher priority requests have 
been serviced. The maximum number of requests are: 
a five in unified mode 
a eleven in split mode 
This provides a fair means of preventing a channel from monopolizing the 
system. 

DMA channels that are running and are not synchronized via interrupts are 
always requesting service. 

9.5.3 Split Mode and DMA Channel Arbitration 
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When a DMA channel is running in split mode, arbitration between channels 
is similar to that just discussed. The split-mode DMA channel has the same 
priority as the unified DMA channel. The only issue is how to arbitrate be­
tween the primary split channel and the auxiliary split channel. Both split 
channels alternate priorities via a rotating priority scheme between each 
other. 

When a DMA channel is in split mode and both paths are simultaneously 
reset via the START and AUX START bits, the output (primary) channel has 
priority over the input (auxiliary) channel. Both the START and AUX START 
bits must be written atthe same time in order to achieve this reset condition. 
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The priority scheme for channels is slightly different than the scheme for 
primary and auxiliary channels within a channel: 
a for channels, priority changes after a read or a write 
a forthe primary and auxiliary channels within a channel, priority changes 

after a complete read and write. 

Figure 9-12 is an example of two channels contending for the DMA bus: 
channel 2 (a split channel) and channel 4. In this case: 
a only channel 2 (Le., not channel 4) is being run in split mode 
a its primary channel is identified as 2pri 
a its auxiliary channel is identified as 2aux 
a the paths requesting service are identified with a t 

In the example described below, channel 4 will do one complete transfer 
(read and write) for each complete transfer of either channel 2pri or 2aux. 

Figure 9-12. Example of a Channel Priority Scheme in Split Mode 

Highest priority channel 

Lowest priority channel 

o 
1 * [t2pri 

t2aux] 
3 
t4 
5 

t DMA channel requesting an access 
:j: Split channels requesting access 
2pri = the primary split channel of channel 2 
2aux = the auxiliary split channel of channel 2 

The channel priority scheme in Figure 9-12 is further shown sequentially 
in Figure 9-13 (on the next page): 

1) The first service is a request by the primary split channel of channel 2 
(2pri). 2pri reads, and then channel 2 is moved to the lowest priority 
level, but 2pri remains the higher priority channel of channel 2. 

2) On the second service, channel 4, now a higher priority than channel 
2, reads its source address. 

3) On the third service, the value read by 2pri is written to its destination 
address, and channel 2 is moved to the lowest priority level. Also, 2pri 
is moved to a lower priority than 2aux, channel 2's auxiliary channel. 
Note that the split channel that just completed a r~ad retains a higher 
priority than the other split channel until the data is written to the destina­
tion address. 
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4) On the fourth service, the value read by channel 4 in service 2 is now 
written to its destination address and the channel becomes the lowest 
priority. 

Figure 9-13. Service Sequence for Split Mode Priority Example 

1st 
Service 

2nd 3rd 
Service Service 

4th 
Service 

o 3 DMA 5 3 DMA 
1 DMA t4 .. RdE 0 t4 --Wt-

*[t2pri -- Rd 1 5 1 DMA 5 
t2aux] 0 *[t2pri _Wt l· 0 

3 1 t2aux] 1 
t4 *[t2pri 3 *[t2aux 
5 t2aux] t4 t2pri] 
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5th 
Service 

6th 
Service 

7th 
Service 

8th 
Service 

9th 
Service 

5 3 DMA 5 3 DMA 5 
o t4 "Rd 0 t4 --Wt~ 0 
1 DMA 5 ~ 1 DMA 5 1 

t2prl] 1 t2pri] 1 t2aux] DMA 
*[t2aUX-Rdl 0 *[t2aUX"WtL 0 *[t2pri-, 

3 *[t2aux 3 *[t2pri 3 Rd 
~ t4 t2prt] t4 t2aux] t4 I 

t DMAchannel requesting an access + 
:t: Split channels requesting access Repeat 
2pri = the primary split channel of channel 2 Sequence 
2aux = the auxiliary split channel of channel 2 

5) In the fifth service, 2aux is read and channel 2 becomes the lowest 
priority. 

6) On the sixth service, channel 4 is read again, and it becomes the lowest 
priority. 

7) On the seventh and eighth services, the 2aux and channel 4 values 
that were read in services 5 and 6 are now written to their destination 
addresses. After the channel is written, it assumes the lowest priority. 

8) In the ninth service, 2pri is read again as in the first service, and the 
read/write cycle continues as begun in the first service. 

DMA Coprocessors and Timers 



CPU and DMA Arbitration 

9.6 CPU and DMA Coprocessor Arbitration 

The DMA coprocessor has its own internal buses for transferring data. Only 
when a resource conflict exists between the DMA coprocessor and the CPU 
is it necessary for arbitration between these two. 

When the CPU and DMA coprocessor arbitrate for memory access, the 
memory address along with the channel's DMA PRI bits (bits 0 and 1 of the 
channel control register) are used in this arbitration scheme. These bits are 
described in Table 9-7 below. Higher priority DMA channels will be serviced 
before lower priority DMA channels whose requested address does not con­
flict with a CPU access or who have higher priority than the CPU. 

The DMA PRI bits of the channel control register (of the DMA channel arbi­
trating with the CPU) define the arbitration rules. These rules apply when­
ever the CPU and the highest priority requesting channel request the same 
resource. Otherwise, the CPU and DMA coprocessor access may proceed 
in parallel. 

All arbitration between the CPU and the DMA coprocessor is on an access 
basis; that is, the DMA coprocessor must contend for the read and the write 
accesses of a DMA transfer in unified mode and split mode. 

Table 9-7. DMA PRI Bits and CPUIDMA Arbitration Rules 

DMAPRI 
(Bits 1-0) 

1 1 

Effect 

DMA access is lower priority than the CPU access. If the DMA channel 
and the CPU are requesting the same resource, then the CPU will pro­
ceed. (DMA PRI bits are set to 002 at reset.) 

If the DMA channel and the CPU are requesting the same resource, 
then the CPU will proceed. Then, after the CPU access is complete, 
if the DMA coprocessor and CPU are again requesting the same re­
source, the DMA coprocessor will proceed. This priority rule provides 
a fair arbitration scheme by alternating CPU accesses with a DMA 
channel's access. 

Reserved 

DMA access is higher priority than the CPU access. If the DMA chan­
nel and the CPU are requesting the same resource, the DMA will pro­
ceed. 
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9.7 Data Transfer Modes 
Each DMA channel can operate in fourtypes of data transfer modes. These 
modes differ on: 
Q whether or not they use autoinitialization 
Q how they operate if autoinitialization is in effect or not. 

Table 9-8 and the following paragraphs describe these data transfers. 

Table 9-8. TRANSFER MODE Field Description Summary 

TRANSFER 
MODE 

Transfer Mode Summary 
Sub-

(8It83-2 section 
and 5-4) 

Transfers are not terminated by the transfer counter. No 
autoinitialization is performed. The TCINT (transfer count inter-

002 rupt) bits can still be used to cause an interrupt when the transfer 9.7.1 
counter makes a transition to zero. The DMA channel continues to 
run. 

Transfers are terminated by the transfer counter. No autoinitializa-

012 
tion is performed. A half code of 102 is placed in the START field 
(bits 22-23 and bits 24--25 of the DMA channel control register 
when transfers are complete). 

102 
Autoinitialization is performed when the transfer counter goes to 9.7.3 zero without waiting for CPU intervention. 

The DMA channel is autoinitialized when the CPU restarts the 
DMA coprocessor by using the DMA channel control register in 

1 12 
the CPU. When the transfer counter goes to zero, operation is 9.7.4 halted until the CPU starts the DMA coprocessor by using the 
START field in the DMA channel control register. A halt code of 
102 is placed in the START field by the DMA. 

9.7.1 Running Under TRANSFER MODE = 002 

When TRANSFER MODE = 002, transfers are not terminated when the 
transfer counter goes to zero, and no autoinitialization is performed. Even 
though the transfer counter does not halt transfers, an interrupt can be gen­
erated on the transfer counter transition to zero, causing TCINT FLAG bit 
= 1. If the DMA coprocessor channel is not halted after the transfer reaches 
zero, the counter will continue decrementing below zero. 

9.7.2 Running Under TRANSFER MODE = 01 2 
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When TRANSFER MODE = 012, transfers are terminated when the transfer 
counter goes to zero, and no autoinitialization is performed. When the 
transfer counter goes to zero, the DMA channel is halted by forcing 102 into 
the START or AUX START field. 
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9.7.3 Running Under TRANSFER MODE = 102 

This transfer mode allows the DMA channel to take care of itself. It can run 
continuously, change pointers and synchronization by the autoinitialization 
procedure, and turn itself off. 

This mode always starts with the DMA channel reset (START or AUX 
START a 002) or halted (these bits 012 or 102) and the transfer counter at 
O. This occurs after a system reset, after the DMA channel is software reset 
(002 written to the START or AUX START bits), or after the channel is halted 
(012 or 102 written to these bits). The process for setting up and running 
a DMA channel under transfer mode 102 is summarized in Figure 9-14. 
1) After placing the DMA channel in the reset or halted state and the trans­

fer counter at 0, initialize the channel for the desired operation. In this 
case, set the transfer mode bits to 1 02~ Since the DMA channel autoin­
itializes itself when started under this mode, the CPU needs only to ini­
tialize the DMA channel control register and the DMA channel link point­
er. The other DMA channel registers are automatically set up by the au­
toinitialization process. Synchronization of reads and writes is allowed. 

2) After initializing the DMA channel, the channel can be started by writing 
112 to the START or AUX START bits. 

3) After this, the DMA channel will perform the sequence: autoinitialize 
and do a block transfer. 

Figure 9-14. Running a DMA Channel Under Transfer Mode 1 ~ 
rH.w"hW'Vh"W., .. ~., ..... .w~V.wh'_HhWH'W""'WH"'.w ... W'W.·.·.·.w.w ... ·.,·.'w.~·_.w~~hw._V#.'WhW.=.·.·.·.w.y.w.w.wM .••. ' .. w.w."t 

·PMAisres~id(h@lt~4~n~~~h~f~rCount ""0 i 

is>..QPui~iti~lIi~~s~tv1Alink> ...•.• ·····••···· ' . . ........ ...... '. ··p()int~randcqhJt~II'~gistei: •... ' 

:,·:.·· ... · ... i·· .. · ....• · ... ·.·OMAqqprQC~~i9r •• ~ttdi;,i~(llit~$.··· ••.• •· •. •.·•· ..•• ···•· ••. 

9-29 



Data Transfer Modes 

9.7.4 Running Under TRANSFER MODE = 112 
This transfer mode, besides having all of the advantages of autoinitializa­
tion, allows the CPU to very easily coordinate its operation with the opera­
tion of the DMA channels. 
Like transfer mode (see subsection 9.7.3), this mode always starts outwith 
the DMA channel reset or halted and the transfer count = O. This occurs after 
a system reset, after the DMA channel is reset by writing 002 to the START 
or AUX START bits in the OMA channel control register, or after the channel 
is halted by writing 012 or 102 to these bits. The process for setting up and 
running a DMA channel under transfer mode 112 is summarized in 
Figure 9-15. 
1) After placing the DMA channel in the halted or reset state and the trans­

fer counter = 0, initialize the channel for the desired mode of operation. 
In this case, set the TRANSFER MODE bits to 112. Since the DMA 
channel autoinitializes itself when started under this mode, the CPU 
needs to initialize only the DMA channel control register and the DMA 
channel link pointers. The other DMA channel registers are set up by the 
autoinitialization procedure. 

2) After initializing the DMA channel, the channel can be started by writing 
112 to the START bits. 

3) Then, the DMA channel autoinitializes itself and does a block transfer. 
4) When the transfer counter goes to zero, wait for the CPU to write a 112 

to the START field of the DMA channel control register. 
5) Then repeat the sequence autoinitialize, transfer, and wait. 
6) When the transfer count goes to zero, the DMA channel can be halted 

by forcing 102 into the START or AUX START field. 
Figure 9-15. Running a DMA Channel Under Transfer Mode 112 
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9.8 Autoinitialization 
When the DMAchannel is operating in autoinitialization mode, the link point­
er register and auxiliary link pointer register are used to initialize the regis­
ters that control the operation of the DMA channel. These pointers are me­
mory-address locations for blocks of data that are to be loaded into the DMA 
register file, as shown in Figure 9-1 and Figure 9-2, beginning on page 
9-4. 

How this autoinitialization is done depends upon the current mode of opera­
tion of the DMA channel and the mode to which it is being autoinitialized. 
In all cases, either the link pointer or auxiliary link pointer (used in DMA split 
channel mode) contains the address of a block of memory that contains the 
new DMA channel register values (registers shown in Figure 9-1 on page 
9-4). 

During autoinitialization, the link pointer may be incremented (AUTO INIT 
STATIC = O) or held constant (AUTO INIT STATIC = 1 ) .. (This is bit 8 or 9 
of the channel control register, Figure 9-3 on page 9-8.) 

(J When the link pointer is incremented, the autoinitialization values are 
stored in sequential memory locations, and the link pointer or auxiliary 
link pointer is incremented in order to access each of these locations. 

(J Holding the linking pointer constant is very useful when autoinitializing 
the DMA channel from a stream-oriented device such as the on-chip 
communication ports or external FIFOs. 

The SPLIT MODE bit (bit 14 in Figure 9-3 on page 9-8) defines the mode 
under which the DMA channel is currently running. When autoinitializing the 
DMA coprocessor, do not change the SPLIT MODE bit. This bit should be 
changed only when the DMA coprocessor has been reset and halted (see 
DMA START bit description, Table 9-5 on page 9-15). 

Autoinitialization is a DMA operation to the DMA coprocessor's registers; 
i.e., it reads the value pointed to by the link pointer and writes the value to 
the DMA register over the peripheral bus on the next available cycle. 
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If the DMA channel is performing memory-to-memory transfers 
(SPLIT MODE = 0), the link pointer is used. The DMA channel registers are 
loaded in the following order: 
1) DMA channel control register 
2) Source address register 
3) Source address index register 
4) Transfer count register 
5) Destination address register 
6) Destination address index register 
7) Link pointer register 

The storage of new values for these registers in memory is illustrated in 
Figure 9-16. 

Figure 9-16. Store New Values of DMA Channel Registers in Memory (SPLIT MODE = 0) 

Map of New Register Values in Memory 

9-32 

Link Pointer (+0) --DMAChahl1~r~Htrb(Reg. 
+ 1 Source Address 

+2 ·(S()LJrceAddre§~frid~~.t ...... . 

+3 Transfer Count 

+4 ·•····•···• .• • •• De~tlnatiOhAci~f~~~\(. . 

+5 Destination Address Index 

+6 

If the DMA channel is running in split mode (SPLIT MODE = 1), then the 
autoinitialize sequence depends upon which counter has terminated. 

If the transfer-count register has gone to zero with SPLIT MODE=1, 
then the link-pointer register is used for autoinitialization. In this case, the 
DMA channel registers are loaded in the following order: 
1) DMA channel control register 
2) Source address register 
3) Source address index register 
4) Transfer count register 
5) Link pointer register 

The storage of the new values for these registers in memory is illustrated 
in Figure 9-17. 
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Figure 9-17. Store New Values of DMA Channel Registers in Memory (SPLIT MODE = 1) 
Map of New Register Values in Memory 

Link Pointer (+0)­
~= .... 

+1 

+2 

+3 

+4 

If the auxiliary counter has gone to zero with SPLIT MODE=1, then the 
auxiliary link pointer register is used for autoinitialization. In this case; the 
DMA channel registers are loaded in the following order: 
1) DMA channel control register 
2) Destination address register 
3) Destination address index register 
4) Auxiliary transfer count register 
5) Auxiliary link pointer register 

The storage of the new values of these registers in memory is illustrated in 
Figure 9-18. 

Figure 9-18. Store New Values of DMA Channel Registers in Memory (SPLIT MODE = 1 and Auxiliary 
Transfer Counter = 0) 

Map of New Register Values in Memory 

Auxiliary Link Pointer (+0) -.PM~g~~HD~~9brlti()IR~~,[ 
+ 1 Destination Address 

+2 

+3 

+4 
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Usually, autoinitialization data will be stored in memory. In this case, syn­
chronization for autoinitialization is not generally necessary. To disable the 
synchronization of data reads during autoinitialization, set AUTOINIT 
SYNCH (bits 10 and 11, DMA channel control register) to O. In some cases, 
you may wish to transfer autoinitialization data in the same way as the syn­
chronized data reads and writes. To synchronize autoinitialization based 
upon the interrupt identified with the READ SYNCH and WRITE SYNC 
fields (DIE register, page 3-8), set both the AUTOINIT SYNCH and AUX 
AUTOINIT SYNCH (bits 10-11 of DMA channel control register) to 1. In this 
w8:Y, autoinitialization will be synchronized only with the SYNCH MODE in 
effect. 

The data reads for autoinitialization are arbitrated for by the DMA channels 
just like a typical DMA access. The only difference is that their synchroniza­
tion is controlled by AUTOINIT SYNCH. A summary of the autoinitialization 
effect of the SYNC MODE and AUTOINIT SYNC bits is listed in Table 9-9 
on page 9-37. This table pertains to autoinitialization only. 

In unified mode, all of the writable control register bits are affected by 
autoinitialization. These bits are labeled in Figure 9-19. 

In split mode during autoinitialization of the primary DMA channel, the 
writable, nonauxiliary bits may be modified, but auxiliary bits are protected 
(these bits are in Figure 9-20). In other words, only nonauxiliary bits are al­
lowed to be modified by the CPU or DMA coprocessor. Also, if the auxiliary 
DMA channel is autoinitialized, the writable auxiliary bits may be modified, 
but nonauxiliary bits are protected. These bits are labeled in Figure 9-21. 

In all autoinitialization modes, the shadowed bits (Figure 9-19) that are 
writable (W-designated bits in Figure 9-3) do not have an affect until 
autoinitialization is complete. Unshadowed bits affect the autoinitialization 
sequence. In other words, at autoinitialization, shadowed bit values will be 
entered last after all registers are loaded (as specified by the link pointer). 

Regardless of whether the DMA channel is running in unified mode or split 
mode, writes by the CPU or another external source to the DMA channel 
control register affect all writable bits. .. 
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Figure 9-19. DMA Channel Control Register Bits That Can Be Modified by Autoinitialization Under 
Unified Mode 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 

17 16 15 14 13 12 11 10 

COM PORTS 

s s s s s 

9 8 7 6 5 4 3 2 1 

s s s s s s s s s 

s - These shadowed bits do not take affect until autoinitialization is complete. 

Figure 9-20. DMA Channel Control Register Bits That Can Be Modified by Autoinitialization of the 

31 

Primary Channel Under Split Mode 

30 29 28 27 26 25 24 23 22 21 20 19 

xx xx 

RIW RIW 

17 16 15 14 13 12 11 

xx xx xx 

9 8 7 6 5 4 3 2 

s s s s s 

s - These shadowed bits do not take affect until autoinitialization is complete. 
xx - Write protected during primary channel autoinitialization. 

18 

10 

o 

s 

o 

s 
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Figure 9-21. DMA Channel Control Register Bits That Can Be Modified by Autoinitialization of the 
Auxiliary Channel Under Split Mode 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 

17 16 15 14 13 12 11 10 

COM PORT 

RIW RIW RIW s s s 

9 8 7 6 5 4 3 2 

s - These shadowed bits do not take affect until autoinitialization is complete. 
xx - Write protected during primary channel autoinitialization. 

o 
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Autoinitialization synchronization is a function of 
a the SYNC MODE bits (DMA channel control register bits 6 and 7) that 

control synchronization of data transfers, and 
a the AUTOINIT SYNC bits (DMA channel control register bits 10 and 11) 

that affect only autoinitialization synchronization. 

If the SYNC MODE bits are not set to synchronize data transfers (Le., if the 
preceding data transfer is not synchronized on interrupts), then the DMA 
channel autoinitialization sequence will not be synchronized either. If the 
SYNCH MODE bits are set to transfer data synchronously (Le., if the pre­
ceding data transfer is synchronized), then the upcoming data channel au­
toinitialization sequence may be synchronized on either reads or writes or 
both (depeAding on whether the DMA coprocessor is in unified or split 
mode) as shown in Table 9-9. Note that for all combinations of the SYNCH 
MODE and AUTOINIT SYNC bits not shaded in the table, the DMA channel 
autoinitialization sequence is not synchronized on interrupts. 

Table 9-9. Effect of SYNC MODE and AUTOINIT MODE bits in Autoinitialization 

These Bits of the DMA Channel Cause Autoinitialization 
Control Register Synchronization To Occur On 

Bit Nos: Bit Nos: 
Unified Mode Split Mode 7-6 11-10 

0 0 0 0 no sync no sync 

0 0 0 no sync no sync 

0 0 0 no sync no sync 

0 0 1 1 no sync no sync 

0 0 0 no sync no sync 
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9.8.1 Fun With Link Pointers 

For many applications, it is sufficient to autoinitialize the DMA channel with 
the same data each time. In this case, the new link-pointer value points to 
the start of the same block of data containing the new link pointer as illus­
trated in Figure 9-22. This particular example assumes a DMA channel that 
is not running in split mode.· . 

If you want, you can get fancier. The new link pointer may point to a new set 
of register values as illustrated in Figure 9-23. This may be continued to any 
level you like. Have fun! 

Figure 9-22. Self-Referential link Pointer 

Link Pointer--.....-- .~ii~iiw 
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Figure 9-23. Referring to a New Link Pointer 

Map of New Register Values in Memory 

Link Pointer---.... DMACh~h~~lddrif;bff:te6. 
+1 Source Address 

+2 

+3 Transfer Count 

+4 
..: .. '. . .. >.,." '. 

Destination Adgres$ : .,: ...... . 

+5 Destination Address Index 

+6UnkPointer i :/ 

+1 Source Address 

+2 
: .,.,:::.. ../.<>.·i· .. :.... ...... : 

..SourceAddress Index 

+3 Transfer Count 

+4 .:::.... DestinationAddress· 

+5 Destination Address Index 

Autoinitialization 

---
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All of the interrupts that the DMA coprocessor can see are first received by 
the CPU interrupt controller. If these interrupts are edge triggered, they are 
latched by the CPU in the appropriate interrupt-flag register. The edge-trIg­
gered interrupts are timer interrupts, DMA interrupts, and external inter­
rupts that are configured as edge-triggered interrupts. Detailed information 
on interrupts is provided in Section 6.7 on page 6-23. 

For edge-triggered interrupts, when the interrupt controller determines 
that the interrupt a DMA channel is waiting on has been latched into the in­
terrupt flag, the CPU clears the interrupt flag and sends an interrupt pulse 
to the DMA channel. The DMA channel latches the interrupt locally until it 
can service the interrupt. At that time, the latched interrupt is cleared by the 
DMA coprocessor for two cycles. 

Level-triggered interrupts that are generated by the communication ports 
and external interrupts that are configured as level-triggered interrupts are 
handled differently by the CPU interrupt controller. For level-triggered inter­
rupts when the interrupt controller determines that the interrupt a DMA 
channel is waiting on has been received (recall that level-triggered inter­
rupts are not latched by the CPU interrupt-controller), the CPU sends an in­
terrupt pulse to the DMA channel. The DMA channel latches the interrupt 
locally until it can service the interrupt. At that time, the locally latched inter­
rupt is cleared by the DMA coprocessor for two cycles. 

The interrupt reset signal generated by the DMA coprocessor after a DMA 
interrupt is serviced has a higher priority over the interrupt set signal. Thus, 
the interrupt signal won't be continuously set even if the CPU is continuously 
sending the interrupt set signal. Hence, when the DMA-set priority scheme 
is used and a higher priority DMA channel is driven by continuous interrupt 
signals, the lower priority DMA channel can be serviced in between the high­
er priority DMA services. 

The internal circuitry of the TMS320C40 guarantees proper operation be­
tween a communication port that generates level-triggered interrupts and 
the DMA channel that is synchronizing with those level-triggered interrupts. 
However, when you synchronize the DMA channels with external interrupts, 
it is better that these interrupt lines be configured as edge-triggered inter­
rupts to ensure that only one interrupt is recognized. 

Subsection 9.9.1 describes using interrupts to synchronize the DMA 
coprocessor. The interrupt mode for each channel is first selected in the 
DMA interrupt enable register, described with the CPU registers in subsec­
tion 3.1.8 on page 3-8. 
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9.9.1 Interrupts and Synchronization of DMA Channels 

DMA channel transfers may be synchronized through the use of interrupts. 
The interrupt used is first selected by using the DMA interrupt enable regis­
ter (subsection 3.1.8 on page 3-8). 

Table 9-5 (page 9-15) describes the relationship between the SYNC MODE 
bits of the DMA channel control register and the four synchronization mech­
anisms performed: 
a No synchronization (SYNC MODE = 0 02) 
a Source synchronization (SYNC MODE = 0 12) 
a Destination synchronization (SYNC MODE = 1 02) 
Cl Source and destination synchronization (SYNC MODE = 112) 

If the DMA split mode is selected, bits 6 and 7 of the DMA channel control 
register (page 9-15) are used to control channel synchronization: 
Cl bit 6 controls primary channel synchronization 
Cl bit 7 controls auxiliary channel synchronization 

No Synchronization (SYNC MODE = 0 02) 

When SYNC MODE = 0 02, no synchronization is performed. The DMA per­
forms reads and writes whenever it has the priority to use the DMA bus. 
All interrupts are ignored and, therefore, are considered to be globally 
disabled. However, no bits in the DMA interrupt enable register are 
changed. Figure 9--24 shows the synchronization mechanism when SYNC 
MODE = 002' 

If an external interrupt is used for DMA interrupt synchronization, the exter­
nal pin must be configured as a DMA interrupt pin (the DMA interrupt enable 
register is explained in subsection 3.1.8 on page 3-8 ). 

Figure 9-24. No DMA Synchronization 

I Go to start I 
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Source Synchronization (SYNC MODE = 0 12) 

When SYNC MODE = 0 12, the DMA coprocessor is synchronized to the 
source (see Figure 9-25). A read will not be performed until an interrupt is 
received by the DMA coprocessor (this also applies to the DMA primary 
channel in split mode as shown in Figure 9-25). Then, all DMA interrupts 
are disabled globally. However, no bits in the DMA Interrupt enable register 
are changed. 

Figure 9-25. DMA Source Synchronization 

(a) DMA channel in unified mode 

Start 

I Idle until enabled interrupt is received I 

I Disable DMA interrupts globally I 

I DMA channel performs a read I 

I DMA channel performs a write I 

I Enable DMA interrupts globally I 

I Go to start I 
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(b) Primary channel in split mode 

Write data to communication port 
output FIFO 

I Go to start I 
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Destination Synchronization (SYNC MODE = 1 02) 

When SYNC MODE = 1 02, the DMA coprocessor is synchronized to the 
destination in unified mode. First, all interrupts are ignored until the read is 
complete. (Though the DMA interrupts are considered to be globally dis­
abled, no bits in the DMA interrupt enable register are changed.) A write will 
not be performed until an interrupt is received by the DMA coprocessor. 
Figure 9-26 shows the synchronization mechanism when SYNC MODE = 
1 02 in unified mode. 

For the auxiliary channel in split mode, synchronization is similar to primary 
channel synchronization. The exception is that for the primary channel, the 
data is read from memory and written to a communication port,output FIFO 
(shown on the right side of Figure 9-26). The auxiliary channel can read 
from a communication channel and write data to a memory address. 

Figure 9-26. DMA Destination Synchronization 

(a) Unified mode (b) Auxiliary channel in split mode 

T 
I DMA interrupts are disabled globally I 

I DMA channel performs a read I 

L DMA interrupts are enabled globally I 

I Idle until enabled interrupt is received I 

I Disable DMA interrupts globally I 

I DMA channel performs a write I 

I Go to start I 

I Start I 
I 

Idle until enabled interrupt is received 

Disable DMA interrupts globally 

Read data from 
communication port FIFO 

DMA channel performs a write 

Enable DMA interrupts globally 
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Source and Destination Synchronization (SYNC MODE = 112) 

When SYNC MODE = 1 12, a read is performed when a read interrupt is re­
ceived, and a write is performed on the write interrupt. If a write interrupt is 
received before a read interrupt, the write interrupt is latched and the DMA 
data write won't be executed until the read is completed. If DMA split mode 
is selected, it reacts as two independent synchronizations for the primary 
and auxiliary channels. Source and destination synchronization when 
SYNC MODE = 112 is shown in Figure 9-27. 

Figure 9-27. DMA Source and Destination Synchronization 

T 
1 Idle until enabled interrupt is received I 

1 Disable DMA interrupts globally 1 

1 DMA channel performs a read 1 

I Enable DMA interrupts globally J 

1 Idle until enabled interrupt is received ·1 

1 Disable DMA interrupts globally J 

1 DMA channel performs a write 1 

1 Enable DMA interrupts globally 1 

1 Go to start 1 
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9.10 TMS320C40 Timers 

The TMS320C40 timer modules are general-purpose, 32-bit, timer/event 
counters, with two signaling modes and internal or external clocking (see 
Figure 9-28). The timer modules can be used to signal to the TMS320C40 
or to the external world at specified intervals, or to count external events. 
With an internal clock, the timer can be used to signal an external ND con­
verter to start a conversion, or it can interrupt the TMS320C40 DMA control­
ler to begin a data transfer. With an external clock, the tim.er can count ex­
ternal events and interrupt the CPU after a specified number of events. 
Available to each timer is an I/O pin that can be used as an input clock to 
the timer, an output clock signal, or a general-purpose I/O pin. 

Figure 9-28. Timer Block Diagram 

Period Register (31-0) 

32 

Comparator 
Period = Counter? 

Pulse Generator 

Counter (32-bit) 

Counter Register 
(31-0) 

INV 
-----I~TSTAT 

Timer Out 

Three memory-mapped registers are used by each timer: 

a Global-control register 

a Period register 

a Counter register 
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The timer global-control register determines the operating mode of the 
timer, monitors the timer status, and controls the function of the I/O pin of 
the timer. The period register specifies the timer's signaling frequency. The 
timer counter register contains the current value of the incrementing 
counter. The timer can be incremented on the rising edge orthe falling edge 
of the input clock. The counter is zeroed whenever its value equals that in 
the period register. The pulse generator generates two types of external 
clock signals: pulse or clock. The memory map for the timer modules is 
shown in Figure 9-29. 

Figure 9-29. Memory-Mapped Timer Locations 

Register Peripheral Address 

Timer 0 Timer 1 

Timer Global Control (See Table 9-10) 808020h 808030h 

Reserved 808021h 808031h 

Reserved 808022h 808032h 

Reserved 808023h 808033h 

Timer Counter (See subsection 9.1 0.2) 808024h 808034h 

Reserved 808025h 808035h 

Reserved 808026h 808036h 

Reserved 808027h 808037h 

Timer Period (See subsection 9.10.2) 808028h 808038h 

Reserved 808029h 808039h 

Reserved 80802Ah 80803Ah 

Reserved 80802Bh 80803Bh 

Reserved 80802Ch 80803Ch 

Reserved 80802Dh 80803Dh 

Reserved 80802Eh 80803Eh 

Reserved 80802Fh 80803Fh 
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9.10.1 Timer Global-Control Register 

The timer global control register is a 32-bit register that contains the global 
and port control bits for the timer module. Table 9-10 defines the register 
bits, names, and functions. Bits 3 - 0 are the port control bits; bits 
11 - 6 are the timer global control bits. Figure 9-30 shows the 32-bit regis­
ter. Note that at reset, all bits are set to 0 except for DATIN (set to the value 
read on TCLK). 

Figure 9-30. Timer Global-Control Register 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

xx xx I xx I xx 

NOTE: xx = reserved bit, read as O. 
R = read, W = write. 
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Table 9-10. Timer Global-Control Register Bits Summary 

Bits Name Function 

FUNC controls the function of TCLK. If FUNC = 0, TCLK is configured as a general-
0 FUNC purpose digital I/O port. If FUNC = 1, TCLK is configured as a timer pin (see 

Figure 9-33 for a description of the relationship between FUNC and CLKSRC). 

1 Tlo 
If FUNC = Q and CLKSRC = 0, TCLK is configured as a general-purpo.se I/O pin. In 
this case, if I/O = 0, TCLK is configured as a general-purpose input pin. If I/O = 1 , TCLK 
is configured as a general-purpose output pin. 

2 DATOUT 
DATOUT drives TCLK when the TMS320C40 is in I/O port mode. DATOUT can also 
be used as an input to the timer. 

3 DATIN Data input on TCLK or DATOUT. A write has no effect. 

4-5 Reserved Read as O. 

The GO bit resets and starts the timer counter. When GO = 1 and the timer is not held, 

6 GO 
the counter is zeroed and begins. incrementing on the next rising edge ofthe timer input 
clock. The GO bit is cleared on the same rising edge. GO = 0 has no effect on the timer. 
Table 9-11 further defines these bits. 

Counter hold signal. When this bit is zero, the counter is disabled and held in its current 
state.lfthe timer is driving TCLK, the state ofTCLK is also held. The internal divide-by-

7 HLD two counter is also held so that the counter can continue where it left off when HLD 
is set to 1. The timer registers can be read and modified while the timer is being held. 
RESET has priority over HLD. Table 9-11 shows the effect of writing to GO and HLD. 

Clock/pulse mode control. When C/P = 1 , clock mode is chosen, and the signa!Lng of 

8 C/p the status flag and external output will have a 50 percent duty cycle. When C/P = 0, 
the status flag and external output will be active for one H1 cycle during each timer 
period (see Figure 9-31). 

Specifies the source of the timer clock. When CLKSRC = 1 , an internal clock with fre-
quency equal to one-half the H1 frequency is used to increment the counter. The INV 
bit has no effect on the internal clock source. When CLKSRC = 0, an external signal 

9 CLKSRC 
from the TCLK pin can be used to increment the counter. The external clock is synchro-
nized internally, thus allowing external asynchronous clock sources that do not exceed 
the specified maximum allowable external clock frequency. This will be less than 
f(H1 )/2. (See Figure 9-33 for a description of the relationship between FUNC and 
CLKSRC). 

Inverter control bit. If an external clock source is used and INV = 1, the external clock 
is inverted as it goes into the counter. If the output of the pulse generator is routed to 

10 INV TCLK and INV = 1, the output is inverted before it goes to TCLK (see Figure 9-28.). 
If INV = 0, no inversion is performed on the input or output of the timer. The INV bit 
has no effect, regardless of its value, when TCLK is used in I/O port mode. 

11 TSTAT 
This bit indicates the status of the timer. It tracks the output of the uninverted TCLK 
pin. This flag sets a CPU interrupt on a transition from 0 to 1 . A write has no effect. 

12 -31 Reserved Read as O. 
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Table 9-11 shows the result of a write using specified values of the GO and 
HLD bits in the timer global control register. 

Table 9-11. Result of a Write of Specified Values of GO and HLD 

GO HLD 
Result (Bit 6) (Bit 7) 

0 0 All timer operations are held. No reset is performed. 

0 1 limer proceeds from state before write. 

1 0 
All timer operations are held, including zeroing of the counter. The GO 
bit is not cleared until the timer is taken out of hold. 

1 1 Timer resets and starts. 
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9.10.2 Timer Period and Counter Registers 

The 32-bit timer period register is used to specify the frequency of the timer. 
signaling. The timer counter register is a 32-bit register that is reset to zero 
whenever it increments to the value of the period register. Both registers are 
set to 0 at reset. The locations of the registers are shown in Figure 9-29 
on page 9-46. 

Certain boundary conditions affect timer operation, such as a zero in the 
period register and an overflow of the counter. These conditions are listed 
as follows: 

o When the period and counter registers are zero, the operation of the 
timer is dependent upon the C/p mode selected. In pulse mode 
(cjp = 0), TSTAT is set and remains set. In clock mode (C/p = 1), the 
width of the cycle is 2/f(H 1), and the external clocks are ignored. 

o When the counter register is not 0 and the period register = 0, the count­
er will count, roll over to 0, and then behave as described immediately 
above (for both period and counter registers being zero). 

o When the counter register is set to a value greater than the period 
register, the counter may overflow when being incremented. Once the 
counter reaches its maximum 32-bit value (OFFFF FFFFh), it simply 
clocks over to 0 and continues. 

Writes from the peripheral bus override register updates from the counter 
and new status updates to the control register. 

9.10.3 Timer Pulse Generation 

9-50 

The timer pulse generator (see Figure 9-28) can generate several different 
external signals. These signals may be inverted with the INV bit. The two 
basic modes are pulse mode and clock mode, as shown in Figure 9-31. In 
both modes, an internal clock source has a frequency of f(H1 )/2, and an 
external clock source has a maximum frequency of less than f(H1 )/2. Refer 
to timer timing in Chapter 14.ln pulse mode (cjp = 0), the width of the pulse 
is 1/f(H1). 
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Figure 9-31. Timer Timing 

14 .. I 21f(H1) 
--.j 14 1/f(H1) 

1 1 , , 

!ooI14t-----I .. ~l-1/f(CLKSRC) I 
1 ... 4t-----------.... ~~1- period register/f(CLKSRC) 

(a) TSTAT and Timer Output (INV = 0) When cip = 0 (Pulse Mode) 

I.. -I 1/f(CLKSRC) 
I.. ~I 1 21f(H1) 
1 I 1 , 

J 
., t--------Ir 

, I 

!ooI14..-----------I_~li-- period register/f(CLKSRC) I 
"'"1 ... ..------ 2 x period register/f(CLKSRC) ~I 

(b) TSTAT and Timer Output (INV = 0) When cip = 1 (Clock Mode) 

The rate of timer signaling is determined by the frequency of the timer input 
clock and the period register. The following equations are valid with either 
an internal or an external timer clock: 

f(pulse mode) = f(timer clock) / period register 

f(clock mode) = f(timer clock) / (2 x period register) 
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9.10.4 Timer Operation Modes 

o The timer can receive its input and send its output in several different 
modes, depending upon the setting of CLKSRC, FUNC, and TlO. The 
four timer modes of operation are defined as follows: 

o If CLKSRC = 1 and FUNC = 0, the timer input comes from the internal 
clock. The internal clock is not affected by the INV bit (bit 10 as shown 
in Figure 9-30 on page 9-47). In this mode, TCLK is connected to the 
I/O port control and can be used as a general-purpose I/O pin (see 
Figure 9-32). If Tlo = 0, TCLK is configured as a general-purpose input 
pin whose state can be read in DATIN. DATOUT has no effect on TCLK 
or DATIN. If T/o = 1, TCLK is configured as a general-purpose output 
pin. DATOUT is placed on TCLK and can be read in DATIN. 

Figure 9-32. Timer 110 Port Configurations 

9-52 

Internal 

DATOUT(NC) -----0 ~ 

DATIN 
1/0 = 0 

(a) 

Internal 

I 
I External 
I 
I 

.. I TCLK 

I 

External 

DATOUT --I~--.l---~-r-i - TCLK 

DATIN 
1/0 = 1 

(b) 
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a If CLKSRC = 1 and FUNC = 1, the timer input comes from the internal 
clock, and the timer output goes to TCLK. This value may be inverted 
by using INV, and the value output on TCLK can be read in DATIN. 

Q If CLKSRC = ° and FUNC = 0, the timer is driven according to the status 
of the TIO bit. IfTIO = 0, the timer input comes from TCLK. This value can 
be inverted by using INV, and the value of TCLK can be read in DATIN. 
If 1/0 = 1 , TCLK is an output pin. Then, TCLK and the timer are both driv­
en by DATOUT. All O-to-1 transitions of DATOUT incrementthe counter. 
INV has no effect on DATOUT. The value of DATOUT can be read in 
DATIN. 

a If CLKSRC = ° and FUNC = 1, TCLK drives the timer. If INV = 0, all O-to-1 
transitions of TCLK increment the counter. If INV = 1, aIl1-to-O transi­
tions of TCLK increment the counter. The value of TCLK can be read 
in DATIN. 

Figure 9-33 shows the four timer modes of operation. 

Figure 9-33. Timer Modes as Defined by CLKSRC and FUNC 

Timer 

Timer 

TSTAT 

Internal I External 
I 
I 
I TCLK 
I 
I 

(a) 

Internal I External 

1--... - ...... +1 ~ TCLK 

I 

(c) 

Internal I External 
Timer I 
Timer In I 

I 
Timer Out I-+-.---HI ~ TCLK 

I 
TSTAT DATIN 

CLKSRC = 1 (Internal) 
FUNC = 1 (Timer Pin) 

(b) 

Timer Internal I External 

~1-4----;..11- TCLK 

TSTAT 

I 

DATIN 

CLKSRC = 0 (External) 
FUNC = 1 (Timer Pin) 

(d) 
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Two characteristics of th~ TMS320C40 that contribute to its high perform­
ance are pipelining and concurrent 110 and CPU operation. 

Five functional units control TMS320C40 operation: fetch, decode, read, ex­
ecute, and DMA. Pipelining is the overlapping or parallel operations of the 
fetch, decode, read, and execute levels of a basic instruction. 

By performing input/output operations, the DMA coprocessor reduces the 
need for the CPU to do so, thereby decreasing pipeline interference and en­
hancing the CPU's computational throughput. 

Major topics discussed in this chapter are as follows: 

Section Page 

10.1 Pipeline Structure .................................... 10-2 

10.2 Pipeline Conflicts .................................... 10-4 

• Branch Conflicts ................................ 10-4 

• Register Conflicts ............................... 10-8 

• Memory Conflicts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1 0-11 

10.3 Resolving Memory Conflicts ........................... 10-18 

10.4 Clocking of Memory Accesses ......................... 10-20 

• Program Fetches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1 0-20 

• Data Loads and Stores. . . . . . . . . . . . . . . . . . . . . . . . . .. 10-21 
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10.1 Pipeline Structure 

10-2 

The five major units of the TMS320C40 pipeline structure and their functions 
are as follows: 

Fetch Unit (F) Fetches the instruction words from 
memory and updates the program counter 
(PC). 

Decode Unit (D) Decodes the instruction word and performs 
address generation. Also controls any 
modification of the auxiliary registers and 
the stack pointer. 

Read Unit (R) If required, reads the operands from 
memory. 

Execute Unit (E) If required, reads the operands from the 
register file, performs the necessary opera­
tion, and writes results to the register file. If 
required, results of previous operations are 
written to memory. 

DMA Coprocessor (DMA) Reads and writes memory. 

A basic instruction has four levels: fetch, decode, read, and execute. 
Figure 10-1 illustrates these four levels of the pipeline structure. The levels 
are indexed according to instruction and execution cycle. The perfect over­
lap in the pipeline, where all four units operate in parallel, occurs at cycle 
(m). Those levels aboutto be executed are at m + 1, and those just executed 
are at m-1. The TMS320C40 pipeline control allows a high-speed execu­
tion rate of one execution per cycle. It also manages pipeline conflicts so that 
they are transparent to the user. You do not need to take any special precau­
tions to guarantee correct operation. 
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Figure 10-1. TMS320C40 Pipeline Structure 

CYCLE F 0 R E I 
m-3 w 

m-2 x w 

m-1 y x w 

m z y x W -4-- Perfect overlap 

m+1 z y x 

m+2 z y 

m+3 z 

Notes: 1) W, X, V, and Z represent instructions. 
2) F, D, R, E = fetch, decode, read, and execute, respectively. 

Priorities from highest to lowest have been assigned to each of the function­
al units as follows: 

a DMA (if configured as highest priority) 

a Execute 

a Read 

Q Decode 

Q Fetch 

a DMA (if configured as lowest priority). 

When the processing of an instruction is ready to pass to the next higher 
pipeline level, but that level is not ready to accept a new input, a pipeline con­
flict occurs. In this case, the lower priority unit waits until the higher priority 
unit completes its currently executing function. 
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10.2" Pipeline Conflicts 

The pipeline conflicts of the TMS320C40 can be grouped into the following 
main categories: 

Branch Conflicts Involve most of those instructions or operations 
that read and/or modify the PC. 

Register Conflicts 

Memory Conflicts 

Involve delays that can occur when reading from 
or writing to registers that are used for address 
generation. 

Occur when the internal units of the 
TMS320C40 compete for memory resources. 

Eac~ of these three types is discussed in the following sections. Examples 
are included. Note in these examples. when data is refetched or an opera­
tion is repeated. the symbol representing the stage of the pipeline Is ap­
pended with a number. For example, if a fetch is performed again, the Initial 
fetch is labeled F1 and the refetch is labeled F2. When an access is detained 
multiple cycles because of a not ready, the symbols RDY and RDY are used 
to indicate not ready and ready, respectively. 

10.2.1 Branch Conflicts 

10.2.1.1 Standard Branches 

10-4 

The first class of pipeline conflicts occurs with standard (nondelayed) 
branches, i.e., BR, Bcond, DBcond, CALL, IDLE, RPTB, RPTS, RETlcond, 
RETScond, interrupts, and reset. Conflicts arise with these instructions and 
operations because during their execution, the pipeline is used only for the 
completion of the operation; other information fetched into the pipeline is 
discarded or refetched, orthe pipeline is inactive. This is referred to as flush­
ing the pipeline. Flushing the pipeline is necessary in these cases to guaran­
tee that portions of succeeding instructions do not inadvertently get partially 
executed. TRAPcond and CALLcond are classified differently from the oth­
er types of branches and are considered later. 

Example 10-1 shows the code and pipeline operation for a standard 
branch. Note that one dummy fetch is performed (F1), and then after the 
branch address is available, a new fetch (F2) is performed. This dummy 
fetch affects the cache. 

Pipeline Operation 



Example 1 (h 1. Standard Branch 

BR THREE 
MPYF 
ADD 
SUBF 
AND 

THREE OR 

STI 

Pipeline Conflicts - Branch Conflicts 
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; Unconditional branch 
; Not executed 
; Not executed 
; Not executed 
; Not executed 

; Fetched after BR is fetched 

PIPELINE OPERATION 

PC F 0 R E 

n BR 

n+1 MPYF BR G Felch held for 

n+1 (nOd (nop) BR 
_ new PC value .. 

n+1 (nop) (nop) (nop) BR 
- THREE~PC 

THREE 4 OR (nop) (nop) (nop) 

STI OR (nop) (nop) 

RPTS and RPTB both flush the pipeline, allowing the RS, RE, and RC regis­
ters to be loaded at the proper time relative to the flow of the pipeline. If these 
registers are loaded without the use of RPTS or RPTB, no flushing of the 
pipeline occurs. If none of the repeat modes are being used, RS, RE, and 
RC may be used as general-purpose 32-bit registers without any pipeline 
conflicts occurring. In cases such as the nesting of RPTB due to nested in­
terrupts, it may be necessary to load and store these registers directly while 
using the repeat modes. Since up to four instructions can be fetched before 
entering the repeat mode, loads should be followed by a branch to flush the 
pipeline. If the RC is changing when an instruction is loading it, the direct 
load takes priority over the modification made by the repeat mode Ipgic. 
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10.2.1.2 Delayed Branches 

Delayed branches are implemented to guarantee the fetching of the next 
three instructions. The delayed branches include BRD, BconaO, and 
DBconoO. Example 10-2 shows the code and pipeline operation for a 
delayed branch. 

Example 10-2. Delayed Branch 

10-6 

BRD THREE 
MPYF 
ADD 
SUBF 
AND 

THREE MPYF 

; Unconditional delayed branch 
; Executed 
; Executed 
; Executed 
; Not executed 

; Fetched after SUBF is fetched 

PIPELINE OPERATION 

PC F 0 R E 

n BRD 

n+1 MPYF BRD No execute delay 

n+2 ADDF MPYF BRD 

n+3 SUBF ADDF MPYF BRD _ THREE~PC 

THREE-4 MPYF SUBF ADDF MPYF 
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10.2.1.3 Delayed Branches With Annul Option 

In addition to standard and delayed branches, the 'C40 supports delayed 
branches with an annulling option. These instructions include BcondAT 
(branch conditional, annul if true) and BcondAF(branch conditional, annul 
iffalse). The status of the condition (whether the condspecifed is found true 
or false) controls whether or nota branch is performed (as in a delayed 
branch). The annulling operation cancels the effect of any operation per­
formed in the execute phase of the three instructions following the BcondAT 
or BcondAF. 
Q If the condition is true, BcondAT annuls the effect of any operation per­

formed in the execute phase of the three instructions that follow. 
Q If the condition is false, BcondAF annuls the effect of any operation per­

formed in the execute phase of the three instructions that follow. 

Example 1 Q-3 uses both BcondAT and BcondAF. 

Example 10-3. Using BcondAF and BcondAT Instructions 

LDI *AR1,RO 
BNEGAT bottom ; If negative, branch and 
ADDI *++AR2,R3 ; annul the e:·:ecute phase 
MPYF ; of ADDI, MPYF, and NOT. 
NOT ; Otherwise, don't annul and 

top: SUBF ; continue with SUBF. 

SUBI 1,RO 
BNNAF top ; If not negative, branch and 
ADDI *++AR2,R3 ; do not annul the execute 
MPYF ; phase of ADDI, MPYF, and 
NOT ; NOT. Otherwise, annul ADDI, 

bottom: XOR ; MPYF ,and NOT, and continue 
; with XOR. 

At the start of Example 10-3, if the result of the load is negative (a true 
condition), the BNEGAT instruction causes a branch and also an annulment 
of the execute phase of the three instructions that follow it. As a result, the 
execute phase of the ADD I instruction does not occur, and register R3 is not 
updated by addition. However, the incrementing of AR2 and the reading of 
the data at the corresponding address do occur because these operatons 
are in the decode and read phases of the pipeline. respectively, and thus are 
not annullable. 
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In short, operations that are annullable are: 
Q all writes to the register file that occur in the execute phase (ADDs, LOs, 

etc., but do not include LOA, LDPK, etc.). 
Q all stores to memory. 

10.2.2 Register Conflicts 

10-8 

Register conflicts involve the reading or writing of registers used for ad­
dressing purposes. These registers are ARO-AR7, IRO, IR1, SK, DP, and 
SP. These conflicts occurwhen the pertinent register is not ready to be used. 
If an instruction writes to one of these registers, the decode unit cannot use 
that same register until the write is complete, i.e., until instruction execution 
is completed. 

In Example 10-4, an auxiliary register is loaded, and the same auxiliary reg­
ister is used on the next instruction. Since the decode stage needs the result 
of the write to the auxiliary register, the decode of this second instruction is 
delayed two cycles. Every time the decode is delayed, a refetch of the pro­
gram word is performed; i.e., the first fetch of ADDF is at F1, followed by F2 
and F3 (the final fetch). Since these are actual refetches, they can cause 
not only conflicts with the DMA controller but also cache hits and misses. 
(If a different AR register was used in the MPYF instructIon (than was used 
in the LDI instruction), no delay would occur.} 
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Example 10-4. Write to an AR Followed by an AR for Address Generation 

LDI 7,AR2 ; 7 -7AR2 
NEXT MPYF *AR2,RO ; Decode delayed 2 cycles 

ADDF 
FLOAT 

PIPELINE OPERATION 

PC F 0 R E 

n LOI - - ~./addr.08 
generation held 

n+1 MPYF LOI ~ for a new AR value 

n+2 ADDF ~J LOI 

n+2 ADDF MPYF (nop) LDI 7,AR2 AR210aded 

n+2 ADDF MPYF (nop) (nop) 

n+3 FLOAT ADDF MPYF (nop) 

The case for reads of these registers is similar to the case for writes. If an 
instruction must read registers ARO-AR7 or SP, the use of those particular 
registers by the decode for the following instruction is delayed until the read 
is complete. The registers are read at the start of the execute cycle and 
therefore require only a one-cycle delay of the following decode. For four 
registers (IRQ, IR1, BK, or DP), no delay is incurred upon a read. 
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In Example 10-5, two auxiliary registers are added together with the result 
going to an extended-precision register. The next instruction uses one of the 
same auxiliary registers as an address register.lfthe MPYF instruction used 
an AR register other than ARO or AR2, no delay would occur. 

Example 10-5. A Read of ARs Followed by ARs for Address Generation 

10-10 

ADD I ARO I AR2, Rl ; ARO + AR2 ~ Rl 
NEXT MPYF *++AR2,RO ; Decode delayed 1 cycle 

ADDF 
FLOAT 

PIPELINE OPERATION 

PC F D R E 

n ADDI - - G DooodO/add ..... 
generation held 

n+1 MPYF ADD! ~ until AR Is read 

~... ARsread n+2 ADDF MPYF ADD! -

n+2 ADDF MPYF (nop) ADD! ARO,AR2,Rl 

n+3 FLOAT ADDF MPYF (nop) 

The DBR (decrement and branch) instruction's use of auxiliary registers for 
loop counters is treated the same as if the use were for addressing. There­
fore, the operation shown in the two previous examples can also occur for 
this instruction. 
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10.2.3 Memory Conflicts 

Memory conflicts can occur when the memory bandwidth of a physical 
memory space is exceeded. For example, RAM blocks 0 and 1 and the 
ROM block can support only two accesses every cycle. The external inter­
face can support only one access per cycle. Some conditions under which 
memory conflicts can be avoided are discussed in Section 10.3. 

Memory pipeline conflicts consist of the following four types: 

Program Wait A program fetch is prevented from begin­
ning. 

Program Fetch Incomplete A program fetch has begun but is not yet 
complete . 

. Execute Only An instruction sequence requires three 
CPU data accesses in a single cycle. 

Hold Everything A primary or expansion bus operation 
must complete before another one can 
proceed. 

These four types of memory conflicts are illustrated in examples and dis­
cussed in the paragraphs that follow. 

Program Wait 

Two conditions can prevent the program fetch from beginning: 

Q The start of a CPU data access when 

• Two CPU data accesses are made to an internal RAM or ROM 
block, and a program fetch from the same block is necessary. 

• One of the external ports is starting a CPU data access, and a pro­
gram fetch from the same port is necessary. 

a A multicycle CPU data access or DMA data access over the external 
bus is needed. 
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Example 1 Q-6 illustrates a program wait until a CPU data access 
completes. In this case, *ARO and *AR1 are both pointing to data in RAM 
block 0, and the MPYF instruction will be fetched from RAM block O. This 
results in the conflict shown. Since no more than two accesses can be made 
to RAM block 0 in a single cycle, the program fetch cannot begin and must 
wait until the CPU data accesses are complete. 

Example 10-6. Program Wait Until CPU Data Access Completes 

10-12 

ADDF3 *ARO,*AR1,RO 
FIX 
MPYF 
ADDF3 
NEGB 

PIPELINE OPERATION 

PC F 0 R E 

n ADDF3 G Felch held until 
ARsareread 

n+1 FIX 

~ARsread 
n+2 (waJ FIX ADDF3 -

n+2 MPYF (nop) FIX ADDF3 *ARO,AR1,RO 

n+3 ADDF3 MPYF (nop) FIX 

n+4 NEGB ADDF3 MPYF (nop) 

Example 10-7 shows a program wait due to a multicycle data-data access 
or a multicycle DMA access. The ADDF, MPYF, and SUBF are fetched from 
some portion in memory other than the external port the DMA requires. The 
DMA begins a multicycle access. The program fetch corresponding to the 
CALL is made to the same external port the DMA is using. 

Even if the DMA was configured as the lowest priority, a multlcycle access 
cannot be aborted. The program fetch must therefore wait until the DMA 
access completes. 
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Example 10-7. Program Wait Due to Multicycle Access 

PIPELINE OPERATION 

PC F o R E 

n ADDF 

MPYF ADDF 

SUBF MPYF ADDF T 
2-cycle OMA access 

(wait) SUBF MPYF ADDF J, 

n+3 CALL (nop) SUBF MPYF 

CALL (nop) SUBF 

Program Fetch Incomplete 

A program fetch incomplete occurs when a program fetch takes more than 
one cycle to complete due to wait states. In Example 10-8, the MPYF and 
ADDF are fetched from memory that supports single-cycle accesses. The 
SUBF is fetched from memory requiring one wait state. One example that 
demonstrates this conflict is a fetch across a bank boundary on the primary 
port. 

Example 10-8. Multicycle Program Memory Fetches 

PIPELINE OPERATION 

PC F o R E 

n MPYF 

n+1 ADDF MPYF 

n+2 ROY SUBF ADDF MPYF 
t 
1 walt state required 

n+2 ROY SUBF (nop) ADDF MPYF J, 

n+3 ADD! SUBF (nop) ADDF 
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Execute Only 

The Execute Only type of memory pipeline conflict occurs when a sequence 
of instructions reCjuires three CPU data accesses in a single cycle. There 
are two cases in which this occurs: 

Q An instruction performs a store and is followed by an instruction that 
does two memory reads. 

Q An instruction performs two stores and is followed by an instruction that 
performs at least one memory read. 

The first case is shown in Example 10-9. Since this sequence requires 
three data memory accesses and only two are available, only the execute 
phase of the pipeline is allowed to proceed. The dual reads required by the 
LDF II LDF is delayed one cycle. Note that a refetch of the next instruction 
can occur. 

Example 10-9. Single Store Followed by Two Reads 

II 

PC 

n 

n+1 

n+2 

n+3 

n+4 

n+4 

10-14 

STF 
LDF 
LDF 

F 

STF 

LDFIILDF 

w 

x 

x 

y 

RO,*ARl 
*AR2,Rl 
*AR3,R2 

; RO ~ *ARl 
; *AR2 ~ Rl in parallel with 
; *AR3 ~ R2 

PIPELINE OPERATION 

0 R E 

STF 

LDF IILDF STF Write must , complete 
w LDF IILDF STF RO,*ARl before the 

2 reads can 

LDF IILDF 
¥ complete. w (nop) 

x W LDF IILDF *AR2,Rl and *AR3,R2 
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Example 1 0-1 0 shows a parallel store followed by a single load or read. 
Since the two parallel stores are required, the next CPU data memory read 
must wait a cycle before beginning. One program memory refetch may 
occur. 

Example 10-10. Parallel Store Followed by Single Read 

II 
STF RO,*ARO 
STF R2,*ARl 
ADDF @SUM, Rl 
lACK 
ASH 

; RO ~ *ARO in parallel with 
; R2 ~ *ARl 
i Rl + @SUM ~ Rl 

PIPELINE OPERATION 
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Hold Everything 

There are three types of Hold Everything memory pipeline conflicts: 

a A CPU data load or store cannot be performed because an external port 
is busy. 

a An external load takes more than one cycle. 

a Conditional calls and traps. 

The first type of HoJd Everything conflict occurs when one of the external 
ports is busy because of access that has started but is not complete. In 
Example 10-11, the first store is a two-cycle store. The CPU writes the data 
to an external port. The port control then takes two cycles to complete the 
data-data write. The LDF is a read over the same external port. Since the 
store is not complete, the CPU continues to attempt LDF until the port is 
available. 

Example 10-11. Busy External Port 

10-16 

PC 

n 

n+1 

n+2 

n+2 

n+2 

n+3 

n+4 

STF RO,@DMAl 
LDF @DMA2,RO 

PIPELINE OPERATION 

F o R E 

STF 

LDF STF 

w LDF STF 

w LDF (nop) STF 

w LDF (nop) (nop) 

x w LDF (nop) 

y x W LDF 

T 
2-cycle external bus 
,J, write access 

The second type of Hold Everything conflict involves multicycle data reads. 
The read has begun and continues until completed. In Example 10-12, the 
LDF is performed from an external memory that requires several cycles to 
complete. 
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Example 10-12. Multicycle Data Reads 

Example 10-13. 

LDF @DMA,RO 

PIPELINE OPERATION 

PC F o R 

n LDF 

I LDF 

J I LDF 

K (dummy) I LDF 

I 

E 

LDF 

T 
2-cycle external bus 
..I- read access 

The final type of Hold Everything conflict deals with conditional calls and 
traps, which are different from the other branch instructions. Whereas the 
other branch instructions are conditional loads, the conditional calls and 
traps are conditional stores, which take one more cycle than a conditional 
branch (see Example 10-13). The added cycle is used to push the return 
address after the call condition is evaluated. 

Conditional Calls and Traps 

PIPELINE OPERATION 

PC F 0 R E 

n CALLcond 

n+1 I CALLcond 

n+1 (nop) (nop) CALLcond 

n+1 (nop) (nop) (nop) CALLcond 

PC store 
n+1 (nop) (nop) (nop) CALLcond Tcycle 

t 
n+21CALLaddr I (nop) (nop) (nop) 
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10.3 Resolving Memory Conflicts 

If program fetches and data accesses are performed in such a manner that 
the resources being used cannot provide the necessary bandwidth, the 
program fetch is delayed until the data access is complete. Certain 
configurations of program fetch and data accesses yield conditions under 
which the TMS320C40 can achieve maximum throughput. 

Table 10-1 shows how many accesses can be performed from the different 
memory spaces when it is necessary to do a program fetch and a single data 
access, and still achieve maximum performance (one cycle). Four cases 
achieve one-cycle maximization. 

Table 10-1. One Program Fetch and One Data Access for Maximum Performance 

Case Global Bus Accesses From Local Bus 

No. Accesses Dual-Access Or PerIpheral 
Internal Memory Accesses 

1 1 1 -
2 1 - 1 

2 from any 

3 combination - of internal memory -

4 - 1 1 
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Table 10-2. 

Resolving Memory Conflicts 

Table 10-2 shows how many accesses can be performed from the different 
memory spaces when it is necessary to do a program fetch and two data 
accesses, still achieving maximum performance (one cycle). Six cases 
achieve this maximization. 

One Program Fetch and Two Data Accesses for Maximum Performance 

Case Global Bus Accesses From Dual·Access Local Or 

No. Accesses Internal Memory Peripheral Bus 
Accesses 

1 1 
2 from any combination of internal -memory 

2t 1 program 1 Data 1 data 

3t 1 data 1 Data 1 program 

2 from same internal memory 
4 - block and1 from a different inter- -

nal memory block 

5 - 3 from different internal memory 
blocks -

6 - 2 from any combination of internal 1 memory 

7 1 program 2 data 1DMA 

8 1DMA 2 data 1 program 

t For Cases 2 and 3, see Three-Operand Instruction Memory Reads on 
page 10-21. 
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Clocking of Memory Accesses 

10.4 Clocking of Memory Accesses 

Internal clock phases (H1 and H3) and their relationship to memory ac­
cesses are discussed in this section to show how the TMS320C40 handles 
multiple memory accesses. Whereas the previous section discussed the in­
teraction between sequences of instructions, this section discusses the flow 
of data on an individual instruction basis. 

Each major clock period of 40 ns is composed of two minor clock periods 
of 20 ns, labeled H3 and H1 (these times assume a 50-MHz 'C40). The ac­
tive clock period for H3 and H1 is the time when that signal is high. 

H1 

H3 

I ~ Major Clock Period ~I 

II """---­
_I 1 

The precise operation of memory reads and writes can be defined according 
to these minor clock periods. The types of memory operations that can occur 
are program fetches, data loads and stores, and DMA accesses. 

10.4.1 Program Fetches 

10-20 

Internal program fetches are always performed during H3 unless a single 
data store must occur at the same time because of another instruction in the 
pipeline. In this case, the program fetch occurs during H 1 and the data store 
during H3. 

External program fetches always start at the beginning of H3 with the ad­
dress being presented on the external bus. At the end of H1, they are com­
pleted with the latching of the instruction word. 
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10.4.2 Data Loads and Stores 

Four types of instructions perform loads, memory reads, and stores: two-op­
erand instructions, three-operand instructions, multiplier/ALU operation 
with store instructions, and parallel multiply and add instructions. See Chap­
ter 5 for detailed information on addressing modes. 

As discussed in Chapter 7, the number of bus cycles for external memory 
accesses differs in some cases from the number of CPU execution cycles. 
For external reads, the number of bus cycles and CPU execution cycles is 
identical. For external writes, there are always at least two bus cycles, but 
unless there is a port access conflict, there is only one CPU execution cycle. 
In the following examples, any difference in the number of bus cycles and 
CPU cycles is noted. 

Two-Operand Instruction Memory Accesses 

Figure 10-2. Two-Operand Instruction Word 

1 1 1 1 1 24123
1 

1 1 1 1 1 1 16
1
151 

Operation G dst(src) 

87 

src(dst) 

Two-operand instructions include all those instructions with bits 31-29 be­
ing 0002 or 0102 (see Figure 10-2). In the case of a data read, bits 15-0 rep­
resentthe srcoperand.lnternal data reads are always performed during H1. 
External data reads always start at the beginning of H3 with the address be­
ing presented on the external bus, and they complete with the latching of 
the data word at the end of H1. 

In the case of a data store, bits 15-0 represent the dstoperand. Internal data 
stores are performed during H3. External data stores always start at the 
beginning of H3 with the address and data being presented on the external 
bus. 

Three-Operand Instruction Memory Reads 

Figure 10-3. Three-Operand Instruction Word 

31 2423 1615 

1 0
' 0' 1 1 ' , , 1 1 1 1 1 ' 1 , , 1 1 

. . Operation T dst 

1 1 , 

src1 

1 , , 

src2 

Three-operand instructions include all instructions with bits 31-29 being 
0012 (see Figure 10-3). The source operands, src1 and src2, come from 
either registers or memory. When one or more of the source operands are 
from memory, these instructions are always memory reads. 
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If only one of the source operands is from memory (either src1 or src2) and 
is located in internal memory, the data is read during H1. If the single 
memory source operand is in external memory, the read starts at the begin­
ning of H3, with the address being presented on the external bus, and com­
pletes with the latching of the data word at the end of H1. 

If both source operands are to be fetched from memory, then several cases 
occur. If both operands are located in internal memory, the src1 read is per­
formed during H3 and src2during H1, thus completing two memory reads 
in a single cycle. 

If src1 is in internal memory and src2is in external memory, the src2access 
begins at the start of H3 and latches at the end of H1. At the same time, the 
src1 access to internal memory is performed during H3. Again, two memory 
reads are completed in a single cycle. 

If src1 is in external memory and src2 is in internal memory, two cycles are 
necessary to complete the two reads. In the first cycle, the internal src2 ac­
cess is performed. The src1 is also performed, but not latched until the next 
H3. 

If src1 and src2 are both from external memory, two cycles are required to 
complete the two reads. In the first cycle, the src1 access is performed and 
loaded on the next H3; in the second cycle, the src2access is performed 
and loaded on that cycle's H1. 

Operations with Parallel Stores 

Figure 10-4. Multiply or CPU Operation With a Parallel Store 

31 2423 1615 87 o 
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
. . Operation dst1 src1 src3 dst2 src2 1 I I 1 

1 1 1 

10-22 

The next class of instructions includes all instructions that have a store in 
parallel with another instruction. Bits 31 and 30 for these instructions are 
equal to 1 12~ 

For operations that perform a multiply or ALU operation in parallel with a 
store, the instruction word format is shown in Figure 10-4. 1ft he store opera­
tion to dst2 is external or internal, it is performed during H3. Two bus cycles 
are required for external stores, but only one CPU cycle is necessary to 
complete the write. 

If the memory read operation is external, it starts at the beginning of H3 and 
latches at the end of H1. If the memory read operation is internal, it is 
performed during H1. Note that memory reads are performed by the CPU 
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during the read (R) phase of the pipeline, and stores are performed during 
the execute (E) phase. 

The instruction word format for instructions that have parallel stores to 
memory is shown in Figure 10-5. If both destination operands, dst1 and 
dst2, are located in internal memory, dst1 is stored during H3 and dst2dur­
ing H1, thus completing two mem~ry stores in a single cycle. 

Figure 10-5. Two Parallel Stores 

2423 1615 87 o 
I I I 

dst1 I i I I I 

dst2 i I 
If dst1 is in external memory and dst2 is in internal memory, the dst1 store 
begins at the start of H3. The dst2store to internal memory is performed dur­
ing H 1. Two bus cycles are required forthe external store, but only one CPU 
cycle is necessary to complete the write. Again, two memory stores are 
completed in a single cycle. 

If dst1 is in internal memory and dst2 is in external memory, an additional 
bus cycle is necessary to complete the dst2 store. Only one CPU cycle is 
necessary to complete the write, but the port access requires three bus 
cycles. In the first cycle, the internal dst1 store is performed during H3, and 
dst2is written to the port during H1. During the next cycle, the dst2store is 
performed on the external bus, beginning in H3, and executes as normal 
through the following cycle. 

If dst1 and dst2 are both written to external memory, a single CPU cycle is 
still all that is necessary to complete the stores. In this case, four bus cycles 
are required. 

1) In the first cycle, both dst1 and dst2 are written to the port, and the exter­
nal bus access for dst1 begins. 

2) The store for dst1 is completed on the second cycle, and the store for 
dst2 begins on the third external bus cycle. 

3) Finally, the store for dst2 is completed on the fourth external bus cycle. 
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Parallel Multiplies and Adds 

Memory addressing for parallel multiplies and adds is similar to that for 
three-operand instructions. The parallel multiplies and adds include all in­
structions with bits 31-30 equal to 102 (see Figure 10-6). 

Figure 10-6. Parallel Multiplies and Adds 

31 2423 1615 

10-24 

I I I 

src3 
I I I 

src4 

Forthese operations, src3 and src4 are both located in memory. If both oper­
ands are located in internal memory, src3 is performed during H3, and src4 
is performed during H1 , thus completing two memory reads in a single cycle. 

If src3 is in internal memory and src4 is in external memory, the src4 access 
begins at the start of H3 and latches at the end of H1. At the same time, the 
src3access to internal memory is performed during H3. Again, two memory 
reads are completed in a single cycle. 

If src3 is in external memory and src4 is in internal memory, two cycles are 
necessary to complete the two reads. In the first cycle, the internal src4 ac­
cess is performed. During the H3 of the next cycle, the src3 access is per­
formed. 

If src3 and src4 are both from external memory, two cycles are necessary 
to complete the two reads. In the first cycle, the src3 access is performed; 
in the second cycle, the src4 access is performed. 
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The TMS320C40 assembly language instruction set supports 
numeric-intensive, signal processing, and general-purpose applications. 
The instructions are organized into these major groups: load-and-store, 
two- or three-operand arithmetic/logical, parallel, program control, and 
interlocked operations instructions. The addressing modes used with the 
instructions are described in Chapter 5. 

The TMS320C40 instruction set can also use one of 20 condition codes with 
any of the 10 conditional instructions, such as LDFcond. This chapter 
defines the condition codes and flags. 

The assembler allows optional syntax forms to simplify the assembly 
language for special-case instructions. These optional forms are listed and 
explained. 

Each of the individual instructions is described and listed in alphabetical 
order. An example instruction (on pages 11-15 through 11-17) 
demonstrates the special format used and explains its content. 

This chapter discusses the following major topics: 

Section 

11.1 Instruction Set 

Page 

11-3 

• Load-and-Store Instructions . . . . . . . . . . . . . . . . . . . . . .. 11-3 

• Two-Operand Arithmetic/Logical Instructions ........ 11-4 

• Three-Operand Arithmetic/Logical Instructions . . . . . .. 11-6 

• Program Control Instructions ...................... 11-6 

• Interlocked Operations Instructions ................. 11-7 

• Parallel Operations Instructions . . . . . . . . . . . . . . . . . . .. 11-8 
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Section Page 

11.2 Condition Codes and Flags ........................... 11-10 

11.3 Individual Instructions ................................ 11-13 

• Symbols and Abbreviations Used in Instructions ..... 11-13 

• Optional Assembler Syntaxes ..................... 11-15 

• Individual instruction descriptions, alphabetized 
(includes syntax, operation, operands, encoding, 
description, cycles, status bits, mode bit, examples) . 11-17 
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11.1 Assembly Language Instructions - Instruction Set 

The TMS320C40 instruction set is exceptionally well-suited to digital signal 
processing and other numeric-intensive applications. All instructions are a 
single machine word long, and most instructions take a single cycle to ex­
ecute. In addition to multiply and accumulate instructions, the TMS320C40 
possesses a full complement of general-purpose instructions. 

The instruction set contains 135 instructions organized into the following 
functional groups: 

a Load-and-store 

a Two-operand arithmetic/logical 

a Three-operand arithmetic/logical 

a Program control 

a Interlocked operations 

a Parallel operations 

Each of these groups is discussed in the succeeding subsections. 

11.1.1 Load-and-Store Instructions 

The TMS320C40 supports 2310ad-and-store instructions (see Table 11-1). 
These instructions can 

a Load a word from memory into a register, 

a Store a word from a register into memory, or 

a Manipulate data on the system stack. 

Two of these instructions can load data conditionally. This is useful for locat­
ing the maximum or minimum value in a data set. See Section 12.2 for de­
tailed information on condition codes. 
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Table 11-1. Load-and-Store Instructions 

Instruction Description Instruction Description 

LBb Load byte (signed) LOPK Load OP register immediate 
LBUb Load byte (unsigned) LHW Load half-word signed 
LOA Load address register LHUw Load half-word unsigned 
LOE Load floating-point exponent LWLct Load word left-shifted 

LOEP Load integer. expansion file register 
to primary register LWRct Load word ri"ht-shifted 

LOF Load floating-point value POPF Pop floating-point value from stack 
LOFcond Load floating-point value PUSH Push integer on stack 

LOHI Load 16-bit unsigned immediate 
into 16 MSBs PUSHF Push floating-point value on stack 

LOI Load integer STF Store floating-point value 
LOlcond Load integer conditionally STI Store integer 
LOM Load floating-point mantissa STIK Store integer immediate 

LOPE 
Load integer. primary register to 
expansion file register 

11.1.2 Two-Operand Instructions 

11-4 

The TMS320C40 supports a complete set of 43 two-operand arithmetic and 
logical instructions. The two operands are the source and destination. The 
source operand may be a memory word, a register, or a constant. The desti­
nation operand is always a register. 

These instructions provide integer, floating-point, or logical operations, 
and multiprecision arithmetic. Table 11-2 lists these instructions. 
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Table 11-2. Two-Operand Instructions 

Instruction Description Instruction Description 

ABSF Absolute value of a floating-
point number NEGI Negate integ~r 

ABSI Absolute value of an integer NORM Normalize floating-point value 

ADDCt Add integers with carry NOT Bitwise logical-complement 

ADDFt Add floating-point values ORt Bitwise logical-OR 

ADDIT Add integers RCPF Reciprocal floating point 
ANDt Bitwise logical-AND RND Round floating-point value 

ANDNt Bitwise logical-AND with 
complement ROL Rotate left 

ASHt Arithmetic shift ROLC Rotate left through carry 

CMPFt Compare floating-point values ROR Rotate right 

CMPlt Compare integers RORC Rotate right through carry 

FIX Convert floating-point value to integer RSQRF 
Reciprocal of square root, floating 
point 

FLOAT Convert integer to floating-point value SUBBt Subtract integers with. borrow 

FRIEEE Convert IEEE floating-point format to 
twos-complement floating-point for- SUBC Subtract integers conditionally 

LSHt Logical shift SUBFt Subtract floating-point values 

MBet Merge byte, left shifted SUBlt Subtract integer 

MHct Merge half-word, left shifted SUBRB Subtract reverse integer with borrow 

MPVFt Multiply floating-point values SUBRF Subtract reverse floating-point value 

MPVlt Multiply integers SUBRI Subtract reverse integer 

MPVSHlt Multiply signed integer, 32-MSB 
product TOIEEE Convert twos complement to IEEE 

format 

MPVUHIT 
Multiply unsigned integer, 32-MSB 
product· TSTBt Test bit fields 

NEGB Negate integer with borrow XORt Bitwise exclusive-OR 

NEGF Negate floating-point value 

t Two- and three-operand versions 
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11.1.3 Three-Operand Instructions 

Most instructions contain two or three operands. The 19 three-operand in­
structions allow the TMS320C40 to read two operands from memory or the 
CPU register file in a single cycle and store the results in a register. The fol­
lowing differentiates the two- and three-operand instructions: 

Cl Two-operand instructions have a single-source operand (or shift count) 
and a destination operand. 

Cl Three-operand instructions may have two source operands (or one 
source operand and a count operand) and a destination operand. A 
source operand may be a memorY word, a register or a constant. The 
destination of a three-operand instruction is always a register. 

Table 11-3 lists the instructions that have three-operand versions. Note 
that the 3 in the mnemonic can be omitted from three-operand instructions 
(see subsection 11.3.2). 

Table 11-3. Three-Operand Instructions 

Instruction Description . Instruction Description 

·ADDC3 Add with carry MPYF3 Multiply floating-point values 

ADDF3 Add floating-point values MPYI3 Multiply integers 

ADDI3 Add integers MPYSHI3 Multiply signed integer, 32-MSB 
product 

AND3 Bitwise logical-AND MPYUHI3 Multiply unsigned integer, 32-MSB 
product 

ANDN3 Bitwise logical-AND with complement OR3 Bitwise logical-OR 

ASH3 Arithmetic shift SUBB3 Subtract integers with borrow 

CMPF3 Compare floating-point values SUBF3 Subtract floating-point values 

CMPI3 Compare integers SUBI3 Subtract integers 

LSH3 Logical shift TSTB3 Test bit fields 

XOR3 Bitwise exclusive-OR 

11.1.4 Program Control Instructions 

11-6 

The program-control instruction group consists of all of those instructions 
(23) that affect program flow. The repeat mode allows repetition of a block 
of code (RPTB and RPTBD) or of a single line of code (RPTS). Both stan­
dard and delayed (single-cycle) branching are supported. Several of the 
program control instructions are capable of conditional operations (see Sec­
tion 12.2 for detailed information on condition codes). Table 11-4 lists the 
program control instructions. 
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Table 11-4. Program Contrallnstructions 

Instruction Description Instruction Description 
Bcond Branch conditionally (standard) LAJcond Link and jump conditional 

BcondAF Branch conditionally delayed and 
annul if false LATcond Link and trap contitional 

BcondAT Branch conditionally delayed and 
annul if true NOP No operation 

BconoO Branch conditionally (delayed) RETleond Return from interrupt conditionally 
BR Branch unconditionally (standard) RETlconoO Return from trap or interrupt, delayed 
BRD Branch unconditionally (delayed) RETScond Return from subroutine conditionally . 
CALL Call subroutine RPTB Repeat block of instructions 
CALLcond Call subroutine conditionally RPTBD Repeat biock, delayed 
DBcond Decrement and branch RPTS Repeat single instruction 
DBconoO Decrement and branch SWI Software interrupt 
IDLE Idle until interrupt TRAPcond Trap conditionally 
LAJ Link and jump 

11.1.5 Interlocked Operations Instructions 

The interlocked operations instructions support multiprocessor communi­
cation and the use of external signals to allow for powerful synchronization 
mechanisms. They also guarantee the integrity of the communication and 
result in a high-speed operation. Refer to Chapter 7 for examples of the use 
of interlocked instructions. 

Table 11-5. Interlocked Operations Instructions 

Instruction Description Instruction Descriptiol) 

LDFI Load floating-point value, interlocked STFI Store floating-point value, interlocked 

LDII Load integer, interlocked STII Store integer, interlocked 

SIGI Signal, interlocked 
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11.1.6 Parallel Operations Instructions 

The parallel-operations instructions group makes a high degree of parallel­
ism possible. Some of the TMS320C40 instructions can occur in pairs that 
will be executed in parallel. These instructions offer the following features: 

Q Parallel loading of registers, 

Q Parallel arithmetic operations, or 

Q Arithmetic/logical instructions used in parallel with a store instruction. 

Each instruction in a pair is entered as a separate source statement. The 
second instruction in the pair must be preceded by two vertical bars (II). 
Table 11-6 lists the valid instruction pairs. 

Table 11-6. Parallel Instructions 

Mnemonic Description 

Parallel Arithmetic with Store Instructions 

ABSF Absolute value of a floating-point number and store floating-point value 
IISTF 

ABSI Absolute value of an integer and store integer 
IISTI 

ADDF3 Add floating-point values and store floating-point value 
IISTF 

ADDI3 Add integers and store integer 
IISTI 

AND3 Bitwise logical-AND and store integer 
IISTI 

ASH3 Arithmetic shift and store integer 
IISTI 

FIX Convert floating-point to integer and store integer 
IISTI 

FLOAT Convert integer to floating-point value and store floating-point value 
IISTF 

FRIEEE Convert IEEE floating-point format and store 
IISTF 

LDF Load floating-point value and store floating-point value 
IISTF 

LDI Load integer and store integer 
IISTI 

Table concluded on next page. 
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Table 11-6. Parallel Instructions (Concluded) 

Mnemonic Description 
Parallel Arithmetic with Store Instructions 

LSH3 Logical shift and store integer 
IISTI 
MPYF3 Multiply floating-point values and store floating-point value 
IISTF 

MPYI3 Multiply integer and store integer 
IISTI 

NEGF Negate floating-point value and store floating-point value 
IISTF 

NEGI Negate integer and store integer 
IISTI 
NOT3 Complement value and store integer 
IISTI 
OR3 Bitwise logical-OR value and store integer 
IISTI 

STF Store floating-point values 
IISTF 

STI Store integers 
IISTI 

SUBF3 Subtract floating-point value and store floating-point value 
IISTF 
TOIEEE Convert to IEEE format and store 
IISTF 

SUBI3 Subtract integer and store integer 
IISTI 

XOR3 Bitwise exclusive-OR values and store integer 
IISTI 

Parallel Load Instructions 
LDF Load floating-point 
II LDF 

LDI Load integer 
IILDI 

Parallel Multiply and Add/Subtract Instructions 
MPYF3 Multiply and acid floating-point 
II ADDF3 

MPYF3 Multiply and subtract. floating-point 
II SUBF3 

MPYI3 Multiply and add integer 
IIADDI3 

MPYI3 Multiply and subtract integer 
IISUBI3 
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11.2 Condition Codes and Flags 

The TMS320C40 provides 20 condition codes (00000 - 10100, excluding 
01011) that can be used with any of the conditional instructions, such as 
RETScondor LDFcond. The conditions include signed and unsigned com­
parisons, comparisons to zero, and comparisons based on the status of in­
dividual condition flags. Note that all conditional instructions can also accept 
the suffix U to indicate unconditional operation. 

Seven condition flags provide information about properties of the result of 
arithmetic and logical instructions. The condition flags are stored in the sta­
tus register (ST) and are affected by an instruction based upon the SET 
COND field (bit 15 of the status register). 

a If SET COND = 0, the ST condition flags are set if the operation's target 
is any extended-precision register (RO-R 11) . 

a If SET COND = 1 , the ST condition flags are also set if the operaton's 
target is any register in the primary register file except the status 
register. 

a The value of SET COND (0 or 1) does not affect the nature of the com-
pare instructions (CMPF, CMPF3, CMPI, CMPI3, TSTB, or TSTB3). 

The condition flags may be modified by most instructions when either of the 
preceding conditions is established and either of the following two cases oc­
curs: 

Q A result is generated when the specified operation is performed to infi­
nite precision. This is appropriate forcompare-and-test instructions that 
do not store results in a register. It is also appropriate for arithmetic in­
structions that produce underflow or overflow. 

Q The output is written to the destination register as shown in Table 11-7. 
This is appropriate for other instructions that modify the condition flags. 

Table 11-7. Output Value Formats 

11-10 

Type of Operation Output Format 

Floating-point a-bit exponent, 1 sign bit, 31-bit fraction 

Integer 32-bit integer 

Logical 32-bit unsigned integer 

Figure 11-1 shows the condition flags in the low-order bits of the status reg­
ister. Following the figure is a list of status register condition flags and de­
scriptions on how the flags are set by most instructions. For specific details 
of the effect of a particular instruction on the condition flags, see the de­
scription of that instruction in subsection 11.3.3. 
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Figure 11-1. Status Register 
31 30 29 28 27 26 25 24 23 22 ~1 20 19 18 17 16 

I~I~I~I~I~I~I~I~I~I~I~I~I~I~I~I~I 

NOTE: 

14 13 12 11 10 9 8 7 6 5 4 3 2 0 

RIW RIW RIW RfW RIW RIW 

LUF Latched Underflow Condition Flag. LUF is set whenever UF (floa­
ting-point underflow flag) is set. LUF may be cleared only by a proces­
sor reset or by modifying it in the status register (ST). 

LV Latched Overflow Condition Flag. LV is set whenever V (overflow 
condition flag) is set. Otherwise, it is unchanged. LV may be cleared 
only by a processor reset or by modifying it in the status register (ST). 

UF Floating-Point Underflow Condition Flag. A floating-point under­
flow occurs whenever the exponent of the result is less than or equal 
to -128. If a floating-point underflow occurs, UF is set, and the output 
value is set to O. UF is cleared if a floating-point underflow does not 
occur. 

N Negative Condition Flag. Logical operations assign N the state of 
the MSB of the output value. For integer and floating-point opera­
tions, N is set if the result is negative, and cleared otherwise. Zero is 
positive. 

Z Zero Condition Flag. For logical, integer, and floating-point opera­
tions, Z is set if the output is 0, and cleared otherwise. 

V Overflow Condition Flag. For integer operations, V is set if the re­
sult does notfit into the format specified for the destination (Le., - 232 

~ result ~ 2 32 -1). Otherwise, V is cleared. For floating-point opera­
tions, V is set if the exponent of the result is greater than 127; other­
wise,V is cleared. Logical operations always clear V. 

C Carry Flag. When an integer addition is performed, C is set if a carry 
occurs out of the bit corresponding to the MSB of the output. When an 
integer subtraction is performed, C is set if a borrow occurs into the bit 
corresponding to the MSB of the output. Otherwise, for integer opera­
tions, C is cleared. The carry flag is unaffected by floating-point and 
logical operations. For shift instructions, this flag is set to the final val­
ue shifted out; for a zero shift count, this is set to zero. 
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Table 11-8. 
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Table 11-8 lists the condition mnemonic, code, description, and flag for 
each of the 19 condition codes. 

Condition Codes and Flags 

Condition Code Description Flagt 

Unconditional Compares 

U 00000 Unconditional Don't care 

Unsigned Compares 

LO 00001 Lower than C 
LS 00010 Lower than or same as CORZ 

HI 00011 Higher than -CAND-Z 
HS 00100 Higher than or same as -c 
EQ 00101 Equal to Z 
NE 00110 Not Equal to -Z 

Signed Compares 

L 00111 Less than N 
LE 01000 Less than or equal to NORZ 

GT 01001 Greater than -NAND-Z 
GE 01010 Greater than or equal to -N 
EQ 00101 Equal to Z 
NE 00110 Not equal to -Z 

Compare to Zero 

Z 00101 Zero Z 
NZ 00110 Not zero -Z 
P 01001 Positive -N AND-Z 
N 00111 Negative N 
NN 01010 Nonnegative -N 

Compare to Condition Flags 

NN 01010 Nonnegative -N 
N 00111 Negative N 
NZ 00110 Nonzero -Z 
Z 00101 Zero Z 
NV 01100 No overflow -V 
V 01101 Overflow V 
NUF 01110 No underflow -UF 
UF 01111 Underflow UF 
NC 00100 No carry -C 
C 00001 Carry C 
NLV 10000 No latched overflow -LV 
LV 10001 Latched overflow LV 
NLUF 10010 No latched floating-point underflow -LUF 
LUF 10011 Latched floating-point underflow LUF 
ZUF 10100 Zero or floating-point underflow ZORUF 

t The - means logical complement ("not true" condition). 
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11.3 Individual Instructions 

This section contains the individual assembly language instructions for the 
TMS320C40. The instructions are listed in alphabetical order. Information 
for each instruction includes assembler syntax, operation, operands, en­
coding, description, cycles, status bits, mode bit, and examples. 

Definitions of the symbols and abbreviations, as well as optional syntax 
forms allowed by the assembler, precede the individual instruction descrip­
tion section. Also, an example instruction shows the special format used 
and explains its content. 

A functional grouping of the instructions, as well as a complete instruction 
set summary, can be found in Section 11.1. Appendix B lists the opcodes 
for all the instructions. Refer to Chapter 6 for information on memory ad­
dressing. Code examples using many of the instructions are given in Chap­
ter NO TAG, Software Applications. 

11.3.1 Symbols and Abbreviations 

Table 11-9 lists the symbols and abbreviations used in the individual in­
struction descriptions. 
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Table 11-9. Instruction Symbols 

Symbol Meaning 

src Source operand 
src1 Source operand 1 
src2 Source operand 2 
src3 Source operand 3 
src4 Source operand 4 

dst Destination operand 
dst1 Destination operand 1 
dst2 Destination operand 2 
disp Displacement 
cond Condition 
count Shift count 

G General addressing modes 
T Three-operand addressing modes 
P Parallel addressing modes 
B Conditional-branch addressing modes 

ARn Auxiliary register n 
IRn Index register n 
Rn Register address n 
RC Repeat count register 
RE Repeat end address regist!)r 
RS Repeat start address register 
ST Status register 

C Carry bit 
GIE Global interrupt enable bit 
N Trap vector 
PC Program counter 
RM Repeat mode flag 
SP System stack pointer 

Ixl Absolute value of x 
x-+y Assign the value of x to destination y 
x(man) Mantissa field (sign + fraction) of x 
x(exp) Exponent field of x 

op1 
lIop2 Operation 1 performed in parallel with operation 2 

xANDy Bitwise logical-AND of x and y 
xORy Bitwise logical-OR of x and y 
xXORy Bitwise logical-XOR of x and y 
-x Bitwise logical-complement of x 

x«y Shift x to the left y bits 
x»y Shift x to the right y bits 
*++SP Increment SP and use incremented SP as address 
*SP-- Use SP as address and decrement SP 
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11.3.2 Optional Assembler Syntaxes 

The assembler allows a relaxed syntax form for some instructions. These . 
optional forms simplify the assembly language so that special-case syntax 
can be ignored. The following is a list of these optional syntax forms. 
Q The destination register can be omitted on· unary arithmetic and log­

ical operations when the same register is used as a source. For exam­
ple, 

ABSI RO, RO can be written as ABSI RO 

Instructions affected: ABSI, ABSF, FIX, FLOAT, NEGB, NEGF, NEGI, 
NORM, NOT, RND. 

Q All 3-operand instructions can be written without the 3. For example, 

ADDI3 RO,R1,R2 can be written as ADDI RO,R1,R2 

Instructions affected: ADDC3, ADDF3, ADDI3, AND3, ANDN3, ASH3, 
LSH3, MPYF3, MPYI3, OR3, SUBB3, SUBF3, SUBI3, XOR3, 
MPYSHI3, MPYUHI3. 

This also applies to all the pertinent parallel instructions. 
Q All 3-operand comparison instructions can be written without the 3. For 

example, 

CMPI3 RO,*ARO can be written as CMPI RO,*ARO 

Instructions affected: CMPI3, CMPF3, TSTB3. 
Q Indirect operands with an explicit 0 displacement are allowed. In 3-oper­

and or parallel instructions, operands with 0 displacement are automat­
ically converted to no-displacement mode. For example: 

LDI *+ARO (0) , R1 is legal 

Also 

ADDI3 *+ARO (0) ,Rl,R2 isequivalentto ADDI3 *ARO,Rl,R2 

Q Indirect operands can be written with no displacement; in which case, 
a displacement of one is assumed. For example, 

LDI *ARO++ (1) , RO can be written LDI *ARO++, RO 

Q All conditional instructions accept the suffix U to indicate unconditional 
operation. Also, the U can be omitted from unconditional short branch 
instructions. For example: 

BU label can be written B label 

Q Labels can be written with or without a trailing colon. For example: 

labelO: NOP 
label1 
labe12: 

NOP 
(label assembles to next source line) 
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Q Empty expressions are not allowed for the displacement in indirect 
mode: 

LDI *+ARO () , RO is not legal 
Q Immediate-mode destination operands of BR and CALL can be writ­

ten with an at sign (@): 

BR label can be written BR @label 

Q The LDP pseudo-op can be used to load a register (DP by default) with 
the 16 MSBs of a relocatable address as follows: 

LOP addr,REG or LOP @addr,REG 

The at sign (@) is optional. 

If the destination REG is the DP, LDP generates an LDPK instruction. 
Otherwise it generates an LDIU instruction. In both cases an immediate 
operand with a special relocation type is used. 

Q Parallel instructions can be written in either order. For example: 

ADDI 
II STI 

can be written as STI 
II ADDI 

Q The parallel bars indicating part 2 of a parallel instruction can be written 
anywhere on the line from column 0 to the mnemonic. For example: 

ADDI 
II STI 

can be written as ADDI 
II STI 

Q If the second operand of a parallel instruction is the same as the third 
(destination register) operand, the third operand can be omitted. This 
allows the writing of 3-operand parallel instructions that look like normal 
2-operand instructions. For example, 

ADDI *ARO, R2, R2 can be written as ADDI *ARO, R2 
I I MPYI *AR1, RO, RO I I MPYI *AR1, RO 

Instructions affected (applies to all parallel instructions that have a reg­
ister as the second operand): ADDI, ADDF, AND, MPYI, MPYF, OR, 
SUBI, SUBF, XOR. 

Q All commutative operations in parallel instructions can be written in ei­
ther order. For example, the ADDI part of a parallel instruction can be 
written in either of two ways: 

ADDI *ARO,Rl,R2 or ADDI Rl,*ARO,R2 

The instructions affected are parallel instructions containing any of the 
following: ADDI, ADDF, MPYI, MPYF, AND, OR, XOR. 

Q Use the syntax in Table 11-10 to deSignate CPU registers in operands. 
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11.3.3 Individual Instruction Descriptions 

Table 11-10. 

Each assembly language instruction for the TMS320C40 is described in 
this section in alphabetical order. The description includes the assembler 
syntax, operation, operands, encoding, description, cycles, status bits, 
mode bit, and examples. 

CPU Register Syntax 

Assembler Register Explained On 
Syntax Machine Assigned Function Name in Page 

Value (hex) Paragraph 

RO 00 Extended-precision register 0 3.1.1 3-4 
R1 01 Extended-precision register 1 3.1.1 3-4 
R2 02 Extended-precision register 2 3.1.1 3-4 
R3 03 Extended-precision register 3 3.1.1 3-4 
R4 04 Extended-precision register 4 3.1.1 3-4 
RS OS Extended-precision register S 3.1.1 3-4 
R6 06 Extended-precision register 6 3.1.1 3-4 
R7 07 Extended-precision register 7 3.1.1 3-4 
RS 1C Extended-precision register S 3.1.1 3-4 
R9 1D Extended-precision register 9 3.1.1 3-4 

R10 1E Extended-precision register 10 3.1.1 3-4 
R11 1F Extended-precision register 11 3.1.1 3-4 

ARO OS Auxiliary register 0 3.1.2 3-S 
AR1 09 Auxiliary register 1 3.1.2 3-S 
AR2 OA Auxiliary register 2 3.1.2 3-S 
AR3 OB Auxiliary register 3 3.1.2 3-S 
AR4 OC Auxiliary register 4 3.1.2 3-S 
ARS 00 Auxiliary register S 3.1.2 3-S 
AR6 OE Auxiliary register 6 3.1.2 3-S 
AR7 OF Auxiliary register 7 3.1.2 3-S 

DP 10 Data-page pointer 3.1.3 3-S 
IRO 11 Index register 0 3.1.4 3-S 
IR1 12 Index register 1 3.1.4 3-S 
BK 13 Block-size register 3.1.S 3-S 
SP 14 System stack pointer 3.1.6 3-S 

ST 1S Status register 3.1.7 3-S 
DIE 16 DMA Coprocessor interrupt enable 3.1.S 3-S 
liE 17 Internal-interrupt enable register 3.1.9 3-10 
IIF 1S IIOF pins and interrupt flag register 3.1.10 3-12 

RS 19 Repeat start address 3.1.11 3-14 
RE 1A Repeat end address 3.1.11 3-14 
RC 1B Repeat counter 3.1.11 3-14 
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INST src, dst 

or 

INST1 src2, dst1 
II INST2 src3, dst2 

Each instruction begins with an assembler syntax expression. Labels may 
be placed either before the command (instruction mnemonic) on the same 
line or on the preceding line in the first column. The optional comment field 
that concludes the syntax is not included in the syntax expression. 
Space(s) are required between each field (label, command, operand, and 
comment fields). 

The syntax examples illustrate the common one-line syntax and the two-line 
syntax used in parallel addressing. Note that the two vertical bars II that indi­
cate a parallel addressing pair can be placed anywhere before the mnemon­
ic on the second line. The first instruction in the pair can have a label, but 
the second instruction cannot have a label. 

Operation Isrc I ~ dst 

or 

Isrc21 ~ dst1 
II src3 ~ dst2 

The instruction operation sequence describes the processing that takes 
place when the instruction is executed. For parallel instructions, the opera­
tion sequence is performed in parallel. Conditional effects of status register 
specified modes are listed for conditional instructions such as Bcond. 

Operands src general addressing modes (G): 
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00 register (any register in CPU primary register file) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (any register in CPU primary register file) 

or 

src2 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (RO - R7) 
src3 register (RO - R7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

Operands are defined according to the addressing mode and/or the type 
of addressing used. Note that indirect addressing uses displacements and 
the index registers. Refer to Chapter 5 for detailed information on address­
ing. 
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Example Instruction EXAMPLE 

Encoding 
31 2423 16 15 87 o 

1 0 10 10 I 
1 1 1 

I 

1 1 

I 

1 

INST G dst 
1 1 

src 

or 

31 2423 1615 

11 1 1 I'~ST~ ":NS'T21 
1 1 

101 01 0 I 1 1 

I 
1 1 1 1 

dst1 src3 dst2 
i I I 

src2 

Encoding examples are shown for general addressing and parallel address­
ing. The instruction pair for the parallel addressing example consists of 
INST1 and INST2. 

Description Instruction execution and its effect on the rest of the processor or memory 
contents are described. Any constraints on the operands imposed by the 
processor or the assembler are discussed. The description parallels and 
supplements the information given by the operation block. 

Cycles 1 

The digit specifies the number of cycles required to execute the instruction. 

Status Bits LUF Latched Floating-Point Underflow Condition Flag. 1 if a float­
ing-point underflow occurs, unchanged otherwise. 

LV Latched Overflow Condition Flag. 1 if an integer or floating-point 
overflow occurs, unchanged otherwise. 

UF Floating-Point Underflow Condition Flag. 1 if a floating-point un­
derflow occurs, 0 otherwise. 

N Negative Condition Flag. 1 if a negative result is generated. 0 
otherwise. In some instructions, this flag is the MSB of the output. 

Z Zero Condition Flag. 1 if a zero result is generated, 0 otherwise. For 
logical and shift instructions, 1 if a zero output is generated. 0 other­
wise. 

V Overflow Condition Flag. 1 if an integer or floating-point overflow 
occurs, 0 otherwise. 

C Carry Flag. 1 if a carry or borrow occurs, 0 otherwise. For shift in­
structions, this flag is set to the value of the last bit shifted out; 0 for 
a shift count of O. 

The seven condition flags are stored in the status register (ST). They pro­
vide information about the properties of the result or output of arithmetic or 
logical operations. 
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· EXAMPLE Example Instruction 

Mode Bit OVM Overflow Mode Flag. In general, integer operations are affected 
by the OVM bit value (described in Table 3-2 on page 3-6). 

£Kamp~ INST @98AEh,R5 

Before Instruction: 

11-20 

DP = 80h 
R5 = 07 6690 OOOOh = 2.30562500e+02 
Memory at 0080 98AEh = 5CDFh = 1.000011 07e + 00 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instryction: 

DP = 80h 
R5 = 00 6690 OOOOh = 1.80126953e + 00 
Memory at 80 98AEh = 5CDFh = 1.000011 07e + 00 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

The sample code presented in the above format shows the effect of the code 
on system pointers (e.g., DP or SP), registers (e.g., R1 or R5), memory at 
specific locations, and the seven status bits. The values given for the regis­
ters include the leading zeros to show the exponent in floating-point opera­
tions. Decimal conversions are provided for all register and memory loca­
tions. The seven status bits are listed in the order in which they appear in 
the assembler and simulator (see Section 11.2 on page 11-10 and 
Table 11-8 on page 11-12 for further information on these seven status 
bits). 
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Absolute Value of Floating-Point Number ABSF 

Syntax ABSF src, dst 

Operation Isrcl ~ dst 

Operands src general addressing modes (G): 
00 register (RO - R11) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (RO - R 11) 

Encoding 
31 2423 1615 87 0 
Iii Iii iii I 

i i i 

I 
i i i i 

I G dst src .000.000000. 

Description The absolute value of the src operand is loaded into the dst register. The 
src and dst operands are assumed to be floating-point numbers. 

An overflow occurs if src(man) =8000 OOOOh and src(exp) = 7Fh. The result 
is dst (man) = 7FFF FFFFh and dst (exp) = 7Fh. 

Cycles 1 

Status Bits LUF Unaffected. 
LV 1 if a floating-point overflow occurs, unchanged otherwise. 
UF O. 
N O. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if a floating-point overflow occurs, 0 otherwise. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 

Example ABSF R4, R7 

Before Instruction: 

R4 = 05C8000 F971 h = -9.90337307e + 27 
R7 = 0702511 OOAEh = 5.48527255e + 37 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R4 = 05C8000 F971 h = -9.90337307e + 27 
R7 = 05C7FFF 068Fh = 9.90337307e + 27 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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A'BSFIISTF Parallel ABSF and STF 

Syntax ABSF src2, dst1 
II STF src3, dst2 

Operation Isrc21-+ dst1 
II src3 -+ dst2 

Operands src2 indirect (disp = 0; 1, IRO, IR1) 
dst1 register (RO - R7) 
src3 register (RO - R7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

Encoding 
31 2423 I iii iii Iii ~100100 dst1 

87 o 

dst2 I i iii 

src2 i I i I I 

Description A floating-point absolute value and a floating-point store are performed in 
parallel. All registers are read at the beginning and loaded at the end of the 
execute cycle. This means that if one of the parallel operations (STF) reads 
from a register and the operation being performed in parallel (ABSF)'writes 
to the same register, then STF accepts as input the contents of the register 
before it is modified by the ABSF. 

If src2 and dst2 point to the same location, src2 is read before the write to 
dst2. If src3 and dst1 point to the same register, src3 is read before the write 
to dst1. 

An overflow occurs if src (man) = 80000000h and src (exp) = 7Fh. The result 
is dst (man) = 7FFFFFFFh and dst (exp) = 7Fh . 

. Cycles 1 

Status Bits LUF Unaffected. 
LV 1 if a floating-point overflow occurs, unchanged otherwise. 
UF O. 
N O. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if a floating-point overflow occurs, 0 otherwise. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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Parallel ABSF and STF ABSFIISTF 

Example ABSF *++AR3 (IRl) , R4 

II STF R4,*- AR7(1) 

Before Instruction: 

AR3 = 80 9800h 
IR1 = OAFh 
R4 = 733CO OOOOh = 1.79750e + 02 
AR7 = 80 98C5h 
Data at 80 98AFh = 588 4000h = - 6.118750e + 01 
Data at 80 98C4h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR3 = 80 98AFh 
IR1 = OAFh 
R4 = 574CO OOOOh = 6.118750e + 01 
AR7 = 80 98C5h 
Data at 80 98AFh = 588 4000h = -6.118750e + 01 
Data at 80 98C4h = 733 COOOh = 1.79750e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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ABSI Absolute Value of Integer 

Syntax 

Operation 

Operands 

Encoding 

ABSI sre, dst 

Isrcj-+ dst 

sre general addressing modes (G): 
00 register (any register in CPU primary register. file) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (any register in CPU primary register file) 

31 2423 1615 87 I I I I I I I I I I I I I I I I I I I I I I I I I .. 
o 00 0 0 0 0 0 1 G dst src 

o 
I I 

Description The absolute value of the sre operand is loaded into the dstregister. The 
src and dst operands are assumed to be signed integers. 

An overflow occurs if src = 8000 OOOOh. If ST(OVM) = 1, the result is 
dst = 7FFF FFFFh. If ST(OVM) = 0, the result is dst = 8000 OOOOh. 

Cycles 1 

Status Bits If ST (SET COND) = 0 and the destination register is RO - R11, the condition 
flags are modified. If ST (SET CON D) = 1, they are modified for all destina­
tion registers. 
LUF Unaffected. 
LV 1 if an integer overflow occurs, unchanged otherwise. 
UF O. 
N O. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an integer overflow occurs, 0 otherwise. 
C Unaffected. 

Mode Bit OVM Operation is affected by OVM bit value. 
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Example 1 ABS! RO, RO 
orABS! RO 

Before Instruction: 

RO = OFFFF FFCBh = - 53 

After Instruction: 

RO = 035h = 53 

Example 2 ABS! *ARl, R3 

Before Instruction: 

AR1 = 20h 
R3=Oh 
Data at 20h = OFFFF FFCBh = - 53 

After Instruction: 

AR1 = 20h 
R3 = 35h = 53 
Data at 20h = OFFFF FFCBh = - 53 

Absolute Value of Integer ABSI 
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ABSIIiSTI Parallel ABSI and STI 

Syntax ABSI src2, dst1 
II STI src3, dst2 

Operation I src21 -+ dst1 
II src3 -+ dst2 

Operands src2 indirect (disp = 0, 1, IRO, IR1) 
"dst1 register (RO - R7) 
src3 register (RO - R7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

Encoding 
31 2423 I iii iii Iii 
1100101 dst1 

1615 Iii Iii I i 000sr03 

87 
iii 

dst2 I i iii 
src2 

o 
i I 

Description An integer absolute value and an integer store are performed in parallel. All 
registers are read at the beginning and loaded at the end of the execute 
cycle. This means that if one of the parallel operations (STI) reads from a 
register and the operation being performed in parallel (ABSI) writes to the 
same register, then STI accepts as input the contents of the register before 
it is modified by the ABSI. 

If src2 and dst2 point to the same location, src2 is read before the write to 
dst2. 

An overflow occurs if src = 8000 OOOOh. If ST(OVM) = 1, the result is dst = 
7FFF FFFFh. If ST(OVM) = 0, the result is dst-= 8000 OOOOh. 

Cycles 1 

Status Bits LUF Unaffected. 
LV 1 if an integer overflow occurs, unchanged otherwise. 
UF O. 
N o. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an integer overflow occurs, 0 otherwise. 
C Unaffected. 

Mode Bit OVM Operation is affected by OVM bit value. 
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Example 

Parallel ABSI and STI ABSIIISTI 

ABSI *-AR5(l),R5 
II STIR1, *AR2- - (IR1) 

Before Instruction: 

AR5 = 80 99E2h 
R5=Oh 
R1 = 42h = 66 
AR2 = 80 98FFh 
IR1 = OFh 
Data at 80 99E1 h = OFFFF FFCBh = - 53 
Data at 80 98FFh = 2h = 2 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR5 = 80 99E2h 
R5 = 35h = 53 
R1 = 42h = 66 

AR2 = 80 98FOh 
IR1 = OFh 
Data at 80 99E1 h = OFFFF FFCBh = - 53 
Data at 80 98FFh = 42h = 66 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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ADDC Add Integer With Carry 

Syntax AD DC src, dst 

Operation dst + src + C -+ dst 

Operands srcgeneral addressing modes (G): 
o 0 register (any register in CPU primary register file) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (any register in CPU primary register file) 

Encoding 
31 2423 1615 87 o I 0 I 0 10 I 0 I 0 I I 0 I 1 I 0 I ~ I I IdS; I I I I I I I I I ~rc I I I 
Description The sum of the dst and src operands and the C (carry) flag is loaded into 

the dst register. The dst and src operands are assumed to be signed inte­
gers. 

Cycles 1 

Status Bits If ST (SET COND) = 0 and the destination register is RO- R11, the condition 
flags are modified. If ST (SET CON D) = 1, they are modified for all destina­
tion registers. 
LUF Unaffected. 
LV .1 if an integer overflow occurs, unchanged otherwise. 
UF O. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an integer overflow occurs, 0 otherwise. 
C 1 if a carry occurs, 0 otherwise. 

Mode Bit OVM Operation is affected by OVM bit value. 

Example ADDC Rl, R5 
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Before Instruction: 

R1 = OOFFFF 5C25h = - 41,947 
R5 = OOFFFF 019Eh = - 65,122 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R1 = OOFFFF 5C25h = - 41 ,947 
R5 = OOFFFE 5DC4h = - 107;068 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Add Integer With Carry, 3 Operands ADDC3 

Syntax ADDC3 sre2, sret, dst 

Operation sret + sre2 + C ~ dst 

Operands sret, sre2 
dst 

both type 1 or type 2 three-operand addressing modes 
register mode (any register in CPU primary register file) 

Encoding 

Type 1 
31 2423 1615 

dst I I I I I I I I I I I I 
~01 000000 T 

I I 

Type 2 

31 2423 
I I 

dst 

Instruction Word Fields 

T src1 addressing modes 

00 register mode (any CPU register) 

Type 1 01 indirect mode (disp = 0, 1, IRO, IR1) 

10 register mode (any CPU register) 

11 indirect mode (disp = 0,1, IRO, IR1) 

T src1 addressing modes 

00 register mode (any CPU register) 

01 register mode (any CPU register) 
Type 2 

10 
indirect mode *+ARn(S-bit unsigned 
displacement) 

11 
indirect mode *+ARn1 (S-bit unsigned 
displacement) 

I I 

src1 

I I 

src1 

87 

r 
I I 

src2 

I I 

src2 

src2 addressing modes 

register mode (any CPU register) 

register mode (any CPU register) 

indirect mode (disp = 0, 1, IRO, IR1) 

indirect mode (disp = 0, 1, IRO, IR1) 

src2 addressing modes 

a-bit signed immediate 

indirect mode *+ARn(S-bit unsigned 
displacement) 

a-bit signed immediate 

indirect mode *+ARn2(5-bit unsigned 
displacement) 

o 

o 

11-29 



ADDC3 Add Integer With Carry, 3 Operands 

Description The sum of the sre1 and src2 operands and value of the C (carry) flag is 
loaded into the dstregister. The sre1, sre2, and dstoperands are assumed 
to be signed integers. 

Cycles 1 

Status Bits If ST (SET COND) = 0, the condition flags are modified if the destination reg­
ister is RO - R11. If ST (SET CON D) = 1, they are modified for all destination 
registers. 
LUF Unaffected. 
lV 1 if an integer overflow occurs, unchanged otherwise. 
U o. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an integer overflow occurs, 0 otherwise. 
C 1 if a carry occurs, 0 otherwise. 

Mode Bit OVM Operation is affected by OVM bit value. 
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Add Floating-Point Values AD OF -
Syntax ADDF src, dst 

Operation dst + src ---? dst 

Operands srcgeneral addressing modes (G): 
00 register (RO - R11) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (RO - R 11 ) 

Encoding 
31 2423 1615 

I I I 87 
i i 

src 

Description The sum of the dst and src operands is loaded into the dst register. The dst 
and src operands are assumed to be floating-point numbers. 

Cycles 1 

Status Bits LUF 1 if a floating-point underflow occurs, unchanged otherwise. 
LV 1 if a floating-point overflow occurs, unchanged otherwise. 
UF 1 if a floating-point underflow occurs, 0 otherwise. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an floating-point overflow occurs, 0 otherwise. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 

Example ADDF *AR4++ (IR1) ,R5 

Before Instruction: 

AR4 = 80 9800h 
IR1 = 12Bh 
R5 = 057980 OOOOh = 6.23750e+01 
Data at 80 9800h = 86B 2800h = 4.7031250e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR4 = 80 992Bh 
IR1 = 12Bh 
R5 = 09052C OOOOh = 5.3268750e+02 
Data at 80 9800h = 86B 2800h = 4.7031250e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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ADDF3 Add Floating-Point Values, 3 Operands 

Syntax ADDF3 src2, src1, dst 

Operation src1 + src2 ~ dst 

Operands src1, src2 
dst 

both type 1 or type 2 three-operand addressing modes 
register mode (RO - R 11 ) 

Encoding 

Type 1 
31 2423 1615 87 

10.0.1.0.0.0.0'0.11 • • 
1 

• • • 
1 

• • 
T dst src1 src2 

Type 2 
31 2423 1615 87 

10.0.1.1.0.0.0.0.11 • • I • • • 
1 

• • 
T dst src1 src2 

Instruction Word Fields 

T src1 addressing modes src2 addressing modes 

00 register mode (RO - R11) register mode (RO - R11) 

Type 1 01 indirect mode (disp = 0,1, IRO, IR1) register mode (RO - R11) 

10 register mode (RO - R11) indirect mode (disp = 0, 1, IRO, IR1) 

11 indirect mode (disp = 0, 1, IRa, IR1) indirect mode (disp = 0, 1, IRO, IR1) 

T src1 addressing modes src2 addressing modes 

01 register mode {any CPU register} 
indirect mode *+ARn(5-bit unsigned 
displacement} 

'. 

Type 2 11 
indirect mode *+ARn1 {5-bit unsigned indirect mode * +ARn2(5-bit unsigned 
displacement} displacement} 

0 

I 
0 

I 
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Add Floating-Point Values, 3 Operands ADDF3 

Description The sum of the sre1 and sre2 operands is loaded into the dst register. The 
sre1, src2, and dstoperands are assumed to be floating-point numbers. 

Cycles 1 

Status BIts LUF 1 if a floating-point underflow occurs, unchanged otherwise. 
LV 1 if a floating-point overflow occurs, unchanged otherwise. 
UF 1 if a floating-point underflow occurs, 0 otherwise. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an floating-point overflow occurs, 0 otherwise. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 

Example ADDF3 *ARl (2), *+ARl (8) ,R4 

Before instruction: 

AR1 = 2FF820h 
R4=Oh 
Data at 22F F822h = 700 FOOOh = 1.28940e + 02 
Data at 22F F828h = 34C 2000h = 1.27590e + 01 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR1 = 2F F820h 
R4 = 070082 OOOOh = 1.41695313 e + 02 
Data at 22F F828h = 34C 2000h = 1.27590e + 01 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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ADDF311STF Parallel ADDF3 and STF 

Syntax ADDF3 src2, src1, dst1 
II STF src3, dst2 

Operation src1 + src2 ~ dst1 
II src3 ~ dst2 

Operands src1 register (RO - R7) 

Encoding 

src2 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (RO - R7) 
src3 register (RO - R7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

31 2423 I I I I I I I I I I 
1 1 0 0 1 1 0 dst1 

I I 

sre1 
I I 

dst2 
I I 

src2 

o 
I I 

Description A floating-point addition and a floating-point store are performed in parallel. 
All registers are read at the beginning and loaded at the end of the execute 
cycle. This means that if one of the parallel operations (STF) reads from a 
register and the operation being performed in parallel (ADDF3) writes to the 
same register, then STF accepts as input the contents of the register before 
it is modified by the ADDF3. 

If src2 and dst2 point to the same location, src2 is read before the write to 
dst2. 

Cycles 1 

Status Bits LUF 1 if a floating-point underflow occurs, unchanged otherwise. 
LV 1 if a floating-point overflow occurs, unchanged otherwise. 
UF 1 if a floating-point underflow occurs, 0 otherwise. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an floating-point overflow occurs, 0 otherwise. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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Parallel ADDF3 and STF ADDF311STF 
:.::ss· S~::: ~ S~ . 'r. .. ''Sf" ·S':·:r·f··'·'· .... .,.'(·sS:::·.,.:lI'~f WW" "S!"S!»."S s· 1 

Example ADDF3 *+AR3 (IR1) ,R2,RS 
II STF R4, *AR2 

Before Instruction: 

AR3 = 809800h 
IR1 = OA5h 
R2 = 070C80 OOOOh = 1 .4050e + 02 
R5=Oh 
R4 = 057840 OOOOh = 6.281250e + 01 
AR2 = 80 98F3h 
Data at 80 98A5h = 733 COOOh = 1.79750e + 02 
Data at 80 98F3h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR3 = 80 9800h 
IR1 = OA5h 
R2 = 070C80 OOOOh = 1.4050e+02 
R5 = 082020 OOOOh = 3.20250e + 02 
R4 = 057840 OOOOh = 6.281250e + 01 
AR2 = 80 98F3h 
Data at 80 98A5h = 733 COOOh = 1. 79750e + 02 
Data at 80 98F3h = 578 4000h = 6.28125e + 01 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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ADDI Add Integer 
1:::4 1;11 IS um J;IIii t_ 

Syntax ADDI sre, dst 

Operation dst + src -+ dst 

Operands. srcgeneral addressing modes (G): 
00 register (any register in CPU primary register file) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (any register in CPU primary register file) 

Encoding 
31 2423 1615 87 o I 0 I 0 I 01 0 I 0 I 0 I 11 0 I 0 I ~ 1 I IdS; I 1 I I I I I I I ;rc I I 1 

Description The sum of the dst and sre operands is loaded into the the dst register. The 
dst and sre operands are assumed to be signed integers. 

Status Bits If ST (SET CONO) = 0 and the destination register is RO- R11, the condition 
flags are modified. If ST (SET CONO) = 1, they are modified for all destina­
tion registers. 
LUF Unaffected. 
LV 1 if an integer overflow occurs, unchanged otherwise. 
UF O. 
N 1 if a negative result is generated, 0 otherwise. 
Z ·1 if a zero result is generated, 0 otherwise. 
V 1 if an integer overflow occurs, 0 otherwise. 
C 1 if a carry occurs, 0 otherwise. 

Mode Bit OVM Operation is affected by OVM bit value. 

Example ADDI R3, R7 

Before Instruction: 

R3 = OFFFF FFCBh = - 53 
R7 = 35h = 53 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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After Instruction: 

R3 = OFFFF FFCBh = - 53 
R7=Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Add Integer, 3 Operands ADDI3 

Syntax ADDI3 src2, src1, dst 

Operation src1 + src2 ~ dst 

Operands src1, src2 
dst 

both type 1 or type 2 three-operand addressing modes 
register mode (any register in CPU primary register file) 

Encoding 

Type 1 
31 2423 1615 

i I 

dst 

Type 2 

31 2423 1615 
I I 

dst 

Instruction Word Fields 

T src1 addressing modes 

00 register mode (any CPU register) 

lYpe1 01 indirect mode (disp = 0, 1, IRO, IR1) 

10 register mode (any CPU register) 

11 indirect mode (disp = 0, 1, IRO, IR1) 

T src1 addressing modes 

00 register mode (any CPU register) 

01 register mode (any CPU register) 
lYpe2 

10 indirect mode *+ARn(5-bit unsigned 
displacement) 

11 indirect mode *+ARn1 (5-bit unsigned 
displacement) 

i I r o 
I i 

srat src2 

87 o 
I I I I 

srat src2 

src2 addressing modes 

register mode (any CPU register) 

register mode (any CPU register) 

indirect mode (disp = 0, 1, IRO, IR1) 

indirect mode (disp = 0, 1, IRO, IR1) 

src2 addressing modes 

a-bit signed immediate 

indirect mode * +ARn(5-bit unsigned 
displacement) 

a-bit signed immediate 

indirect mode * +ARn2(5-bit unsigned 
displacement) 
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ADDI3 Add Integer, 3 Operands 

Description The sum of the src1 and src2 operands is loaded into the dst register. The 
src1, src2, and dstoperands are assumed to be signed integers. 

Cycles 1 

Status Bits If ST (SET COND) = 0 and the destination register is RO - R11, the condition 
flags are modified. If ST (SET CON D) = 1, they are modified for all destina­
tion registers. 
LUF Unaffected. 
LV 1 if an integer overflow occurs, unchanged otherwise. 
UF O. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an integer overflow occurs, 0 otherwise. 
C 1 if a carry occurs, 0 otherwise. 

Mode Bit OVM Operation is affected by OVM bit value. 
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Parallel ADDI3 and STI ADDI311STI 
S~f -

Syntax ADDI3 src2, src1, dst1 
II STI src3, dst2 

Operation src1 + src2 --t dst1 
II src3 --t dst2 

Operands src1 register (RO - R7) 
src2 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (RO - R7) 
src3 register (RO - R7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

Encoding 

(' I"" I 

2423 1615 87 0 
I I 

I 
I I 

I I I I I I I I I 

I 
I I I I I I ><0011< dst1 src1 src3 : dst2 src2 

Description An integer addition and an integer store are performed in parallel. All regis­
ters are read at the beginning and loaded at the end of the execute cycle. 
This means that if one of the parallel operations (STI) reads from a register 
and the operation being performed in parallel (ADDI3) writes to the same 
register, then STI accepts as input the contents of the register before it is 
modified by the ADDI3. 

If src2 and dst2 point to the same location, src2 is read before the write to 
dst2. 

Cycles 1 

Status Bits LUF Unaffected. 
LV 1 if an integer overflow occurs, unchanged otherwise. 
UF O. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an integer overflow occurs, 0 otherwise. 
C 1 if a carry occurs, 0 otherwise. 

Mode Bit OVM Operation is affected by OVM bit value. 
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ADDI311STI Parallel ADDIS and STI 

Example 

~~A$ iIII_leI:S: 

ADDI3 *ARO- -(IRO),RS,RO 
II STI R3, *AR7 

Before Instruction: 

ARO = 80 992Ch 
IRO = OCh 
R5 = ODCh = 220 
RO=Oh 
R3 = 35h = 53 
AR7 = 80 983Bh 
Data at 80 992Ch = 12Ch = 300 
Data at 80 983Bh = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

ARO = 80 9920h 
IRO = OCh 
R5 = ODCh = 220 
RO = 208h = 520 
R3 = 35h = 53 
AR7 = 80 983~h 
Data at 80 992Ch = 12Ch = 300 
Data at 80 983Bh = 35h = 53 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Bitwise Logical-AND AND 

Syntax AND src, dst 

Operands dst AND src -+ dst 

Operands srcgeneral addressing modes (G): 
00 register (any register in CPU primary register file) 
01 direct 
1 0 indirect 
1 1 immediate (not sign-extended) 

dst register (any register in CPU primary register file) 

Encoding 
31 2423 1615 87 o 
I ii Iii iii I 000000101 G 

I i 

src 

Description The bitwise logical-AND between the dst and src operands is loaded into 
the dstregister. The dstand srcoperands are assumed to be unsigned inte­
gers. 

Cycles 1 

Status Bits If ST (SET CON D) = 0 and the destination register is RO - R11, the condition 
flags are modified. If ST (SET CON D) = 1, they are modified for all destina­
tion registers. 
LUF Unaffected. 
LV Unaffected. 
UF o. 
N MSB of the output. 
Z 1 if a zero result is generated, 0 otherwise. 
V O. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 

Example AND Rl,R2 

Before Instruction: 

R1 = BOh 
R2 = OAFFh 
LUF LV UF N Z V C = 0 0 0 0 0 0 1 

After Instruction: 

R1 = BOh 
R2 = BOh 
LUF LV UF N Z V. C = 0 0 0 0 0 0 1 
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AND3 Bitwise Logical-AND, 3 Operands 

Syntax AND3 src2, src1, dst 

Operation src1 & src2 ~ dst 

Operands src1, src2 
dst 

both type 1 or type 2 three-operand addressing modes 
-register mode (any register in CPU primary register file) 

Encoding 

Type 1 
31 2423 1615 87 

101 0 1 1 1 0 1 0 10 10 11 111 
1 1 

1 

1 1 1 

1 

1 1 

T dst sre1 src2 

Type 2 
31 2423 1615 87 

1010111110101011111 
1 1 

1 

1 1 1 

1 

1 1 

T dst sre1 sre2 

Instruction Word Fields 

T src1 addressing modes src2 addressing modes 

00 register mode (any CPU register) register mode (any CPU register) 

lYpe1 01 indirect mode (disp = 0, 1, IRO, IR1) register mode (any CPU register) 

10 register mode (any CPU register) indirect mode (disp = 0, 1, IRO, IR1) 

11 indirect mode (disp = 0, 1, IRO, IR1) indirect mode (disp = 0, 1, IRO, IR1) 

T src1 addressing modes src2 addressing modes 

00 register mode (any CPU register) a-bit signed immediate 

01 register mode (any CPU register) indirect mode * +ARn(5-bit unsigned 
displacement} 

10 indirect mode *+ARn(5-bit unsigned a-bit signed immediate displacement} 

11 indirect mode * +ARn 1 (5-bit unsigned indirect mode * +ARn2(5-bit unsigned 
displacement) displacement} 

0 

I 
0 

1 
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Bitwise Logical-AND with Complement AND3 
".,111);1$ dJ. ; ; ; d 51.'" ; 

Description The bitwise logical-AND between the sre1 and src20perands is loaded into 
the dst register. The sre1, sre2, and dst operands are assumed to be un­
signed integers. 

Cycles 1 

Status Bits If ST (SET COND) = 0 and the destination register is RO - R11, the condition 
flags are modified. If ST (SET COND) = 1, they are modified for all destina­
tion registers. 
LUF Unaffected. 
LV Unaffected. 
UF O. 
N MSB of the output. 
Z 1 if a zero result is generated, 0 otherwise. 
V O. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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AND311STI Parallel AND3 and STI 

Syntax AND src2, sre1, dst1 
II STI sre3, dst2 

Operation sre1 AND src2 -+ dst1 
II sre3 -+ dst2 

Operands sre1 register (RO - R7) 
src2 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (RO - R7) 
sre3 register (RO - R7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

Encoding 
31 2423 I I I I I I I I I I 
1101000 dst1 

i i 
src1 

1615 
I I I I 
src~ 

87 o 
i i I I I I I 

dst2 src2 I I 
Description A bitwise logical-AND and an integer store are performed in parallel. All reg­

isters are read at the beginning and loaded at the end of the execute cycle. 
This means that if one of the parallel operations (STI) reads from a register 
and the operation being performed in parallel (AND3) writes to the same 
register, then STI accepts as input the contents of the register before it is 
modified by the AND3. 

If sre2 and dst2 point to the same location, src2 is read before the write to 
dst2. 

Cycles 1 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF O. 
N MSB of the output. 
Z 1 if a zero result is generated, 0 otherwise. 
V O. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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Parallel AND3 and STI AND311STI 

EXampm AND3 *+AR1(IRO),R4,R7 
II STI R3, *AR2 

Before Instruction: 

AR1 = 8099F1h 
IRO == 8h 
R4 = OA323h 
R7=Oh 
R3 = 35h = 53 
AR2 = 80 983Fh 
Data at 80 99F9h = 5C53h 
Data at 80 983Fh = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR1 = 80 99F1h 
RO=8h 
R4= OA323h 
R7 = 03h 
R3 = 35h = 53 
AR2 = 80 983Fh 
Data at 80 99F9h = 5C53h 
Data at 80 983Fh = 35h = 53 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

11-45 



ANDN Bitwise Logical-AND With Complement 

Syntax ANON sre, dst 

Operation dst AND -sre ---+ dst 

Operands sregeneral addressing modes (G): 
o 0 register (any register in CPU primary register file) 
01 direct 
1 0 indirect 
1 1 immediate (not sign-extended) 

dst register (any register in CPU primary register file) 

Encoding 
31 24 23 16 15 8 7 

Description The bitwise logical-AND between the dst operand and the bitwise logical 
complement (-) of the sre operand is loaded into the dst reg.ister. The dst 
and sre operands are assumed to be unsigned integers. 

Cycles 1 

Status Bits If ST (SET CON D) = 0 and the destination register is RO - R11 , the condition 
flags are modified. If ST (SET COND) = 1 , they are modified for all destina­
tion registers. 
LUF Unaffected. 
LV Unaffected. 
UF o. 
N MSB of the output. 
Z 1 if a zero result is generated, 0 otherwise. 
V O. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 

exampm ANDN @980Ch,R2 

Before Instruction: 

DP = 80h 
R2 = OC2Fh 
Data at 80 980Ch = OA02h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
After Instruction: 

DP =80h 
R2 = 042Dh 
Data at 80 980Ch = OA02h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Bitwise Logical-ANDN, 3 Operands ANON3 
_ Jt$:;~SS:~ 

Syntax ANON3 src2, sre1, dst 

Operation sre1 AND .... sre2 ~ dst 

Operands sre1, sre2 
dst 

both type 1 or type 2 three-operand addressing modes 
register mode (any register in CPU primary register file) 

Encoding 

Type 1 
31 2423 1615 

dst I I 
i i 

Type 2 

31 2423 1615 
I I 

dst I I 
Instruction Word Fie/ds 

T src1 addressing modes 

00 register mode (any CPU register) 

Type 1 01 indirect mode (disp = 0, 1, IRa, IRt) 

10 register mode (any CPU register) 

11 indirect mode (disp = 0, 1, IRa, IR1) 

T src1 addressing modes 

00 register mode (any CPU register) 

01 register mode (any CPU register) 
Type 2 

10 
indirect mode *+ARn(5-bit unsigned 
displacement) 

11 
indirect mode *+ARn1 (5-bit unsigned 
displacement) 

I I 

src1 

I i 

src1 

87 

r 
I I 

src2 

I i 
src2 

src2 addressing modes 

register mode (any CPU register) 

register mode (any CPU register) 

indirect mode (disp = 0, 1, IRa, IR1) 

indirect mode (disp = 0, 1, IRa, IR1) 

src2 addressing modes 

8-bit signed immediate 

indirect mode *+ARn(5-bit unsigned 
displacement) 

8-bit signed immediate 

indirect mode * +ARn2(5-bit unsigned 
displacement) 
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ANDN3 Bitwise Logical-ANDN, 3 Operands 
4iI"'~'" ~i'I Io'J ~ 1'1 I ; ~ I;S· *' 

DescrlptlQn The bitwise logical-AND between the sre1 operand and the bitwise logical 
complement (-) ofthe src20perand is loaded into the dstregister. The sre1. 
src2. and dst operands are assumed to be unsigned integers. 

Cycles 1 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF o. 
N MSB of the output. 
Z 1 if a zero result is generated. 0 otherwise. 
V O. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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Arithmetic Shift ASH 

Syntax ASH count, dst 

Operation If (count ~ 0): 
dst« count ~ dst 

Else: 
dst» I count I ~ dst 

Operands count general addressing modes (G): 

Encoding 

00 register (any register in CPU primary register file) 
o 1 direct 
1 0 indirect 
1 1 immediate 

dst register (any register in CPU primary register file) 

31 2423 87 

I I I I I I I I I I 
000000111G 

I i 

dst 

I I 

count 

Description The seven least-significant bits of the count operand are used to generate 
the twos-complement shift count of up to 32 bits. 

If the count operand is greater than zero, the dstoperand is left-shifted by 
the value of the count operand. Low-order bits shifted in are zero-filled, and 
high-order bits are shifted out through the C (carry) bit. 

Arithmetic left-shift: 

[£]~,--__ ds_t _--,I~ 0 

If the count operand is less than zero, the dstoperand is right-shifted by the 
absolute value of the countoperand. The high-order bits of the dst operand 
are sign-extended as it is right-shifted. Low-order bits are shifted out 
through the C (carry) bit. 

Arithmetic right-shift: 

If the count operand is zero, no shift is performed, and the C (carry) bit is 
set to O. The count and dst operands are assumed to be signed integers. 
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ASH Arithmetic Shift 
1 ~ ~ J :I~ib SUiIlS s t: 

Cycles 1 

Status Bits If ST (SET COND) = 0 and the destination register is RO - R11, the condition 
. flags are modified. If ST (SET COND) = 1, they are modified for all destina­
tion registers. 
LUF Unaffected. 
LV 1 if an integer overflow occurs, unchanged otherwise. 
UF O. 
N MSB of the output. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an integer overflow occurs, 0 otherwise. 
C Set to the value of the last bit shifted out. 0 for a shift count of O. 

Mode Bit OVM Operation is not affected by OVM bit value. 

Example 1 ASH Rl, R3 

Before Instruction: 

R1 = 10h = 16 
R3 = OAEOOOh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R1 = 10h 
R3 = OEOOOO OOOOh 
LUF LV UF N Z V C = 0 1 0 1 0 1 0 

Example2 ASH @98C3h,R5 

Before Instruction: 

DP = 80h 
RS = OAECO 0001 h 
Data at 80 98C3h = OFFE8 = - 24· 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

DP =80h 
RS = OFFFF FFAEh 
Data at 80 98C3h = OFFE8 = - 24 
LUF LV UF N Z V C = 0 0 0 1 0 0 1 
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Syntax ASH3 count, src, dst 

Operation if (count ~ 0) 

src < < count ~ dst 
Else: 
src> > I count I ~ dst 

Arithmetic Shift, 3 Operands ASH3 

Operands src, count 
dst 

both type 1 or type 2 three-operand addressing modes 
register mode (any register in CPU primary register file) 

Encoding 

Type 1 
31 2423 

Type 2 

31 2423 

I I 

dst 

I I 

dst 

1615 I I 
Instruction Word Fields 

T src1 addressing modes 

00 register mode (any CPU register) 

Type 1 01 indirect mode (disp = 0, 1, IRO, IR1) 

10 register mode (any CPU register) 

11 indirect mode (disp = 0, 1, IRO, IR1) 

T src1 addressing modes 

00 register mode (any CPU register) 

01 register mode (any CPU register) 
Type 2 

indirect mode *+ARn(5-bit unsigned 
10 displacement) 

11 
indirect mode *+ARn1 (5-bit unsigned 
displacement) 

I I 

sret 

I I 

sret 

87 

r 
I I 

sre2 

I I 

sre2 

src2 addressing modes 

register mode (any CPU register) 

register mode (any CPU register) 

indirect mode (disp = 0, 1, IRO, IR~) 

indirect mode (disp = 0, 1, IRO, IR1) 

src2 addressing modes 

8-bit signed immediate 

indirect mode * +ARn(5-bit unsigned 
displacement) 

8-bit signed immediate 

indirect mode * +ARn2(5-bit unsigned 
displacement) 

o 

o 
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ASH3 Arithmetic Shift. 3 Operands 

o.scrlptlon The seven least-significant bits of the count operand are used to generate 
the twos-complement shift count. 

If the count operand is greater than zero, the src operand is left-shifted by 
the value of count. Low-order bits shifted in are zero-filled, and high-order 
bits are shifted out through the status register's C (carry) bit. 

Arithmetic left-shift: 

IMSBI~~ ____ sfl_c __ ~I~o 
If the count operand is less than zero, the srcoperand is right-shifted by the 
absolute value of count (e.g. -4 = right-shift 4. The high-order bits of the 
src operand are sign-extended as they are right-shifted. Low-order bits are 
shifted out through the C (carry) bit. 

Arithmetic right-shift: 

I MSB ~,--I __ s_rc_--,~ 0 

If the count operand is zero, no shift is performed, and the C (carry) bit is 
set to o. The count, src, and dst operands are assumed to be signed inte­
gers. 

Cycles 1 

Status Bits LUF Unaffected. 
LV 1 if an integer overflow occurs, unchanged otherwise. 
UF o. 
N MSB of the output. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an integer overflow occurs, 0 otherwise. 
C Set to the value of the last bit shifted out. 0 for a shift count of O. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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Parallel ASH3 and STI ASH311STI 

Syntax ASH3 count, src2, dst1 
II STI src3, dst2 

Operation If (count~ 0): 
src2« count ~ dst1 

Else: 
src2» Icoun~ -+ dst1 

II src3 -+ dst2 

Operands count register (RO - R7) 

Encoding 

src2 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (RO - R7) 
src3 register (RO - R7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

31 2423 1615 87 

1 111111111111111111 
1 1 0 1 0 0 1 dst1 count src3 

I i 
dst2 I I I I I 

src2 I 1 
Description The seven least-significant bits of the count operand register are used to 

generate the twos-complement shift count of up to 32 bits. 

If the count operand is greater than zero, the dst operand is left-shifted by 
the value of the count operand. Low-order bits shifted in are zero-filled, and 
high-order bits are shifted out through the C (carry) bit. 

Arithmetic left-shift: 

~~ ...... __ s_cr2_----,I~ 0 

If the count operand is less than zero, the dstoperand is right-shifted by the 
absolute value of the count operand. The high-order bits of the dstoperand 
are sign-extended as it is right-shifted. Low-order bits are shifted out 
through the C (carry) bit. 

Arithmetic right-shift: 

1 Si~~tOf~ .... 1 __ sfl_c2 __ ..... I-7~ 

If the count operand is zero, no shift is performed, and the C (carry) bit Is 
set to O. The count and dst operands are assumed to be Signed integers. 

11-53 



ASH311STI Parallel ASH3 and STI 

All registers are read at the beginning and loaded at the end of the execute 
cycle. This means that if one of the parallel operations (STI) reads from a 
register and the operation being performed in parallel (ASH3) writes to the 
same register, then STI accepts as input the contents of the register before 
it is modified by the ASH3. If src2 and dst2 point to the same location, src2 
is read before the write to dst2. 

Cycles 1 

Status Bits LUF Unaffected. 
LV 1 if an integer overflow occurs, unchanged otherwise. 
UF O. 
N MSB of the output. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an integer overflow occurs, 0 otherwise. 
C Set to the value of the last bit shifted out. 0 for a shift count of O. 

Mode Bit OVM Operation is not affected by OVM bit value. 

Example ASH3 Rl, *AR6++ (IRl) ,RO 
II STI R5, *AR2 

Before Instruction: 

AR6 = 80 9900h 
IR1 = 8Ch 
R1 = OFFE8h = - 24 
RO::: Oh 
R5::: 35h::: 53 
AR2 ::: 80 98A2h 
Data at 80 9900h ::: OAEOO OOOOh 
Data at 80 98A2h ::: Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR6 = 80 998Ch 
IR1 ::: 8Ch 
R1 = OFFE8h = - 24 
RO = OFFFF FFAEh 
R5 = 35h = 53 
AR2 ::: 80 98A2h 
Data at 80 9900h ::: OAEOO OOOOh 
Data at 80 98A2h ::: 35h ::: 53 
LUF LV UF N Z V C = 0 0 0 1 0 0 a 
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Branch Conditionally (Standard) Bcond 

Syntax Bcond src 

Operation If cond is true: 
If src is in register addressing mode (any register in CPU primary 

registe-r file), 
src~ PC. 

If src is in PC-relative mode (label or address), 
displacement + PC + 1 ~ PC. 

Else, continue. 

Operands srcconditional-branch addressing modes (B): 

Encoding 
31 

o register 
1 PC-relative 

1615 87 

cond register or displacement 

Description Bcond signifies a standard branch that executes in four cycles. A branch is 
performed if the condition is true (since a pipeline flush also occurs on a true 
condition; see Section 10.2 on page 10-4). If the src operand is expressed 
in register addressing mode, the contents of the specified register are 
loaded into the PC. If the srcoperand is expressed in PC-relative mode, the 
assembler generates a displacement: displacement = label- (PC of branch 
instruction + 1). This displacement is stored as a 16-bit signed integer in the 
16 least significant bits of the branch instruction word. This displacement is 
added to the PC of the branch instruction plus 1 to generate the new PC. 

The TMS320C40 provides 20 condition codes that can be used with this in­
struction (see Section 11.2 on page 11-10 for a list of condition mnemonics, 
encoding, and flags). 

Cycles 1 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF Unaffected. 
N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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Bcond Branch Conditionally (Standard) 

Example BZ RO 

Before Instruction: 

PC = 2BOOh 
RO = 0003 FFOOh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

PC = 3FFOOh 
RO = 0003 FFOOh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Syntax BcondAF src 

Operation If (cond is true) 
If (src is a register) 
src~ PC 

If (src is a displacement) 
src + PC of branch + 3 ~ PC 

Else: 
If ( cond is false) 

annul execute phase results of next three instructions and continue 

Operands src conditional-branch addressing modes 

Encoding 

31 

o 1 1 0 cond register or displacement 

Instruction Word Fields 

B src addressing modes 

0 register mode 

1 PC-relative mode 

Description If the condition is true, a branch and the three instructions following the 
branch instruction are executed. If the condition is false, it annuls the effect 
of the execute phase of the next three instructions and execution continues. 
If the src operand is in register mode, then the contents of the specified reg­
ister are loaded into the PC. If the srcoperand is in PC-relative mode, then 
the sum of the PC of the branch instruction + 3 and the src is loaded into the 
PC. In PC-relative mode the srcfield is interpretted as a 16-bit signed interg­
er. 

None of the three instructions following the BcondAF may be an instruction 
that modifies the program flow. Interrupts are disabled for the duration of 
the BcondAF instruction. BcondAF is particular useful for controlling the exit 
at the bottom of a loop. 
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BcondAF Branch Conditionally Delayed and Annul If False 

Cycles 1 

.Status Bits LUF Unaffected. 
LV Unaffected. 
UF Unaffected. 
N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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Branch Conditionally Delayed and Annul If True BcondAT 

Syntax BcondAT src 

Operation If (cond is true) 
If (src is a register) 

srC--7 PC 
annul execute phase results of next three instructions. 

If (src is a displacement) 
src + PC of branch +3 --7 PC 
annul execute phase results of next three instructions. 

Else, continue. 

Operands src conditional-branch addressing modes 

Encoding 

87 

register or displacement 

Instruction Word Fields 

B src addressing modes 

0 register mode 

1 PC-relative mode 

Description If the condition is true, it performs a branch and annuls the effect of the ex­
ecute phase of the next three instructions. If the src operand is expressed 
in register mode, then the contents of the specified register are loaded into 
the PC. If the src operand is in PC-relative mode, then the sum of the PC 
of the branch instruction + 3 and the src is loaded into the PC. In PC-relative 
mode, the src field is interpreted as a 16-bit signed interger. 

None of the three instructions following the BcondAT may be an instruction 
that modifies the program flow. Interrupts are disabled for the duration of 
the BcondAT instruction. 

BcondAT instruction will not annul the status signals at the external inter­
faces. The BcondAT is particular useful for controlling the entry at the top 
of the loop. 
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BcondAT Branch Conditionally Delayed and Annul If True 
;::::;::::~. : !OS :::: • ,S ~ "lSYCW:;:"- ~;. ~9.~. m.';:'~~~»;SO~~;-~~~~~»l:»~.x~~ ... ~-:::::.~::.*.«~~ 

Cycles 1 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF Unaffected. 
N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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Branch Conditionally (Delayed) BcondD 

Syntax BcondD src 

Operation If cond is true: 
If src is in register addressing mode (any register in CPU primary 
register file) 
src-+ PC. 

If src is in PC-relative mode (label or address), 
displacement + PC + 3 -+ PC. 

Else, continue. 

Operands src conditional-branch addressing modes (B): 
o register 
1 PC-relative 

Description BconaD signifies a delayed branch that allows the three instructions after 
the delayed branch to be fetched before the PC is modified. The effect is a 
single-cycle branch, and the three instructions following BconaD will not af­
fect the condo None of the three instructions following BconaD may be an 
instruction that modifies program flow. 

A branch is performed if the condition is true. If the srcoperand is expressed 
in register addressing mode, the contents of the specified register are 
loaded into the PC. If the srcoperand is expressed in PC-relative mode, the 
assembler generates a displacement: displacement = label- (PC of branch 
instruction + 3). This displacement is stored as a 16-bit signed integer in the 
16 least significant bits of the branch instruction. This displacement is added 
to the PC of the branch instruction plus 3 to generate the new PC. The 
TMS320C40 provides 20 condition codes that can be used with this instruc­
tion (see Section 11.2 on page 11-10 for a list of condition mnemonics, en­
coding, and fl8,gs). 

Cycles 1 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF Unaffected. 
N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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BcondD Branch Conditionally (Delayed) 

Example BNZD 36 (36 = 24h) 

Before Instruction: 

PC = 50h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

PC = 77h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

11-62 Assembly Language Instructions 



Branch Unconditionally (Standard) BR 

Syntax BR src 

Operation PC + 1 + src ~ PC 

Operands src 24-bit signed immediate displacement 

Encoding 
31 2423 

I I I I I I I I I I 
01100000 

1615 
I I I 

87 
I I iii I I 

src (displacement) 

o 
I I 

Description Performs an unconditional delayed branch. The srcoperand is assumed to 
be a 24-bit signed integer. 

Cycles 4 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF Unaffected. 
N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 

11-63 



BRD Branch Unconditionally (Delayed) 

Syntax BRD src 

Operation PC + 3 + src ~ PC 

Operands src 24-bit signed immediate displacement 

Encoding 
31 2423 

I ii iii i I I i 
01100001 

1615 
i I I 

87 
I i I I i I i 

src (displacement) 

o 
i I 

Description Performs an unconditional delayed branch. The srcoperand is assumed to 
be a 24-bit signed integer. Interrupts are disabled during the BRD 
instruction. 

The three instructions following the BRD instruction are fetched and 
executed. None of these three instructions may modify the program flow 
(e.g., affect the PC value). 

Cycles 1 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF Unaffected. 
N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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Call Subroutine CALL 

Syntax 

Operation 

CALL src 

Next PC -+ *(++SP) 
PC + 1 + src -+ PC 

Operands src 24-bit signed immediate displacement 

Encoding 
31 2423 I I I I I I I I I I 
01100010 

1615 87 
I i I I I iii iii 

src (displacement) 

o 
I I 

Description Performs a call. The next PC value is pushed onto the system stack. The 
src operand + 1 + PC address of the CALL is loaded into the PC. The src 
operand is assumed to be a 24-bit signed immediate operand (displace­
ment). 

Cycles 4 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF Unaffected. 
N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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CALLcond Call Subroutine Conditionally 

Syntax CALLcond src 

Operation If cond is true: 
Next PC -+ * ++SP 
If src is in register addressing mode (any register in CPU primary 
register file), 
src-+ PC. 

If src is in PC-relative mode (label or address), 
displacement + PC + 1 -+ PC. 

Else, continue. 

Operands src conditional-branch addressing modes (8): 

Encoding 
31 

o register 
1 PC-relative 

o 1 1 1 0 0 

Description A call is performed if the condition is true. If the condition is true, the next 
PC value is pushed onto the system stack. If the src operand is expressed 
in register addressing mode, the contents of the specified register are 
loaded into the PC. If the srcoperand is expressed in PC-relative mode, the 
assembler generates a displacement: displacement = label- (PC of call in­
struction + 1). This displacement is stored as a 16-bit signed integer in the 
16 least significant bits of the call instruction word. This displacement is 
added to the PC of the call instruction plus 1 to generate the new PC. 

The TMS320C40 provides 20 condition codes that can be used with this in­
struction (see Section 11.2 on page 11-10 for a list of condition mnemonics, 
encoding, and flags). 

Cycles 5 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF Unaffected. 
N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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Call Subroutine Conditionally CALLcond 

SKamp~ CALLNZ R5 

Before Instruction; 

PC = 123h 
SP = 80 983Sh 
RS = 789h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

PC = 789h 
SP= 80 9836h 
R5 == 789h 
Data at 80 9836h = 124h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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CMPF Compare Floating-Point Values 

Syntax CMPF src, dst 

Operation dst - src 

Operands srcgeneral addressing modes (G): 
00 register (RO - R11) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (RO - R 11 ) 

Encoding 
31 2423 1615 

I ii Iii iii I 000001000G ~/ iii 87 o 
i i 

src 

Description The srcoperand is subtracted from the dstoperand. The result is not loaded 
into any register, thus allowing for nondestructive compares. The dst and 
src operands are assumed to be floating-point numbers. 

Cycles 1 

Status Bits LUF 1 if a floating-point underflow occurs, unchanged otherwise. 
LV 1 if a floating-point overflow occurs, unchanged otherwise. 
UF 1 if a floating-point underflow occurs, 0 otherwise. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if a floating-point overflow occurs, 0 otherwise. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 

EKamp~ CMPF *+AR4,R6 
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BefOre Instruction: 

AR4 = 80 98F2h 
R6 = 070C80 OOOOh = 1.4050e+02 
Data at 80 98F3h = 070C 8000h == 1.4050e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR4 = 80 98F2h 
R6 = 070C80 OOOOh = 1.4050e + 02 
Data at 80 98F3h = 070C 8000h = 1.4050e + 02 
LUF LV UF N Z V C = 0 0 0 0 1 0 0 

Assembly Language Instructions 



Compare Floating-Point Values, 3 Operands CMPF3 

SyntBx CMPF3 sre2, sre1 

Operation sre1 - src2 

Operands sret - srcf2. both type 1 or type 2 three-operand addressing modes 

Encoding 

lYpe1 
31 2423 1615 I ' , , , , , , , I 001000110 

Type 2 

31 2423 1615 I 0 ' 0 ' 1 ' 1 ' 0 ' 0 ' 1 ' 0 ' 1 1 T 1 0 ' 0' 0' 0' 01 ' 

Instruction Word Fields 

T sre1 addressing modes 

00 register mode (RO - R11) 

Type 1 01 indirect mode (disp = 0,1, IRO, IR1) 

10 register mode (RO - R11) 

11 indirect mode (disp = 0, 1, IRO, IR1) 

T sre1 addressing modes 

01 register mode (any CPU register) 

11 indirect mode *+ARn1(S-bit unsigned 
displacement) Type 2 

87 o 
I I I I 

src1 src2 

, , r I I 

src1 src2 

sre2 addressing modes 

register mode (RO - R 11 ) 

register mode (RO - R 11 ) 

indirect mode (disp = 0, 1, IRO, IR1) 

indirect mode (disp = 0, 1, IRO, IR1) 

sre2 addressing modes 

indirect mode * +ARn(S-bit unsigned 
displacement) 

indirect mode * +ARn2(S-bit unsigned 
displacement) 
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CMPF3 Compare Floating-Point Values, 3 Operands 

Description 

Cycles 

Status Bits 

Mode Bit 
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The src2 operand is subtracted from the src1 operand. The result is not 
loaded into any register. This allows for nondestructive compares. The src1 
and src2 operands are assumed to be floating-point numbers. 

1 

LUF 1 if a floating-point underflow occurs, unchanged otherwise. 
LV 1 if a floating-point overflow occurs, unchanged otherwise. 
UF 1 if a floating-point underflow occurs, 0 otherwise. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if a floating-point overflow occurs, 0 otherwise. 
C Unaffected. 

OVM Operation is not affected by OVM bit value. 
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Compare Integer CMPI 

Syntax CMPI src, dst 

Operation dst - src 

Operands srcgeneral addressing modes (G): 
00 register (any register in CPU pr~mary register file) 
01 direct 
1 0 Indirect 
1 1 immediate 

dst register (any register in CPU primary register file) 

Encoding 
31 2423 

I I I I I I I I I I 
000001001G 

87 
I i 

sra 

o , I 
Description The srcoperand is subtracted from the dstoperand. The result is not loaded 

into any register, thus allowing for nondestructive compares. The dst and 
src operands are assumed to be signed integers. 

Cycles 1 

Status Bits LUF Unaffected. 
LV 1 if an integer overflow occurs, unchanged otherwise. 
UF O. 
N 1 if a negative result is generated. 0 otherwise. 
Z 1 if a zero result is generated. 0 otherwise. 
V 1 if an integer overflow occurs. 0 otherwise. 
C 1 if a borrow occurs. 0 otherwise. 

Mode Bit OVM Operation is not affected by OVM bit value. 

Example eMFI R3, R7 

Before Instruction: 

R3 = 898h = 2200 
R7 = 3E8h = 1000 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R3 = 898h = 2200 
R7 = 3E8h = 1000 
LUF LV UF N Z V C = 0 0 0 1 0 0 0 
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\ 

CMPI3 Compare Integer, 3 Operands 

Syntax CMPI3 src2, sre1 

Operation sre1 - src2 

Operands sre1 -src!2. both type 1 or type 2 three-operand addressing modes 

Encoding 

lYpe1 
31 2423 1615 

10· 0 ·1 • o· O· O· 1 • 1 • 11 

lYpe2 
31 2423 1615 

1 • • • • • • • • 1 T 1 O· O· O· O· 01 • 001100111. . 

Instruction Word Fie/ds 

T src1 addressing modes 

00 register mode (any CPU register) 

lYpe1 01 indirect mode (disp = 0, 1, IRO, IR1) 

10 register mode (any CPU register) 

11 indirect mode (disp = 0, 1, IRO, IR1) 

T src1 addressing modes 

00 register mode (any CPU register) 

01 register mode (any CPU register) 

10 indirect mode *+ARil(5-bit unsigned 
displacement) 

11 indirect mode *+ARn1(5-bit unsigned 
displacement) 

I i 
src1 

•• 
src1 

87 

87 

I I i I 
src2 

I I 

src2 

src2 addressing modes 

register mode (any CPU register) 

register mode (any CPU register) 

indirect mode (disp - 0, 1, IRO, IR1) 

indirect mode (disp = 0, 1, IRO, IR1) 

src2 addressing modes 

8-bit signed immediate 

indirect mode * +ARn(5-bit unsigned 
displacement) 

8-bit signed immediate 

indirect mode * +ARn2(5-bit unsigned 
displacement) 

o 

o 
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Compare Integer, 3 Operands CMPI3 

Description The src2 operand is subtracted from the src1 operand. The result is not 
loaded into any register. This allows for nondestructive compares. The src1 
and src2 operands are assumed to be signed integers. 

Cycles 1 

Status Bits LUF Unaffected. 
LV 1 if an integer overflow occurs. unchanged otherwise. 
UF O. 
N 1 if a negative result is generated. 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an integer overflow occurs. 0 otherwise. 
C 1 if a borrow occurs. 0 otherwise. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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DBcond Decrement and Branch Conditionally (Standard) .. uat .. 

Syntax DBcond ARn, src 

OpeI'atlon ARn - 1 ~ ARn 
If cond is true and ARn ~ 0 : 

If src is in register addressing mode (any register in CPU primary 
register file), 
src~ PC. 

If src is in PC-relative mode (label or address), 
displacement + PC + 1 ~ PC. 

Else, continue. 

Operands srcconditional-branch addressing modes (B): 
o register 
1 PC-relative 

ARn register (any register in CPU primary register file) 

87 

1 1 register or displacement 

Description DBcond signifies a standard branch that executes in four cycles because 
the pipeline must be flushed if cond is true. The specified auxiliary register 
is decremented and a branch is performed if the condition is true and the 
specified auxiliary register is greater than or equal to zero. 
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The auxiliary register is treated as a 32-bit signed integer. The most signifi­
cant eight bits are unmodified by the decrement operation. The comparison 
of the auxiliary register uses only the 32 least significant bits of the auxiliary 
register. Note that the branch condition does not depend on the auxiliary 
register decrement. 

If the src operand is expressed in register addressing mode, the contents 
of the specified register are loaded into the PC. If the src operand is ex­
pressed in PC-relative addressing mode, the assembler generates a dis­
placement: displacement = label- (PC of branch instruction + 1). This inte­
ger is stored as a 16-bit signed integer in the 16 least significant bits of the 
branch instruction word. This displacement is added to the PC of the branch 
instruction plus 1 to generate the new PC. 

The TMS320C40 provides 20 condition codes that can be used with this in­
struction (see Section 11.2 on page 11-10 for a list of condition mnemonics, 
encoding, and flags). 
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Decrement and Branch Conditionally (Standard) DBcond 

Cycles 4 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF Unaffected. 
N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 

£XampM DBLT AR3,R2 

Before Instruction: 

PC = 5Fh 
AR3 = 12h 
R2 = 9Fh 
LUF LV UF N Z V C = 0 0 0 1 0 0 0 

After Instruction: 

PC = 9Fh 
AR3 = 11h 
R2 = 9Fh 
LUF LV UF N Z V C = 0 0 0 1 0 0 0 
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DBcondD Decrement and Branch Conditionally (Delayed) 
.. :ieit.~~~m:;w.;_' ___ ""' __ '''''X>~_W'»'_·:;';::'''~'''S'!:::S_S:W'''._'''''''_ 

Syntax DBcondD ARn, src 

Operation ARn - 1 -+ ARn 
If cond is true and ARN ~ 0: 

If src is in register addressing mode (any register in CPU primary 
register file), 
src-+ PC 

If src is in PC-relative mode (label or address) 
displacement + PC + 3 -+ PC. 

Else, continue. 

Operands srcconditional-branch addressing modes (B): 

Encoding 
31 

o register 
1 PC-relative 

ARn register (any register in CPU primary register file) 

Description DBconaO signifies a delayed branch that allows the three instructions after 
the delayed branch to be fetched before the PC is modified. The effect is a 
single-cycle branch. The specified auxiliary register is decremented and a 
branch is performed if the condition is true and the specified auxiliary regis­
ter is greater than or equal to zero. (The three instructions following the 
DBconaO must not affect the cond)o 
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The auxiliary register is treated as a 32-bit signed integer. The most signifi­
cant eight bits are unmodified by the decrement operation. The comparison 
of the auxiliary register uses only the 32 least significant bits of the auxiliary 
register. Note that the branch condition does not depend on the auxiliary 
register decrement. 

If the src operand is expressed in register addressing mode, the contents 
of the specified register are loaded into the PC. If the src is expressed in 
PC-relative addressing, the assembler generates a displacement: displace­
ment = label- (PC of branch instruction + 3). This displacement is added 
to the PC of the branch instruction plus 3 to generate the new PC. Note that 
bit 21 = 1 for a delayed branch. 

The TMS320C40 provides 20 condition codes that can be used with this in­
struction (see Section 11.2 on page 11-10 for a list of condition mnemonics, 
encoding, and flags). 
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Decrement and Branch Conditionally (De/ayed) DBcondD 

Cycles 1 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF Unaffected. 
N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 

Example DBZD AR5, $+llOh 

Before Instruction: 

PC=Oh 
AR5 = 67h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

PC = 110h 
AR5 = 66h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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FIX Floating-Point to Integer Conversion 

Syntax FIX src, dst 

Operation fix(src) ~ dst 

Operands src general addressing modes (G): 
00 register (RO - R11) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (any register in CPU primary register file) 

Encoding 
31 2423 

I I I I I I I I I I' 
000001010G 

I I 

dst 

87 
I I 

src 

o 
I I 

Description The floating-point operand src is converted to the nearest integer less than 
or equal to it in value, and the result is loaded into the dstregister. The src 
operand is assumed to be a floating-point number and the dst operand a 
signed integer. 

The exponent field of the result register (if it has one) is not modified. 

Integer overflow occurs when the floating-point number is too large to be 
represented as a 32-bit twos-complement integer. In the case of integer 
overflow, the result will be saturated in the direction of overflow. 

Cycles 1 

Status Bits If ST (SET CON D) = 0 and, the condition flags are modified the destination 
register is RO - R11, the condition flags are modified. If ST (SET COND) 
= 1 , they are modified for all destination registers. 
LUF Unaffected. 
LV 1 if an integer overflow occurs, unchanged otherwise. 
UF o. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an integer overflow occurs, 0 otherwise. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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Floating-Point to Integer Conversion FIX 

Example FIX Rl, R2 

Before Instruction: 

R 1 = OA2820 OOOOh = 1.3454e + 3 
R2=Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R1 = OA2820 OOOOh = 13454e + 3 
R2 = 541 h = 1345 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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FIXIISTI Parallel FIX and STI 

Syntax FIX src2, dst1 
II STI src3, dst2 

Operation fix(src2) --t dst1 
II src3 --t dst2 

Operands src2 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (RO - R7) 
src3 register (RO - R7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

Encoding 

1
311 I 1 1 1 1 1241231 I 0 1 0 1 0 I 'S~"'31161151 
1101010dst1 . ...... 

o 

dst2 

1 1 1 i I I 

src2 1 I 
Description A floating-point-to-integer conversion is performed. All registers are read at 

the beginning and loaded at the end of the execute cycle. This means that 
if one of the parallel operations (STI) reads from a register, and the operation 
being performed in parallel (FIX) writes to the same register, then STI ac­
cepts as input the contents of the register before it is modified by FIX. 

If src2 and dst2 point to the same location, src2 is read before the write to 
dst2. 

Integer overflow occurs when the floating-point number is too large to be 
represented as a 32-bit twos-complement integer. In the case of integer 
overflow, the result will be saturated in the direction of overflow. 

Cycles 1 

Status Bits LUF Unaffected. 
LV 1 if an integer overflow occurs, unchanged otherwise. 
UF O. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an integer overflow occurs, 0 otherwise. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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Example 

Parallel FIX and STI FIXIISTI 

FIX 
II STI 

*++AR4(1),Rl 
RO, *AR2 

Before Instruction: 

AR4 = 80 98A2h 
R1 =Oh 
RO = ODCh = 220 
AR2 = 80 983Ch 
Data at 80 98A3h = 733 COOOh = 1.7950e + 02 
Data at 80 983Ch = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR4 = 80 98A3h 
R1 = OB3h = 179 
RO = ODCh = 220 
AR2 = 80 983Ch 
Data at 80 98A3h = 733 COOOh = 1.79750e + 02 
Data at 80 983Ch = ODCh = 220 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Synmx FLOATs~dst 

Operation float (src) ~ dst 

Operands src general addressing modes (G): 
00 register (any register in CPU primary register file) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (RO - R 11 ) 

Encoding 
31 2423 

I I I I i I I I I I 
?00001001G 

I I 1161'5, 
dst . 

87 
I I 

src 

Description The integer operand src is converted to the floating-point value equal to it, 
and the result loaded into the dst register. The src operand is assumed to 
be a signed integer, and the dst operand a floating-point number. 

Cycles 1 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF O. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V O. 
C Unaffected . 

. Mode Bit OVM Operation is not affected by OVM bit value. 

Example FLOAT *++AR2 (2) , R5 

Before Instruction: 

AR2 = 80 9800h 
R5 = 034C 2000h = 1.27578125e + 01 
Data at 80 9802h = OAEh = 174 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR2 = 80 9802h 
R5 = 072EO OOOOh = 1.74e + 02 
Data at 80 9802h = OAEh = 174 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Parallel FLOAT and STF FLOATIISTF 

Syntax FLOAT src2, dst1 
II STF src3, dst2 

Operation float (src2 ) ~ dst1 
II src3 ~ dst2 

Operands src2 indirect (disp = 0, 1, IRO, IR1) 
dstt register (RO - R7) 
src3 register (RO - R7) 
dst2 register (disp = 0, 1, IRO, IR1) 

'Encoding 
31 2423 1615 

11 i 1 1 0 i 1 i 0 i 1 i 1 I ~st~ I 0 i 0 i 0 I isrc~ I i 

87 o 
iii 

dst2 I i iii 

src2 i I 
Description An integer-to-floating-point conversion is performed. All registers are read 

at the beginning and loaded at the end of the execute cycle. This means that 
if one of the parallel operations (STF) reads from a register and the opera­
tion being performed in parallel (FLOAT) writes to the same register, then 
STF accepts as input the contents of the register before it is modified by 
FLOAT. 

If src2 and dst2 point to the same location, src2 is read before the write to 
dst2. 

Cycles 1 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF O. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V O. 
C Unaffected. 

Mode Bit OVM Operation is affected by OVM bit value. 

11-83 



FLOATIISTF Parallel FLOAT and STF 
. r~"~,,~·!s"m!· )!l1!!'''!'~:~!~t ~~.'!Nl'>M·.!t ~.'WH~~"!~·"f!s<nN~~: . :;s;a"M'''"!»"')l!'' "',"'" ',,"'f" . io!"YiNI!iI'N'_' .. .-, _<>" ',,,,,,,, __ 

Examp~ FLOAT *+AR2(IRO),R6 
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II STF R7, *ARl 

Before Instruction: 

AR2 = 80 98C5h 
IRO = 8h 
R6=Oh 
R7 = 034C20 OOOOh = 1.27578125e + 01 
AR1 = 80 9933h 
Data at 80 98CDh = OAEh = 174 
Data at 80 9933h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Alter Instruction: 

AR2 = 80 98C5h 
IRO = 8h 
R6 = 072EOO OOOOh = 1.7 40e + 02 
R7 = 034C20 OOOOh = 1.27578125e + 01 
AR 1 = 80 9933h 
Data at 80 98CDh = OAEh = 174 
Data at 80 9933h = 034C 2000h = 1.27578125e + 01 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Convert From IEEE Format FRIEEE 

Syntax FRIEEE src, dst 

Operation convert src from IEEE format ~ dst 

Operands src direct or indirect addressing modes 
dst extended-precision register (RO - R11) 

Encoding 

I o· o· o· l' 1 • 1 • O' 0 • 0 I G 

31 2423 1615 87 
I i 

o 
•• 
dst src 

Instruction Word Fields 

G src addressing modes 

01 direct mode 

10 indirect mode 

Description The src operand is converted from the IEEE floating-point format to the 
twos-complement floating-point format. 

The src operand comes from memory. The converted result goes into an 
extended precision register as a single-precision floating-point number. 

Cycles 1 

Status Bits LUF Unaffected. 
LV Set if overflow, otherwise unchanged. 
UF o. 
N Sign of the result. 
Z 1 if result is 0, 0 otherwise. 
V 1 if overflow, 0 otherwise. 
C Unaffected 

Mode Bit OVM Operation is not affected by OVM bit value. 
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FRIEEEIISTF Parallel FRIEEE and STF 
.• ';';; .. ~6:i~'S,ie>,;S'-·"'·SM''''-'~~~~;«Q~n-:~~·,:S· '~~;"'~~,~& ;;;;":':;~·,:;,:·;iI:·~M':«W~~.A,~~S9.X >0_ 

Syntax FRIEEE src2, dst1 
II STF src3, dst2 

Operation convert src2 from IEEE format ~ dst1 
in parallel with 
src3~ dst2 

Operands src2 indirect mode (disp = 0, 1, IRO, IR1) 
dst1 register mode (RO - R7) 
src3 register mode (RO - R7) 
dst2 indirect mode (disp = 0, 1, IRO, IR1) 

Encoding 
31 2423 1615 

dst2 11 I 1 I 1 I 1 I 0 I 0 I 1 I ~st~ 1 0 I 0 I 01 Isrc~ 1 I 
I I I I I I 

src2 

Description The src2 operand is converted from the IEEE floating-point format to the 
twos-complement format. The converted result goes into an extended-pre­
cision register dst1 as a single-precision floating-point number. 

A floating-point store is done in parallel. 

If src2and dst2pointto the same location, then src2is read before the write 
to dst2. 

Cycles 1 

Status Bits LUF Unaffected. 
LV Set if overflow, otherwise unchanged. 
UF 0. 
N Sign of the result. 
Z 1 if result is 0, ° otherwise. 
V 1 if overflow, ° otherwise. 
C Unaffected 

Mode Bit OVM Operation is not affected by OVM bit value. 
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Interrupt Acknowledge lACK 

Syntax lACK src 

Operation Perform a dummy read operation with lACK = O. 
At end of dummy read, set lACK to 1. 

Operands srcgeneral addressing modes (G): 
01 direct 
1 0 indirect 

Encoding 
31 2423 1615 87 o 

i i 
i I src 

Description A dummy read operation is performed with lACK = O. At the end of the 
dummy read, lACK is set to 1 if off-chip memory is specified. This instruction 
can be used to generate an external interrupt acknowledge. If the address 
specified is off-chip, a read operation from that address is performed. The 
lACK signal and the address 
can then be used to Signal interrupt acknowledge to external devices. The 
data read by the processor is unused. 

Cycles 1 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF Unaffected. 
N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 

SXamp~ IACK *AR5 

Before Instruction: 

lACK = 1 
PC = 300h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

lACK = 1 
PC = 301h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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IDLE Idle Until Interrupt 

Syntax IDLE 

Operation 1 -+ ST(GIE) 
Next PC -+ PC 
Idle until interrupt. 

Operands None 

Encoding 
31 24 23 16 15 8 7 0 I 0 1 

0
1
0 I 0 1 

0
1 

11 1 1 0 1 0 I 0 1 
0 1 0

1 
0 1 0

1 
0

1 
0 1 0

1 
0

1 
0

1 
0

1 
0

1 
0

1 
0

1 
0

1 
0

1 
0

1 
0

1 
0

1 
0

1 
0

1 
0

1 
0 I 

Description The global interrupt enable bit is set, the next PC value is loaded into the 
PC, and the CPU idles until an interrupt is received. When the interrupt is 
received, the contents of the PC are pushed onto the active system stack. 

Cycles 1 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF Unaffected. 
N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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Link and Jump LAJ 
______ """"' ____ '" ___ '_::e.~ ... ~_~"""'m_.:x,:?~~_J:~ ______ SS!"_, ~_'_oMo,il·oS!~_ ,so!ill"(,r 

Syntax LAJ src 

Operation PC of LAJ + 4 ~ extended-precision register R11 
src + 3 + PC of LAJ ~ PC 

Operands scr 24-bit signed immediate displacement 

Encoding 
31 2423 1615 87 o 

I I I I I I I I I I 
I I src (displacement) 

Description LAJ performs a single cycle subroutine call. The three instructions following 
the LAJ instruction are performed. The return address (address of the LAJ 
instruction + 4) is placed in extended-precision register R11. The address 
branched to is formed by adding the src operand to the PC of the LAJ in­
struction + 3. 

None of the three instructions following the LAJ instruction should modify 
the program flow. Interrupts are disabled for the duration of the LAJ in­
struction. 

Cycles 1 

Status Bits LUF Unaffected. 
lV Unaffected. 
UF Unaffected. 
N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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LAJcond Link and Jump Conditionally 
.~1.Ii:l;lll;lll. is:~~:~;:;: s s ~ ~.,..~ ~ 'S1s::,; • ~ 0: ~"l~:~' ~_"s·,,;,;x»'~'~ '!X;:;'~~:~~!X~~W ~y.~~~",,~~_" _, __ _ 

Syntax LAJcond src 

Operation If (cond is true) 
If (src is a register) 

PC of LAJcond + 4 ~ extended-precision register R11 
src~ PC 

If (src is a displacement) 
PC of LAJcond + 4 ~ extended-precision register R 11 
src + PC of the LAJ + 3 ~ PC 

Else, continue. 

Operands src conditional-branch addressing modes 

Encoding 
31 

o 1 1 1 

Instruction Word Fields 

B src addressing modes 

0 register mode 

1 PC-relative mode 

Description LAJcond performs a conditional single-cycle subroutine call. The three in­
structions following the LAJcondinstruction are performed. The return ad­
dress (address of the LAJ instruction + 4) is placed in extended-precision 
register R11. The address branched to is formed by either register mode 
or PC-relative mode. 

None of the three instructions following the LAJcond instruction may modify 
the program flow. Interrupts are disabled for the duration of the LAJcond 
instruction. 

Cycles 1 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF Unaffected. 
N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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Link and Trap Conditionally LATcond 

Syntax LATcond N 

Operation If (cond is true) 
ST(GIE} -7 ST(PGIE} 
ST(CF} -7 ST(PCF} 
0-7 ST(GIE} 
1 -7 ST(CF} 

Sl~Wf . xsr . . '*,f('''' .. "'~~·S····SN' 

PC of LAcond + 4 -7 extended-precision register R 11 
trap vector N -7 PC 

Else, continue. 

Operands N immediate mode - trap number (0 S; N S; 511) 

Encoding 

31 2423 

I I I I I I I I I I I I 
01110100100 

1615 87 
I I I I 

N 

Description Performs a delayed conditional trap. If traps are to be nested, you may need 
to save the status register before executing LATcond. Ifthe condition is true, 
ST bits GIE and CF are saved in PGIE and PCF in the status register. Then 
all interrupts are disabled (0 -7 GIE), and the cache is frozen (1 -7 CF). The 
contents of the PC of the LATcond + 4 are placed in R31, and the PC is 
loaded with the contents of the specified trap vector (N). If the condition is 
not true, then continue normal operation. 

The three instructions following LATcond will be fetched and executed. 
They may not be instructions that modify the program flow or modify the sta­
tus register. 

Cycles 1 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF Unaffected. 
N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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LBb Load Byte 

Syntax LBb src, dst 

Operation Sign-extended byte (3, 2, 1, 0) of src ~ dst 

b = byte to load (3, 2, 1, 0) 
I 3 I 2 I 1 I 0 I = b (byte designator 3 - 0) 

Operands src register, direct, or indirect addressing modes 
dst register mode (any register in CPU primary register file) 

Encoding 
31 2423 1615 87 

11 • o· 1 • 1· o· o· 0) ~ 1 G 
• • • • 
dst src 

Instruction Word Fields 

G src addressing modes 

00 register mode 

01 direct mode 

10 indirect mode 

B srcbyte 

00 byte 0 LS byte 

01 byte 1 

10 byte 2 

11 byte 3 MS byte 

o 

Description The specified byte of the srcoperand is sign-extended and right-shifted into 
the 8 LSBs of the dst register. The src byte is signed. 

Cycles 1 
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Load Byte LBb 

Status Bits If ST (SET CONO) = 0 and the destination register is RO - R11 , the condition 
flags are modified. If ST (SET CONO) = 1, they are modified for all destina­
tion registers. 
LUF Unaffected. 
LV Unaffected. 
UF o. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V O. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 

Example LB2 Rl, R2 

Before Instruction: 

R 1 = OOAB OOOOh 
R2 = 0000 OOOOh 

After Instruction: 

R1 = OOAB OOOOh 
R2 = FFFF FFABh 

; sign extended byte 2 of Rl -+ R2 

11-93 



LBUb Load Byte Unsigned 

Syntax LBUb src, dst 

Operation Byte (3, 2, 1 , 0) of src ~ dst 

b = byte to load (3, 2, 1, 0) 
I 3 I 2 I 1 I 0 I = b (byte designator 3 - 0) 

Operands src register, direct, or indirect addressing modes 
dst register mode (any register in CPU primary register file) 

Encoding 
31 2423 1615 87 

1110 11 1 110 1 01 11 ~ I G 
1 1 

dst 1 1 
1 1 

src 

Instruction Word Fields 

G src addressing modes 

00 register mode (any CPU register) 

01 direct mode 

10 indirect mode 

B srcbyte 

00 byte 0 LS byte 

01 byte 1 

10 byte 2 

11 byte 3 MS byte 

o 

Description The specified byte of the src operand is right-shifted without sign-exten­
sion, into the 8 LSBs of the dst register. The src byte is unsigned. 

Cycles 1 
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Status Bits If ST (SET COND) = 0 and the destination register is RO - R 11 , the condition 
flags are modified. If ST (SET COND) = 1 , they are modified for all destina­
tion registers. 
LUF Unaffected. 
LV Unaffected. 
UF O. 
N O. 
Z 1 if a zero result is generated, 0 otherwise. 
V O. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 

Example LB2 Rl, R2 

Before Instruction: 

R1 = OOAB OOOOh 
R2 = 0000 OOOOh 

After Instruction: 

R1 = OOAB OOOOh 
R2 = 0000 OOABh 
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LDA Load Address Register 

Syntax LOA 

Operation src ~ dst 

Operands src general addressing modes 
dst register mode (address registers only) 

Encoding 

I ii iii iii I o 0 0 1 1 1 1 01 G 

31 2423 
i i i i 

dst 
'j '5, 87 

src 

Instruction Word Fields 

G src addressing modes 

00 register mode (any CPU register) 

01 direct mode 

10 indirect mode 

11 immediate mode 

Description The src operand is loaded into the dst register. The dst register may be 
any of the address registers: ARO-AR7, IRO, IR1, OP, BK or SP. The load 
is done by the end of the read phase of the pipeline. As a result, LOA is one 
cycle faster than LOI for loading these registers. (All operands are treated 
as signed integers.) 

Cycles 1 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF Unaffected. 
N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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Load Floating-Point Exponent LDE 

Syntax LDE src, dst 

Operation src(exp) ~ dst(exp) 

Operation srcgeneral addressing modes (G): 
00 register (RO - R11) 
01 direct 
1 0 indirect 
1 1 immediate 

dstregister (RO- R11) 

Encoding 

('. , I ' , , ,24,23
1 

' I ' , , 
87 o 
I I 

i I src 

Description The exponent field of the srcoperand is loaded into the exponent field of the 
dstregister. No modification of the dst reg ister mantissa field is made unless 
the value of the exponent loaded is the reserved value of the exponent for 
zero as determined by the precision of thesrc operand. Then, the mantissa 
field of the dstregister is set to zero. The src and dst operands are assumed 
to be floating-point numbers. Immediate values are evaluated in the short 
floating point format. 

Cycles 1 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF Unaffected. 
N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 

Example LDE RO , R5 

Before Instruction: 

RO = 020005 6F30h = 4.00066337e + 00 
R5 = OA056F E332h = 1.06749648e + 03 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

RO = 020005 6F30h = 4.00066337e + 00 
R5 = 02056F E332h = 4.16990814e + 00 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

11-97 



~DEP Load Integer From Expansion Register File to Primary Register File 

Syntax LDEP src, dst 

OfHIration src -+ dst 

Operands src expansion register file register (IVTP or TVTP) 
dst register mode (any register in CPU primary register file) 

Encoding 
31 2423 I 1 1 1 1 1 1 1 1 I 1 I 
01110110000 

1615 87 

1 d:t 1 I 0 1 0 1 01 0 1 0 1 0 1 O' 0 1 0 1 0 I o 
1 • i I 

sra . 

Description This is a means to load a CPU register with the contents of the IVTP register 
(interrupt-trap table pointer) or the TVTP register. These registers are de­
scribed in Section 3.2. 

The srcoperand register from the expansion-register file is loaded into the 
dst register in the primary register file. The dst register content is assumed 
to be an integer. 

Cycles 1 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF Unaffected. 
N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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Load Floating-Point Value LDF 

Syntax LDF src, dst 

Operation src ---7 dst 

Operands srcgeneral addressing modes (G): 
a a register (RO - R11) 
a 1 direct' 
1 a indirect 
1 1 immediate 

dstregister (RO - R11) 

Encoding 
31 2423 I I I I I I I I I I I I I I I o 0 0 0 0 1 1 1 0 G dst 

87 o 
I I 

I I src 

Description The src operand is loaded into the dst register. The dst and src operands 
are assumed to be floating-point numbers. 

Cycles 1 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF O. 
N 1 if a negative result is loaded, a otherwise. 
Z 1 if a zero result is loaded, a otherwise. 
V O. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 

Example LDF @9800h,R2 

Before Instruction: 

DP = 80h 
R2=Oh 
Data at 80 9800h = 10C5 2AOOh = 2.19254303e + 00 
LUF LV UF N Z V C = a a a a a a a 
After Instruction: 

DP = 80h 
R2 = 01 OC52 AOOOh = 2.19254303e + 00 
Data at 80 9800h = 1 OC5 2AOOh = 2.19254303e + 00 
LUF LV UF N Z V C = a a a a a a a 
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LDFcond Load Floating-Point Value Conditionally 
il$iPlib»"'" 'l5~'~;~'i:i~~;"' ;o:4S!:l$S!t ;;S;t :DJI01$$'$lSS.~ WetilSj~ liS;e; mlll"mll",,: iPli I ~s la: a')!1 ;l!JAI*I 

Syntax LDFcond sre, dst 

Operation If eondis true: 
sre~ dst. 

Else: 
dst is unchanged. 

Operands sre general addressing modes (G): 

Encoding 
31 Iii i I o 1 0 0 

00 register(RO-R11) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (RO - R11) 

1615 

idS~ I I I 87 
I I 

src 

Description Ifthe condition is true, the sreoperand is loaded into the dstregister. Other­
wise, the dstregister is unchanged. The dstand sreoperands are assumed 
to be floating-point numbers. 

The TMS320C40 provides 20 condition codes that can be used with this in­
struction (see Section 11.2 on page 11-10 for a list of condition mnemonics, 
encoding, and flags). Note that an LDFU (load floating-point unconditional­
ly) instruction is 
useful for loading RO - R11 without affecting condition flags. 

Cycles 1 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF Unaffected. 
N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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Load Floating-Point Value Conditionally LDFcond 

Example LDFZ R3, R5 

Before Instruction: 

.... ~":"!·».i!"'·(·I·S· .. O!".... '0:" "'f'rox d. )'r:: 

R3 = 2CFF2C D500h = 1.77055560e +13 
R5 = 5FOOOO 003Eh = 3.96140824e + 28 
LUF LV UF N Z V C = 0 0 0 0 1 0 0 

After Instruction: 

R3 = 2CFF2C D500h = 1.77055560e +13 
R5 = 2CFF2C D500h = 1.77055560e + 13 
LUF LV UF N Z V C = 0 0 0 0 1 0 0 
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LDFI Load Floating-Point Value, Interlocked 
~m:<5·"'~.w~~»)~~"'·SS~""S:l1I¥""':II':>f_S!'S!'::6""':II'!_W!S1"'"S1:>1""'SS:lS_~S!" ___ """"' _____ _ 

Syntax LDFI src, dst 

Operation Signal interlocked operation. 
src-? dst 

Operands srcgeneral addressing modes (G): 
01 direct 
1 0 indirect 

dstregister (RO - R11) 

Encoding 

(. , . , , , /.,23
1 000001111G 

87 o 
I I 

I I src 

Description The src operand is loaded into the dst register. An interlocked operation is 
signaled over LOCK or LLOCK. The src and dst operands are assumed to 
be floating-point numbers. Note that only direct and indirect modes are al­
lowed. Refer to Section 6.5 (page 6-13) and Section 7.7 (page 7-39) for 
detailed descriptions. 

Cycles 1 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF O. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V O. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 

Example LDFI *+AR2, R7 

Before Instruction: 

11-102 

AR2 = 8098F1 h 
R7=Oh 
Data at 80 98F2h = 584 COOOh = - 6.28125e + 01 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR2 = 8098F1 h 
R7 = 0584CO OOOOh = - 6.28125e + 01 
Data at 80 98F2h = 584 COOOh = - 6.28125e + 01 
LUF LV UF N Z V C = 0 0 0 0 0 0 1 
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Syntax LDF sre2, dst2 
II LDF sre1, dst1 

Operation sre2 -? dst2 
II sre1 -? dst1 

Operands sre1 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (RO - R7) 
sre2 indirect (disp = 0, 1, IRO, IR1) 
dst2 register (RO - R7) 

Encoding 
31 2423 

I I I I I I I I I I 
~ 1 0 0 0 1 0 dst2 

I I 

dst1 

I I I 

src1 
i I I 

src2 

Description Two floating-point loads are performed in parallel. If the LDFs load the same 
register, the assembler issues a warning. The result is that of LDF sre2, dst2. 

Cycles 1 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF Unaffected. 
N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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LDFII LDF Parallel LDF and LDF 

Example L~F - AR1 (IRQ) , R7 

11-104 

II LDF *AR7++ (1) , R3 

Before Instruction: 

AR1 = 80 985Fh 
IRO = 8h 
R7=Oh 
AR7 = 80 988Ah 
R3=Oh 
Data at 80 9857h = 70C 8000h = 1 .4050e + 02 
Data at 80 988Ah = 578 4000h = 6.281250e + 01 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR1 = 80 9857h 
RO=8h 
R7 = 070C80 OOOOh = 1.4050e + 02 
AR7 = 80 9888h 
R3 = 057840 OOOOh = 6.281250e + 01 
Data at 80 9857h = 70C 8000h = 1 .4050e + 02 
Data at 80 988Ah = 578 4000h = 6.281250e + 01 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Syntax LDF src2, dst1 
II STF src3, dst2 

Operation src2 ~ dst1 
II src3 ~ dst2 

Operands src2 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (RO - R7) 
src3 register (RO - R7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

Encoding 
31 2423 I I I I I I I I I I 
1 1 0 1 1 0 0 dst1 

Parallel LDF and STF LDFIISTF 

o 
iii I I I 

dst2 src2 

Description A floating-point load and a floating-point store are performed in parallel. 

If src2 and dst2 point to the same location, src2 is read before the write to 
dst2. 

Cycles 1 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF Unaffected. 
N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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LDFIISTF Parallel LDF and STF 

Example LDF*AR2- - (1) ,R1 

11-106 

II STF R3,*AR4++(IR1) 

Before Instruction: 

AR2 = 80 98E7h 
R1 =Oh 
R3 = 057B40 OOOOh = 6.28125e +01 
AR4 = 80 9900h 
IR1 = 10h 
Data at 80 98E7h = 70C 8000h = 1.4050e + 02 
Data at 80 9900h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instryction: 

AR2 = 80 98E6h 
R1 = 070C80 OOOOh = 1.4050e + 02 
R3 = 057B40 OOOOh = 6.28125e + 01 
AR4 = 80 991 Oh 
IR1 = 10h 
Data at 80 98E7h = 70C 8000h = 1.4050e + 02 
Data at 80 9900h = 57B 4000h = 6.28125e + 01 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Load 16 MSBs With 16-Bit Immediate LDHI 
:;"'~~O'SS;I$' 

Syntax LDHI sre, dst 

Operation sre ~ 16 MSBs of dst 

Operands src 16-bit unsigned immediate 
dst register mode 

Encoding 
31 

Operation The 16-bit unsigned sre immediate value is loaded into the 16 MSBs of the 
dstregister. 0 is loaded into the 16 LSBs of the dst register. The dst register 
is assumed to be an integer. 

Cycles 1 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF Unaffected. 
N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 

Example LDHI 44h, R2 

Before Instruction: 

R2 = ABeD EF12h 

After Instruction: 

R2 = 0044 OOOOh 
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LDI Load Integer 

Syntax LDI src, dst 

Operation src ~ dst 

Operands srcgeneral addressing modes (G): 
o 0 register (any register in CPU primary register file) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (any register in CPU primary register file) 

Encoding 
31 2423 1615 87 o 
I I I I I I I I I I 
000010000 G 

I I 
I I src 

Description The src operand is loaded into the dst register. The dst and src operands 
are assumed to be signed integers. An alternate form of LOI, LOP, is used 
to load the data page pointer register (OP) or any other register with the eight 
MSBs of a relocatable address. See the LOP instruction in this chapter and 
subsection 11.3.2 (on page 11-15). 

Cycles 1 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF O. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V O. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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Load Integer LDI 
____ .............. ___ ........ __ """"""'''''''''''.......,'''''''''' .... Ul .... S ss"", .. """"'" .... n ........ sr'u ~d//AI»' __ ~NN_IlU II I 111 

Example LOI *-ARl (IRO) ,RS 

BefOre Instruction: 

AR1 = 2Ch 
IRO = Sh 
RS = 3CSh = 965 
Data at 27h = 26h = 38 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR1 = 2Ch 
IRO = Sh 
RS = 26h = 38 
Data at 27h = 26h = 38 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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LDlcond Load Integer Conditionally 

Syntax LDlcond src, dst 

Operation If cond is true: 
srC"-7 dst, 

Else: 
dst is unchanged. 

Operands src general addressing modes (G): 

Encoding 
31 Iii i I o 1 0 1 

o 0 register (any register in CPU primary register file) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (any register in CPU primary register file) 

2423 1615 87 iii I 
cond G idS~ iii i i 

src 

Description If the condition is true, the srcoperand is loaded into the dstregister. Other­
wise, the dstregister is unchanged. The dstand srcoperands are assumed 
to be signed integers. 

The TMS320C40 provides 20 condition codes that can be used with this in­
struction (see Section 11.2 on page 11-10 for a list of condition mnemonics, 
encoding, and flags). Note that an LDIU (load integer unconditionally) in­
struction is useful for loading a selected CPU register without affecting the 
condition flags. 

Cycles 1 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF Unaffected. 
N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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Load Integer Conditionally LDlcond 

Example LDIZ R4,R6 

Before Instruction: 

R4 = 027Ch = 636 
R6 .. OFE2h - 4,066 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R4 = 027Ch = 636 
R6 = OFE2h = 4,066 
LUFLV UF N Z V C = 0 0 0 0 0 0 0 

... 

11-111 



LDII Load Integer, Interlocked 

Syntax LDII src, dst 

Operation Signal interlocked operation. 
src-+ dst 

Operands srcgeneral addressing modes (G): 
01 direct 
1 0 indirect 

dst register (any register in CPU primary register file) 

Encoding 
31 24 23 16 15 8 7 o 

i I 
I I 

Description The src operand is loaded into the dst register. An interlocked operation is 
signaled over LOCK or LLOCK . The src and dst operands are assumed 
to be signed integers. Note that only the direct and indirect modes are al­
lowed. Refer to Section 7.7 on page 7-39 for a detailed description. 

Cycles 1 

Status Bits If ST (SET COND) = 0 and the destination register is RO - R11 , the condition 
flags are modified. If ST (SET CON D) = 1, they are modified for all destina­
tion registers. 
LUF Unaffected. 
LV Unaffected. 
UF O. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V O. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 

£XampM LOII @985Fh,R3 

BefOre Instruction: 

DP=80 
R3= Oh 
Data at 80 985Fh = ODCh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

DP=80 
R3 = ODCH 
Data at 80 985Fh = ODCh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Syntax LDI src2, dst2 
II LDI sre1, dst1 

Operation src2 -7 dst2 
II sre1 -7 dst1 

Operands sre1 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (RO - R7) 
sre2 indirect (disp = 0, 1, IRO, IR1) 
dst2 register (RO - R7) 

"Encoding 
31 2423 I iii iii Iii 
1"100011 dst2 

1615 

Parallel LDI and LDI LDIII LDI 

87 o 
iii 

src1 I i i I I 
src2 I I 

Description Two integer loads are performed in parallel. A warning is issued by the as­
sembler ifthe LDls load the same register. The result is that of LDI src2, dst2. 

Cycles 1 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF Unaffected. 
N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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SXamp~ LDI *-AR1(1),R7 
II LDI *AR7++{IRO) ,Rl 

Before Instruction: 

AR 1 = 80 9826h 
R7=Oh 
AR7 = 80 98C8h 
IRO = 10h 
R1 =Oh 
Data at 80 9825h = OFAh = 250 
Data at 80 98C8h = 2EEh = 750 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR1 = 80 9826h 
R7 = OFAh = 250 
AR7 = 80 98D8h 
IRO = 10h 
R1 = 02EEh = 750 
Data at 80 9825h = OFAh = 250 
Data at 80 98C8h = 2EEh = 750 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Syntax LDI src2, dst1 
II STI src3, dst2 

Operation src2 -+ dst1 
II src3 -+ dst2 

Operands src2 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (RO - R7) 
src3 register (RO - R7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

Encoding 
31 2423 1615 Iii Iii I i o 0 0 sr~ 

Parallel LDI and STI LDIIiSTI 

87 o 
I I I 

dst2 I i I I i 
src2 i I 

Description An integer load and an integer store are performed in parallel. If src2 and 
dst2 point to the same location, src2 is read before the write to dst2. 

Cycles 1 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF Unaffected. 
N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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LDIIISTI Parallel LDI and STI 

eKamp. LDI *-AR1(1),R2 
II STI R7,*AR5++(IRO) 

BefOre Instruction: 

AR1 = 80 98E7h 
R2=Oh 
R7 = 35h = 53 
AR5 = 80 982Ch 
IRO =8h 
Data at 80 98E6h = ODCh = 220 
Data at 80 982Ch = Oh 
LUF LV UF N Z V C = 0 . 0 0 0 0 0 0 

After Instryction: 

AR1 = 80 98E7h 
R2 = ODCh = 220 
R7 = 35h = 53 
AR5 = 80 9834h 
IRO=8h 
Data at 80 98E6h = ODCh = 220 
Data at 80 982Ch = 35h = 53 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Load Floating-Point Mantissa LDM 

Syntax LDM sre, dst 

Operation sre (man) ~ dst (man) 

Operands sregeneral addressing modes (G): 
00 register (RO - R11) 
01 direct 
1 0 h,direct 
1 1 immediate 

dstregister (RO - R11) 

Encoding 
31 2423 87 

i i 

src 

o 
i I 

Description The mantissa field of the sre operand is loaded into the mantissa field of the 
dst register. The dst exponent field is not modified. The sre and dst 
operands are assumed to be floating-point numbers. If immediate 
addressing mode is used, bits 15 -12 of the instruction word are forced to 
o by the assembler. If the source is in the memory, the 32-bit data are loaded 
into the mantis a field. 

Cycles 1 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF Unaffected. 
N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 

Example LDM 156.75,R2 

Before Instruction: 

R2=Oh 

(156.75 = 07 1eeO OOOOh) 

LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R2 = 00 1 ceo OOOOh = 1.22460938e + 00 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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LOP Load Data Page Pointer 
'.,.,tWX ·(~~:·x;t· 

Syntax LDP src{,DP] 

Operation src -+ Data page pointer 

Operands src is the 16 MSBs of the absolute 32-bit source address (src). 

dst is optional (data page pointer understood if ",DP"left out of operand) 
( 

Encoding 
31 2423 1615 Iii Iii iii I iii iii I i 
00001000011100 00 

87 o 
i i 

i I src 

Description This pseudo-op is an alternate form of the LDI instruction, except that LDP 
is always in the immediate addressing mode (bits 22 - 21 = 112). The16 
MSBs of the src absolute 32-bit value (note that an src less than 32 bits will 
be zero filled to make the 32 bits) are loaded into the 16 LSBs of the data 
page pointer. (For example, an srcof any 16-bit value will result in 16 zeroes 
placed in the DP (the 16 extended zeroes used to fill the MSBs of the src 
value). 

The 16 LSBs of the pointer are used in direct addressing as a pointer to the 
page of data being addressed. There is a total of 256 pages, each page 64K 
words long. Bits 31 - 16 of the pointer are reserved and should be kept to 
zero. 

Cycles 1 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF Unaffected. 
N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 

EKamp~ LDP @809900h, DP 
or 
LDP @809900h 

Before Instruction: 

DP = 6465h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

DP = OOSOh (16 MSbs of 32-bit src, zeroes extended) 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Load Integer From Primary Register File to Expansion Register File LDPE 
OSH1USb$ _ J 

Syntax LOPE src, dst 

Operation src ~ dst 

Operands src register mode (any register in CPU primary register file) 
dst expansion register file register (IVTP or TVTP) 

Encoding 
31 2423 

I I I I I I I I I I I I 
01110110100 

1615 87 o 

Description This is a means to load the IVTP register (interrupt-vector table pointer) or 
TVTP register (trap-vector table pointer). These registers are described in 
Section 3.2 on page 3-15. 

The scroperand register from the primary~register file is loaded into the dst 
register in the expansion register file. The dstoperand is assumed to be an 
integer. 

Cycles 1 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF Unaffected. 
N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 

Example LDPE AR, TVTP ; set trap-vector pointer 
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LDPK Load Data-Page Pointer Immediate 

Syntax LDPK src 

Operation src -+ DP 

Operands src 16-bit unsigned immediate 

Encoding 
31 2423 1615 87 o 

I I 
I I sra 

Description The 16-bit unsigned immediate value is loaded into the DP register. This 
operation is completed by the end of the decode phase of the LDPK instruc­
tion; thus, the value loaded is ready for the next instruction for immediate 
addressing. 

Cycles 1 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF Unaffected. 
N Unaffected. 
Z Unaffect~d. 
V Uhaffected. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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Syntsx 

Operation 

Operands 

LHw src, dst 

Sign-extended half-word (0, 1) of src -+ dst 

w = half-word to load (0, 1) 
I 1 I 0 I = w designator 

src register, direct, or indirect addressing modes 

Load.Half-Word LHw' 

dst register mode (any register in CPU primary register file) 

Encoding 
31 2423 87 o 

i i i i 

dst src 

Instruction Word Fields 

G src addressing modes 

00 register mode (Rn, 0 s n s 31) 

01 direct mode 

10 indirect mode 

H src half-word 

0 half-word 0 (LS half-word) 

1 half-word 1 (MS half-word) 

Description The specified half-word of the src operand is sign-extended and right­
shifted into the 16 LSBs of the dst register. The src half-word is signed. 

Cycles 1 
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LHw Load Half-Word 

Status Bits If ST (SET COND) = 0 and the destination register is RO - R 11. the condition 
flags are modified. If ST (SET COND) = 1. they are modified for all destina­
tion registers. 
LUF Unaffected. 
LV Unaffected. 
UF O. 
N 1 if a negative result is generated. 0 otherwise. 
Z 1 if a zero result is generated. 0 otherwise. 
V O. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 

Example LHO Rl, R2 

11-122 

Before Instruction: 

R1 = ABCD EF12h 
R2 = 1234 5678h 

After Instruction: 

R1 = ABCD EF12h 
R2= FFFF FF12h 
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Load Half-Word Unsigned LHUw 

Syntax LHUw src. dst 

Operation Unsigned half-word (0, 1) of src ~ dst 

w = half-word to load (0, 1) 
I 1 I 0 I = w designator 

Operands src register, direct, or indirect addressing modes 
dst register mode (any register in CPU primary register file) 

Encoding 
31 2423 1615 

I I I I I I I I I I 
1011101 1H G 

i i 
dst I I 

Instruction Word Fields 

G src addressing modes 

00 register mode (any CPU register) 

01 direct mode 

10 indirect mode 

H src half-word 

0 half-word 0 (LS half-word) 

1 half-word 1 (MS half-word) 

87 
I I 

src 

o 

Description The specified half-word ofthe srcoperand is unsigned and right-shifted into 
the 16 LSBs of the dst register. The src half-word is unsigned. 

Cycles 1 
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Status Bits If ST (SET COND) = 0 and the destination register is RO - R 11, the condition 
flags are modified. If ST (SET CON D) = 1, they are modified for all destina­
tion registers. 
LUF Unaffected. 
LV Unaffected. 
UF o. 
N o. 
Z 1 if a zero result is generated, 0 otherwise. 
V O. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 

Example LHUO Rl, R2 

Before Instruction: 
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R1 = ABCD EF12h 
R2 = 1234 5678h 

After Instruction: 

R1 = ABCD EF12h 
R2 = 0000 EF12h 
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Logical Shift LSH 

Syntax LSH count, dst 

Operation If count~ 0: 
dst« count ~ dst 

Else: 
dst» I count I ~ dst 

Operands dstgeneral addressing modes (G): 
a a register (any CPU register) 
a 1 direct 
1 a indirect 
1 1 immediate 

dst register (any register in CPU primary register file) 

Encoding 
31 2423 1615 87 o I ii Iii iii I ?00010011G 

I i I 

count 

Description The seven least significant bits of the count operand are used to generate 
the twos-complement shift count. If the count operand is greater than zero, 
the dstoperand is left-shifted by the value of the count operand. Low-order 
bits shifted in are zero-filled, and high-order bits are shifted out through the 
C (carry) bit. 

Logical left-shift: 

C +- dst+- a 
If the countoperand is less than zero, the dstis right-shifted by the absolute 
value of the count operand. The high-order bits of the dstoperand are zero­
filled as they are shifted to the right. Low-order bits are shifted out through 
the C (carry) bit. 

Logical right-shift: 

O~dst~C 

If the count operand is 0, no shift is performed, and the C (carry) bit is set 
to O. The countoperand is assumed to be a signed integer, and the dstoper­
and is assumed to be an unsigned integer. 
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LSH· Logical Shift . . 

Cycles 1 

Status Bits If ST (SET COND) = 0 and the destination register is RO - R11, the condition 
flags are modified. If ST (SET COND) = 1, they are modified for all destina­
tion registers. 
LUF Unaffected. 
LV Unaffected. 
UF O. 
N MSB of the output. 
Z 1 if a zero output is generated, 0 otherwise. 
V O. 
C Set to the value of the last bit shifted out. 0 for a shift count of O. 

Mode Bit OVM Operation is not affected by OVM bit value. 

Example LSH R4,R7 

. Before Instruction: 

R4 = 018h = 24 
R7 = 02ACh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R4 = 018h = 24 
R7 = OACOO OOOOh 
LUF LV UF N Z V C = 0 0 0 1 0 1 0 

Example LSH *-AR5 (IR1) ,R5 

Before Instryction: 

AR5 = 80 9908h 
IRO = 4h 
R5 = 00 12CO OOOOh 
Data at 80 9904h = OFFF FFFF4h = -12 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR5 = 80 9908h 
IRO = 4h 
R5 = 00 0001 2COOh 
Data at 80 9904h = OFFF FFFF4h = -12 

. LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Syntax LSH3 count, src, dst 

Operation If count ~ 0: 
src« count ~ dst 

Else: 
src» I count I ~ dst 

Logical Shift, 3 Operands LSH3 

Operands src, count both type 1 or type 2 three-operand addressing modes 
dst register mode (any register in CPU primary register file) 

Encoding 

Type 1 
31 2423 

dst 
I I r I i 

sre ent 
I I 

Type 2 

31 2423 

dst 
I I r I I 

sre ent 
I I 

Instruction Word Fields 

T STc1 addressing modes src2 addressing modes 

00 register mode (any CPU register) register mode (any CPU register) 

Type 1 01 indirect mode (disp = 0, 1, IRO, IR1) register mode (any CPU register) 

10 register mode (any CPU register) indirect mode (disp = 0, 1, IRO, IR1) 

11 indirect mode (disp = 0, 1, IRO, IR1) indirect mode (disp = 0, 1, IRO, IR1) 

T STc1 addressing modes src2 addressing modes 

00 register mode (any CPU register) 8-bit signed immediate 

Type 2 
01 register mode (any CPU register) 

indirect mode *+ARn(5-bit unsigned 
displacement) 

10 
indirect mode * +ARn(5-bit unsigned 

8-bit signed immediate displacement) 

11 
indirect mode * +ARn 1 (5-bit unsigned indirect mode *+ARn2(5-bit unsigned 
displacement) displacement) 
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LSH3 Logical Shift, 3 Operands 

Description The seven least significant bits of the count operand are used to generate 
the twos-complement shift count. 

If the count operand is greater than zero, the dst operand is left shifted by 
the value of the count operand. Low-order bits shifted in are zero-filled, and 
high-order bits are shifted out through the C (carry) bit. 

Logical left-shift: 

~ ~ IL---_s_rc_----'I ~ 0 

If the count operand is less than zero, the srcoperand is right shifted by the 
absolute value of the count operand. The high-order bits of the dstoperand 
are zero-filled as shifted to the right. Low-order bits are shifted out through 
the C (carry) bit. 

Logical right-shift: 

o ~ 1 mSbl ~ 1..-1 __ s,,_c_---'I ~ @] 
If the count operand is 0, no shift is performed and the C (carry) bit is set 
to O. The count operand is assumed to be a signed integer. The src and dst 
operands are assumed to be unsigned integers. 

If count is greater than 32, the LSB ends up in the carry (C) bit. If count is 
less than -32,0 ends up in the carry bit. This also applies to LSH. 

Cycles 1 

Status Bits If ST (SET CON D) = 0 and the destination register is RO - R11 , the condition 
flags are modified. If ST (SET COND) = 1, they are modified for all destina­
tion registers. 
LUF Unaffected. 
LV Unaffected. 
UF O. 
N MSB of the output. 
Z 1 if a zero output is generated, 0 otherwise. 
V O. 
C Set to the value of the last bit shifted out. 0 for a shift count of O. Unaf­

fected if dst is not RO - R7. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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Parallel LSH3 and STI LSH311STI 
~"'~r~~~:::+::w~~~~mwo'<?:~~~X"'«""""'~:';«?;·;O:~~"'''''''''''''''..w;.;o; ... ;y;..;W;y;~ ... ; ........ ~;.,;Y;v.. ............... ~~ .... w;y;'WM~~W;S'~~~ 

Syntax LSH3 count, src2, dst1 
II STI src3, dst2 

Operation If count~ 0: 
src2 « count --+ dst1 

Else: 
src2» I count I --+ dst1 

II src3 --+ dst2 

Operands count register (RO - R7) 

Encoding 

src1 indirect (disp = 0,1, IRO, IR1) 
dst1 register (RO - R7) 
src2 register (RO - R7) 
dst2 indirect (disp = 0,1, IRO, IR1) 

31 2423 
I I I 

11 I 1 1 0 I 1 I 1 I 1 I 0 1 ~st~ dst2 

I I I 

src2 

Description The seven least significant bits of the count operand are used to generate 
the twos-complement shift count. 

If the count operand is greater than zero, the dst operand is left shifted by 
the value ofthe count operand. Low-order bits shifted in are zero-filled, and 
high-order bits are shifted out through the C (carry) bit. 

Logical left-shift: 

C~ dst2~0 

If the count operand is less than zero, the dstoperand is right shifted by the 
absolute value of the count operand. The high-order bits of the dst operand 
are zero-filled as shifted to the right. Low-order bits are shifted out through 
the C (carry bit). 

Logical right-shift: 

o --+ dst2 --+ C 

If the count operand is 0, no shift is performed and the carry bit is set to O. 

The count operand is assumed to be a 7 -bit signed integer, and the src2 and 
dst1 operands are assumed to be unsigned integers. All registers are read 
atthe beginning and loaded at the end of the execute cycle. This means that 
if one of the parallel operations (STI) reads from a register and the operation 
being performed in parallel (LSH3) writes to the same register, then STI ac­
cepts as input the contents of the register before it is modified by the LSH3. 

If src2 and dst2 point to the same location, src2 is read before the write to 
dst2. 
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LSH311STI Parallel LSH3 and STI 

Cycles 1 

Status Bits LUF Unaffected. 
LV Unaffected 
UF O. 
N MSB of the output. 
Z 1 if a zero output is generated, 0 otherwise. 
V O. 
C Set to the value of the last bit shifted out. 0 for a shift count of O. 

Mode Bit OVM Operation is affected by OVM bit value. 

Exampm LSH3 R2,*++AR3(l),RO 
II STr R4, *-AR5 

Before Instruction: 

R2 = 18h = 24 
AR3 = 8098C2h 
RO=Oh 
R4 = ODCh = 220 
AR5 = 80 98A3h 
Data at 80 98C3h = OACh 
Data at 80 98A2h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R2 = 18h = 24 
AR3 = 8098C3h 
RO = OACOO OOOOh 
R4 = ODCh = 220 
AR5 = 80 98A3h 
Data at 80 98C3h = OACh 
Data at 80 98A2h = ODCh = 220 
LUF LV UF N Z V C = 0 0 0 1 0 1 0 
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Parallel LSH3 and STI LSH311STI 

Example LSH3R7, *AR2- - (1) , R2 
II STI RO,*+ARO(l) 

Before Instruction: 

R7 = OFFFFF FF4h = -12 
AR2 = 80 9863h 
R2=Oh 
RO = 12Ch = 300 
ARO = 80 98B7h 
Data at 80 9863h = 2COO OOOOh 
Data at 80 98B8h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R7 = OFFFFF FF4h = -12 
AR2 = 80 9862h 
R2 = 2COOOh 

RO = 12Ch = 300 
ARO = 80 98B7h 
Data at 80 9863h = 2COO OOOOh 
Data at 80 98B8h = 12Ch = 300 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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LWLct Load Word Left-Shifted 

Syntax LWLct src, dst 

Operation src « {O, 1, 2, or 3} bytes and merged with dst ~ dst 

Operands ct the count of bytes {O, 1, 2, or 3} to shift left (ct x 8 = shift in bits) 
src register, direct, or indirect addressing modes 
dst register mode (any register in CPU primary register file) 

Encoding 

, 3\ 1 1 1 1 1 ,124123, 
1011010BG dst 

87 
1 1 1 1 

src 

Instruction Word Fields 

G src addressing modes 

00 register mode (any CPU register) 

01 direct mode 

10 indirect mode 

B srcbyte 

00 no shift 

01 shift left 1 byte space 

10 shift left 2 byte spaces 

11 shift left 3 byte spaces 

Description The src operand is left shifted the specified number of bytes and merged 
with the bytes of the dst register that are below the left-shifted LSB of the 
src register. 

Cycles 1 
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Load Word Left-Shifted LWLct 

Status Bits If ST (SET CON D) = 0 and the destination register is RO - R11 , the condition 
flags are modified. If ST (SET CON D) = 1, they are modified for all destina­
tion registers. 
LUF Unaffected. 
LV Unaffected. 
UF o. 
N MSB of the output. 
Z 1 if a zero result is generated, 0 otherwise. 
V O. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 

Example LWL2 Rl, R2 

Before Instruction: 

R1 = ABCD EF12h 
R2 = 1234 5678h 

After Instruction: 

R1 = ABCD EF12h (remains unchanged) 
EF12 OOOOh (left shifted interim value) 

R2 = EF12 5678h (contents merged) 

11-133 



LWRct Load Word Right-Shifted 

Syntax 

Operation 

Operands 

Encoding 

; ;, ';;"'~ Q.Ii:I?_~~J 'Sff1lei~fH~·:o:;.t;:;:: ( ..... ~:!I.~;,~~: o!i '.;~ ',-~' .,.:~:~(-,~oj:w;.;( '-' ~:~~ ~.~~ .. ~ >~'!le:; ii,; !If. ~.~ ·:~,I:'ll': .. r~· ) .. ~ .. ", .. '~'H':' 'S:9" "·ox).·,~·,lli"~,~·,;~.;,·:"'rlliO,;; ~,;S; t 

LWRct src, dst 

src » {O, 1, 2, or 3} bytes and merged with dst ~ dst 

ct the count of bytes {O, 1, 2, or 3} to shift right (ct x 8 = shift in bits) 
src register, direct, or indirect addressing modes 
dst register mode (any register in CPU primary register file) 

, 31, , , , , , ,24,23, 

1011011BG 

, , 
dst 

1615 

I ' 
87 , , 
src 

Instruction Word Fields 

G src addressing modes 

00 register mode (any CPU register) 

01 direct mode 

10 indirect mode 

B srcbyte 

00 no shift 

01 shift right 1 byte space 

10 shift right 2 byte spaces 

11 shift right 3 byte spaces 

Description The src operand is right shifted the specified number of bytes and merged 
with the bytes of the dst register that are above the right-shifted MSB of the 
src register. Sign is not extended. 

Cycles 1 
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Load Word Right-Shifted LWRct 

Status Bits If ST (SET COND) = 0 and the destination register is RO - R11 , the condition 
flags are modified. If ST (SET COND) = 1, they are modified for all destina­
tion registers. 
LUF Unaffected. 
LV Unaffected. 
UF o. 
N MSB of the output. 
Z 1 if a zero result is generated, 0 otherwise. 
V O. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 

Example LWRl AR1, R2 

Before Instruction: 

AR1 = ABCD EF12h 
R2 = 1234 5678h 

After Instruction: 

AR1 = ABCD EF12h (remains unchanged) 
OOAB CDEFh (right-shifted interim value) 

R2 = 12AB CDEFh (contents merged) 
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MBct Merge Byte, Left-Shifted 

Syntax MBet src, dst 

Operation 8 LSBs of src « {O, 1, 2, or 3} bytes and merged with dst -+ dst 

Operands ct the count of bytes {O, 1,2, 3} to shift left (ct x 8 = shift in bits) 
src register, direct, or indirect addressing modes 
dst register mode (any register in CPU primary register file) 

Encoding 
31 2423 1615 

I ii iii iii I ~011100BG 

i i 

dst I i 

Instruction Word Fields 

G src addressing modes 
00 register mode (any CPU register) 

01 direct mode 

10 indirect mode 

B srcbyte 

00 no shift 

01 shift left 1 byte space 

10 shift left 2 byte spaces 

11 shift left 3 byte spaces 

87 
I I 

src 

Description The 8 LSBs of the srcoperand are left shifted (0, 1 , 2, or 3) bytes and merged 
with the dst register. 

Cycles 1 
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Merge Byte, Left-Shifted MBet 

Status Bits If ST (SET COND) = 0 and the destination register is RO - R 11 , the condition 
flags are modified. If ST (SET COND) = 1, they are modified for all destina­
tion registers. 
LUF Unaffected. 
LV Unaffected. 
UF O. 
N MSB of , the output. 
Z 1 if a zero result is generated, 0 otherwise. 
V O. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 

Example MB2 AR1, AR2 

Before Instruction; 

AR1 = ABCD EF12h 
AR2 = 1234 5678h 

After Instruction: 

AR1 = ABCD EF12h (remains unchanged) 
OOAB CDEFh (left-shifted interim value) 

AR2 = 1212 5678h (contents merged) 
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MHct Merge Half-Word, Left-Shifted 

Syntax MHct sre, dst 

Operation 16 LSBs of sre« {O, 1} half-words merged with dst ~ dst 

Operands ct the count of half-word (16-bit) shifts 
sre register, direct, or indirect addressing modes 
dst register mode (any register in CPU primary register file) 

Encoding 
31 2423 

I I I I I I I I I I 
101111 OOH G 

I I 

dst 

Instruction Word Fields 

G src addressing modes 

00 register mode (any CPU register) 

01 direct mode 

10 indirect mode 

H srcbyte 

00 no shift 

01 shift left 1 half-word (16 bits) 

87 
I i 

src 

o 

Description The 16 LSBs of the sreoperand are left shifted (0, 1) half-words and merged 
with the dst register. 

Cycles 1 
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Merge Half-Word, Ll!ft-Shlfted MHct 
'$IiiMI~I~~ ~1~iII 1$fK'If oiS ;>J)I~~~ )loI!I~N!o '" ""~~ *, XSAIMI 

Status Bits If ST (SET CON D) = 0 and the destination register is RO - R11. the condition 
flags are modified. If ST (SET COND) = 1. they are modified for all destina­
tion registers. 
LUF Unaffected. 
LV Unaffected. 
UF o. 
N MSB of the output. 
Z 1 if a zero result is generated. 0 otherwise. 
V O. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 

Example MHI ARl, AR2 

Before Instruction: 

AR1 = ABCD EF12h 
AR2 = 1234 5678h 

After Instruction: 

AR1 = ABCD EF12h (remains unchanged) 
EF12 OOOOh (left-shifted interim value) 

AR2 = EF12 5678h (contents merged) 
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MPYF Multiply Floating-Point Values 

Syntax MPYF src, dst 

Operation dst x src ~ dst 

Operands srcgeneral addressing modes (G): 
o 0 register (RO - R11) 
01 direct 
1 0 indirect 
1 1 immediate 

dstregister (RO - R11) 

Encoding 
31 2423 I I I I I I I I I I I I I I I 
001010100 G dst 

1615 

I I I 87 o 
i i 

I I sra 

Description The product of the dst and src operands is loaded into the dst register. The 
srcoperand is assumed to be a single-precision floating-point number, and 
the dst operand is an extended-precision floating-point number. 

Cycles 1 

Status Bits LUF 1 if a floating-point underflow occurs, unchanged otherwise. 
LV 1 if a floating-point overflow occurs, unchanged otherwise. 
UF 1 if a floating-point underflow occurs, 0 otherwise. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if a floating-point is overflow occurs, 0 otherwise. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 

Example MPYF RO, R2 

Before Instryctlon: 

RO = 07 OC80 OOOOh = 1.4050e + 02 
R2 = 03 4C20 OOOOh = 1.27578125e + 01 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

RO = 07 OC80 OOOOh = 1.4050e + 02 
R2 = OA 600F 2000h = 1.79247266e + 03 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Multiply Floating-Point Values, 3 Operands MPYF3 

Syntax MPYF3 src2, src1, dst 

Operation src1 x src2 ~ dst 

Operands src1,src2 
dst 

both type 1 or type 2 three-operand addressing modes 
register mode (RD - R 11 ) 

Encoding 

Type 1 
31 2423 87 

I · iii iii i I 
001001001 T dst 

i i I i i 

sre2 
i I 

sre1 

Type 2 

31 2423 1615 87 

dst I i i i 

I 
i i 

src2 
i i 

sre1 

Instruction Word Fields 

T src1 addressing modes src2 addressing modes 

00 register mode (RO - R11) register mode (RO - R 11 ) 

Type 1 01 indirect mode (disp = 0, 1, IRO, IR1) register mode (any CPU register) 

10 register mode (RO - R11) indirect mode (disp = 0, 1, IRO, IR1) 

11 indirect mode (disp = 0, 1, IRO, IR1) indirect mode (disp = 0, 1, IRO, IR1) 

T src1 addressing modes src2 addressing modes 

01 register mode (RO - R 11 ) indirect mode * +ARn(5-bit unsigned 
displacement) 

11 indirect mode *+ARn1(5-bit unsigned indirect mode * +ARn2(5-bit unsigned 
displacement) displacement) lYpe2 

o 

o 

Description The product of src1, and src2, is loaded into the dst register. The values at 
src1, src2, and dst are extended-precision floating-point numbers. 
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MPYF3 Multiply Floating Point Values, 3 Operands 

Cycles 1 

Status Bits LUF 1 if a floating-point underflow occurs, unchanged otherwise. 
LV 1 if a floating-point overflow occurs, unchanged otherwise. 
UF 1 if a floating-point underflow occurs, 0 otherwise. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if a floating-point is overflow occurs, 0 otherwise. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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Parallel MPYF3 and ADDF3 MPYF311ADDF3 

Syntax MPYF3 sreA, sreB, dstt 
II ADDF3 srcC, sreD, dst2 

Operation srcA x sreB ~ dstt 
II sreC + srcD ~ dst2 

Operands 

.. ':I' '1W III!" I 

srcA} srcB 
sreC 
sreD 

Any two must be indirect (disp = 0, 1, IRO, IR1), and 
any two must be register (RO - R7) 

dstt 

dst2 

sret 
sre2 
sre3 
src4 

register (dt): 
O=RO 
1 = R1 

register (d2): 
0=R2 
1 = R3 

register 
register 
indirect 
indirect 

(RO - R7) 
(RO - R7) 
(disp = 0, 1, IRO, IR1) 
(disp = 0, 1, IRO, IR1) 

P parallel addressing modes (0 s P S 3) 

Operation (P Field) 

00 sre3 x sre4, sret + src2 
01 sre3 x sret, sre4 + src2 . 
10 sret x src2, sre3 + src4 
11 src3 x sret, src2 + src4 

Encoding 
,.~ 2423 1615 vi 

I I II I I I 
Ip Id11d21 

I I 
I I I 

I I I I 

>0: 0000 : 
src1 src3 src2 • 

87 

I 
I I I , 

src4 : 

0 
I 

I 
Description A floating-point multiplication and a floating-point addition are performed in 

parallel. All registers are read at the beginning and loaded at the end Of the 
execute cycle. This means that if one of the parallel operations (MPVF3) . 
reads from a register and the operation being performed in parallel (ADDF3) 
writes to the same register, then MPVF3 accepts as input the contents of 
the register before it is modified by the ADDF3. 
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MPYF311ADDF3 Parallel MPYF3 and ADDF3 

Any combination of addressing modes may be coded for the four possible 
source operands as long as two are coded as indirect and twQ are register. 
The assignment of the source operands srcA - srcDto the sre1 - src4fields 
varies, depending on the combination of addressing modes used; the P field 
is encoded acCordingly. The assembler may, when not significant, change 
the order of operands in commutative operations in order to simplify pro­
cessing. 

If src2 and dst2 point to the same locfltion, src2 is read before the write to 
dst2. 

Cycles 1 

Status Bits LUF 1 if a floating-point underflow occurs, unchanged otherwise. 
LV 1 if a floating-point overflow occurs, unchanged otherwise. 
UF 1 if a floating-point underflow occurs, 0 otherwise. 
N O. 
Z O. 
V 1 if a floating-point overflow Qccurs. 0 otherwise. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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Parallel MPYF3 and ADDF3 MPYF311ADDF3 
___________ :f': .. _ .. _f$IS .... " ""':OS ;""',~;s~_..::»_, ~,~._,,' ~, \o!:~·'~lnnfne "M"'-,~:I':!:!,' ~ ~ 1M" "",""""!~: .,~ ... 

Example MP!KB.5 ++ (1) , * - - ARl (IRO) , RO 
II ADDF3 R5,R7,R3 

Before Instruction: 

AR5 = 80 98C5h 
AR1 = 80 98A8h 
IRO = 4h 
RO = Oh 
R5 = 07 33CO OOOOh = 1.79750e + 02 
R7 = 07 OC80 OOOOh = 1.4050e + 02 
R3 = Oh 
Data at 80 98C5h = 34C OOOOh = 1.2750e + 01 
Data at 80 98A4h = 111 OOOOh = 2.2500e + 00 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR5 = 80 98C6h 
AR1 = 80 98A4h 
IRO = 4h 
RO = 04 6718 OOOOh = 2.88867188e + 01 
R5 = 07 33CO OOOOh = 1.79750e + 02 
R7 = 07 OC80 OOOOh = 1.4050e + 02 
R3 = 08 2020 OOOOh = 3.20250e + 02 
Data at 80 98C5h = 34C OOOOh = 1.2750e + 01 
Data at 80 98A4h = 111 OOOOh = 2.2500e + 00 
LUF LV UF N Z V C = 0 0 0 0, 0 0 0 
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MPYF311STF Parallel MPYF3 and STF 
~ m;:;::.«~~~::;r$;.o~«!~ .. ;:::;m· Sf:;'-~~~~$"'~$+;:>.»'h.'Q~~'="'·· ___ __ 

Syntax MPYF3 src2, src1, dst 
II STF src3, dst2 

Operation src1 x src2 ~ dst1 
II src3~ dst2 

Operands src1 register (RO - R7) 

Encoding 

src2 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (RO - R7) 
src3 register (RO - R7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

31 2423 1615 
i I 
sre1 

I I I I 
sre~ 

87 
I I I 

dst2 I I 
I I I 

src2 

o 
I J 

Description A floating-point multiplication and a floating-point store are performed in 
parallel. All registers are read at the beginning and loaded at the end of the 
execute cycle. This means that if one of the parallel operations (MPYF3) 
writes to a register and the operation being performed in parallel (STF) 
reads from the same register, then the STF accepts as input the contents 
of the register before it is modified by the MPYF3. 

If src2 and dst2 pointto the same location, then src2 is read before the write 
to dst2. 

Cycles 1 

Status Bits LUF 1 if a floating-point underflow occurs, 0 unchanged otherwise. 
LV 1 if a floating-point overflow occurs, unchanged otherwise. 
UF 1 if a floating-point underflow occurs, 0 otherwise. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if a floating-point overflow occurs, 0 otherwise. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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Parallel MPYF3 and STF MPYF311STF 
_ ......... _ ....... __ ....... _ ...................... _.:.:::I!_:~'(;~ __ ._~~#~~~~"«'W~$fl&.,y.N,"~~~~.~~"? ~~ '5$ 

EKamp~ MPYF3 *-AR2(1),R7,RO 
II STFR3, *ARO- - (IRO) 

Before Instruction: 

AR2 = 80 9828h 
R7 = 05 7840 OOOOh = 6.281250e + 01 
RO=Oh 
R3 = 08 6828 OOOOh = 4.7031250e + 02 
ARO = 80 9860h 
IRO = 8h 
Data at 80 982Ah = 70C8000h = 1.4050e + 02 
Data at 80 9860h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR2 = 80 982Bh 
R7 =05 7840 OOOOh = 6.281250e + 01 
RO = 00 09E4 AOOOh = 8.82515625e + 03 
R3 = 08 6828 OOOOh = 4.7031250e + 02 
ARO = 80 9858h 
IRO = 8h 
Data at 80 982Ah = 70C 8000h = 1.4050e + 02 
Data at 80 9860h = 86828 OOOOh = 4.7031250e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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MPYF311SUBF3 Parallel MPYF3 and SUBF3 

SyntBx 

Operands 

MPYF3 srcA, sreB, dst1 
II SUBF3 sreC, sreD, dst2 

sreB Any two must be indire~ (disp = 0, 1, IRO, IR1), and sreA} 
sreC any two must be register (RO - R7) 
sreD 

Operation srcA x sreB -+ dst1 

Encoding 
31 

II sreD - sreC -+ dst2 

dst1 register (d1): 
O=RO 
1 = R1 

dst2 register (d2): 
0=R2 

sre1 
sre2 
sre3 
sre4 

1 = R3 

register 
register 
indirect 
indirect 

(RO - R7) 
(RO - R7) 
(disp = 0, 1, IRO, IR1) 
(disp = 0, 1, IRO, IR1) 

P parallel addressing modes (0 S P S 3) 

Operation (P Field) 

00 sre3 x sre4, sre 1 - src2 
01 sre3 x sre1, sre4 - sre2 
10 sre1 x sre2, sre3 - sre4 
11 src3 x sre 1, src2 - sre4 

2423 1615 I I I II I I 
Ip .l d11d21 

I I 
I I I I I I i 

><000< src1 src3 src2 • 

87 

I 
I i i 

src4 

0 
I I I 

Description A floating-point multiplication and a floating-point subtraction are performed 
in parallel. All registers are read at the beginning and loaded at the end of 
the execute cycle. This means that if one of the parallel operations (MPVF3) 
reads from a register, and the operation being performed in parallel 
(SUBF3) writes to the same register, then MPVF3 accepts as input the con­
tents of the register before it is modified by the SUBF3. 
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Parallel MPYF3 and SUBF3 MPYF311SUBF3 

Any combination of addressing modes may be coded for the four possible 
source operands as long as two are coded as indirect and two are register. 
The assignment ofthe source operands srcA - srcDto the src1 - src4fields 
varies, depending on the combination of addressing modes used; the P field 
is encoded accordingly. The assembler may, when not significant, change 
the order of operands in commutative operations in order to simplify pro­
cessing. 

Cycles 1 

Status Bits LUF 1 if a floating-point underflow occurs, unchanged otherwise. 
LV 1 if a floating-point overflow occurs, unchanged otherwise. 
UF 1 if a floating-point underflow occurs, 0 otherwise. 
N O. 
Z o. 
V 1 if a floating-point overflow occurs, 0 otherwise. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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MPYF311SUBF3 Parallel MPYF3 and SUBF3 
r ~?. f ·s!sn~~S:~:~~9·~::,l;S.~,X,~· 'q M 

Examp~ MPYF3 R5,*++AR7(IR1),RO 

11-15.0 

II SUBF3R7,*AR3- -(1),R2 
or 

MPYF3 *++AR7(IR1), R5,RO 
II SUBF3R7,*AR3- -(1),R2 

Before Instruction: 

R5 = .03 4C.o.o .o.o.o.oh = 1.27S.oe + .01 
AR7 = 8.0 99.o4h 
IR1 = 8h 
R.o=.oh 
R7 = .07 33C.o .o.o.o.oh = 1.7975.oe + .02 
AR3 = 8.0 9882h 
R2=.oh 
Data at 8.0 99.oCh = 111 .o.o.o.oh = 2.25.oe + .0.0 
Data at 8.0 9882h = 7.oC 8.o.o.oh = 1.4.o5.oe + .02 
LUF LV UF N Z V C = .0 .0 .0 .0 .0 .0 .0 

After Instruction: 

R5 = .03 4C.o.o .o.o.o.oh = 1.275.oe + .01 
AR7 = 8.0 99.oCh 
IR1 = 8h 
R.o = .04 6718 .o.o.o.oh = 2.88867188e + .01 
R7 = .07 33C.o.o.o.o.oh = 1.7975.oe + .02 
AR3 = 8.0 9881 h 
R2 = .05 E3.o.o .o.o.o.oh = - 3.925.oe + .01 
Data at 8.0 99.oCh = 111 .o.o.o.oh = 2.25.oe + .0.0 
Data at 8.0 9882h = 7.oC8.o.o.oh = 1.4.o5.oe + .02 
LUF LV UF N Z V C = .0 .0 .0 .0 .0 .0 .0 
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Multiply Integer MPYI 

Syntax MPYI src, dst 

Operation dst x src ~ dst 

Operands src general addressing modes (G): 
00 register (any CPU register) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (any register in CPU primary register file) 
Encoding 
31 24 23 16 15 8 7 I 0 i 0 i 0 I 0 i 1 i 0 i 1 i 0 i 1 I ~ Iii dS~ iii iii iii ~rc i 
Description 

Cycles 

Status Bits 

Mode Bit 

Example 

The product of the dst and src operands is loaded into the dst register. The 
srcand dstoperands, when read, are assumed to be 32-bit signed integers. 
The result is assumed to be a 64-bit signed integer. The output to the dst 
register is the 32 least-significant bits of the result. 

Integer overflow occurs when any of the most significant 32 bits of the 64-bit 
result differs from the most significant bit of the 32-bit output value. 

1 

If ST (SET COND) = 0 and the destination register is RO - R11 , the condition 
flags are modified. If ST (SET COND) = 1, they are modified for all destina­
tion registers. 
LUF Unchanged. 
LV 1 if an integer overflow occurs, unchanged otherwise. 
UF O. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an integer overflow occurs, 0 otherwise. 
C Unaffected. 

OVM Operation is affected by OVM bit value. 

MPYI Rl,R5 
Before Instruction: 

R1 = 000033 C251 h = 3,392,081 
R5 = 000078 B600h = 7,910,912 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R1 = 00 0033 C251 h = 3,392,081 
R5 = 00E21 D 9600h =- 501,377,536 
LUF LV UF N Z V C = 0 1 0 1 0 1 0 
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MPYI3 Multiply Integer, :3 Operands 

Syntax MPYI3 sre2, sre1, dst 

Operation sre 1 x sre2 --+ dst 

Operands sre1, sre2 both type 1 or type 2 three-operand addressing modes 
dst register mode (any register in CPU primary register file) 

Encoding 

Type 1 
31 2423 

i i 

dst 

Type 2 

31 2423 I I I I I I I I I I 
001101010T 

I I 

dst 

Instruction Word Fields 

T srct addressing modes 

00 register mode (any CPU register) 

Type 1 01 indirect mode (disp = 0,1, IRO, IR1) 

10 register mode (any CPU register) 

11 indirect mode (disp = 0, 1, IRO, IR1) 

T srct addressing modes 

00 register mode (any CPU register) 

01 register mode (any CPU register) 
Type 2 

10 
indirect mode * +ARn(5-bit unsigned 
displacement) 

11 indirect mode *+ARn1(5-bit unsigned 
displacement) 

I I 

src1 

I I 

src1 

r 
r 

I I 

src2 

I I 

src2 

src2 addressing modes 

register mode (any CPU register) 

register mode (any CPU register) 

indirect mode (disp = 0, 1, IRO, IR1) 

indirect mode (disp = 0, 1,IRO, IR1) 

src2 addressing modes 

8-bit signed immediate 

indirect mode * +ARn(5-bit unsigned 
displacement) 

8-bit signed immediate 

indirect mode *+ARn2(5-bit unsigned 
displacement) 

Description The product of the numbers at sre1 and sre2 is loaded into the dstregister. 
The multiplied numbers are assumed to be 32-bit signed integers. The re­
sult is assumed to be a signed 64-bit integer. The output to the dstregister 
is the 32 least significant bits of the result. 

Cycles 1 
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Multiply Integer, 3 Operands MPYI3 

Status Bits If ST (SET CON D) = 0 and the destination register is RO - R 11, the condition 
flags are modified. If ST (SET COND) = 1, they are modified for all destina­
tion registers. 
LUF Unchanged. 
LV 1 if an integer overflow occurs, unchanged otherwise. 
UF O. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an integer overflow occurs, 0 otherwise. 
C Unaffected. 

Mode Bit OVM Operation is affected by OVM bit value. 

Note Integer overflow occurs when any of the most significant 32 bits of the 64-bit 
result differs from the most significant bit of the 32-bit output value. 
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MPYI3\\ADDI3 Parallel MPYIS and ADDIS 

Syntax 

Operation 

Operands 

Encoding 

MPYI3 sreA, sreB, dstt 
II ADDI3 sreG, sreD, dst2 

srcA x sreB ~ dstt 
II sreD + sreG ~ dst2 

sreA} sreB 
sreG 
sreD 

dst1 

dst2 

sre1 
sre2 
sre3 
sre4 

Any two must be indirect (disp = 0, 1, IRO, IR1), and 
any two must be register (RO - R7) 

register (d1): 
O=RO 
1 = R1 

register (d2): 
0=R2 
1 = R3 

register 
register 
indirect 
indirect 

(RO - R7) 
(RO - R7) 
(disp = 0, 1, IRO, IR1) 
(disp = 0, 1, IRO, IR1) 

P parallel addressing modes (0 ~ P ~ 3) 

Operation (P Field) 

00 sre3 x sre4, sre t + sre2 
01 sre3 x sret, sre4 + sre2 
1 0 sre 1 x sre2, src3 + src4 
11 src3 x sret, sre2 + sre4 

31 2423 1615 87 o 
I I I 
src2 

i I 

sro3 I I I I I I I 

src4 

Description An integer multiplication and an integer addition are performed in parallel. 
All registers are read at the beginning and loaded at the end of the execute 
cycle. This means that if one of the parallel operations (MPVI3) reads from 
a register and the operation being performed in parallel (ADDI3) writes to 
the same register, then MPVI3 accepts as input the contents of the register 
before it is modified by the ADDI3. 
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Parallel MPYI3 and ADDI3 MPYI311ADDI3 

Any combination of addressing modes may be coded for the four possible 
source operands as long as two are coded as indirect and two are register. 
The assignment of the source operands srcA - srcDto the src1 - src4fields 
varies, depending on the combination of addressing modes used; the P field 
is encoded accordingly. The assembler may, when not significant, change 
the order of operands in commutative operations in order to simplify pro­
cessing. 

Cycles 1 

Status Bits LUF Unchanged. 
LV 1 if an integer overflow occurs, unchanged otherwise. 
UF O. 
N O. 
Z O. 
V 1 if an integer overflow occurs, a otherwise. 
C Unaffected. 

Mode Bit OVM Operation is affected by GVM bit value. 

Example MPYI3 R7,R4,RO 
II ADDI3*-AR3,*AR5- -(1),R3 

Before Instruction: 

R7 = 14h = 20 
R4 = 64h = 100 
RO = Oh 
AR3 = 80 981 Fh 
AR5 = 80 996Eh 
R3 = Oh 
Data at 80 981 Eh = OFFFF FFCBh = - 53 
Data at 80 996Eh = 35h = 53 
LUF LV UF N Z V C = 0 0 a 0 0 0 0 

After Instruction: 

R7 = 14h = 20 
R4 = 64h = 100 
RO = 07DOh = 2000 
AR3 = 80 981 Fh 
AR5 = 80 996Dh 
R3 = Oh 
Data at 80 981 Eh = OFFFF FFCBh = - 53 
Data at 80 996Eh = 35h = 53 
LUF LV UF N Z V C = a a a a a a a 
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MPYI311STI Parallel MPYI3 and STI3 ... 
Syntax MPYI3 src2, src1, dst1 

II STI src3, dst2 

Operation src1 x src2 ~ dst1 
II src3 ~ dst2 

Operands src1 register (RO - R7) 
src2 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (RO - R7) 
src3 register (RO - R7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

Encoding 

(" I ' , , , 124,23, 
sre1 

I I I I i Iii 

dst2 src2 

Description An integer multiplication and an integer store are performed in parallel. All 
registers are read at the beginning and loaded at the end of the execute 
cycle. This means that if one of the parallel operations (STI) reads from a 
register and the operation being performed in parallel (MPYI3) writes to the 
same register, then STI accepts as input the contents of the register before 
it is modified by the MPYI3. 

If src2 and dst2 point to the same location, src2 is read before the write to 
dst2. 

Integer overflow occurs when any of the most significant 16 bits of the 48-bit 
result differs from the most significant bit of the 32-bit output value. 

Cycles 1 

Status Bits LUF Unchanged. 
LV 1 if an integer overflow occurs, unchanged otherwise. 
UF o. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an integer overflow occurs, 0 otherwise. 
C Unaffected. 

Mode Bit OVM Operation is affected by OVM bit value. 
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Example MPYI3 *++ARO (1) , R5, R7 
II STI R2,*-AR3(l) 

Before Instruction: 

ARO = 80 995Ah 
R5 = 32h = 50 
R7=Oh 
R2 = ODCh = 220 
AR3 = 80 982Fh 
Data at 80 995Bh = OC8h = 200 
Data at 80 982Eh = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

ARO = 80 995Bh 
R5 = 32h = 50 
R7 = 2710h = 10000 
R2 = ODCh = 220 
AR3 = 80 982Fh 
Data at 80 995Bh = OC8h = 200 
Data at 80 982Eh = ODCh = 220 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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MPYI311SUBI3 Parallel MPYI3 and SUBI3 

Syntax MPYI3 srcA, srcB, dst1 
II SUBI3 srcC, srcD, dst2 

Operation srcA x srcB ---t dst1 
II srcD - srcC ---t dst2 

Operands 

srcA} srcB 
srcC 
srcD 

Any two must be indirect (disp = 0, 1, IRO, IR1), and 
any two must be register (RO - R7) 

dst1 

dst2 

src1 
src2 
src3 
src4 

register (d1): 
0= RO 
1 = R1 

register (d2): 
0= R2 
1 = R3 

register 
register 
indirect 
indirect 

(RO - R7) 
(RO - R7) 
(disp = 0, 1, IRO, IR1) 
(disp = 0, 1, IRO, IR1) 

P parallel addressing modes (0 ::; P::; 3) 

Operation (P Field) 

00 src3 x src4, src 1 - src2 
01 src3 x src1, src4 - src2 
10 src1 x src2, src3 - src4 
11 src3 x src 1, src2 - src4 

Encoding 
31 2423 

\1 ' 0 \ 0 ' 0 ' 1 ' 1 \ 'p \ d1\ d2\ 

, , 
src1 

, ,'61" 
src2 

, , 
src3 

87 , , , 
src4 

o 

Description An integer multiplication and an integer subtraction are performed in paral­
lel. All registers are read at the beginning and loaded at the end of the ex­
ecute cycle. This means that if one of the parallel operations (MPYI3) reads 
from a register and the operation being performed in parallel (SUBI3) writes 
to the same register, then MPYI3 accepts as input the contents of the regis­
ter before it is modified by the SUBI3. 
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Parallel MPYI3 and SUBI3 MPYI311SUBI3 
_______________ ~~_~~""':i69."_s.~_~_~:.~""" __ .. ~:::_s~~._.s~~~ .. ;:· . .m.~·.··~m~:;s::;.:::~·.~~ 

Any combination of addressing modes may be coded for the four possible 
source operands as long as two are coded as indirect and two are register. 
The assignment ofthe source operands srcA - srcDto the src1 - src4fields 
varies, depending on the combination of addressing modes used; the P field 
is encoded accordingly. The assembler may, when not significant, change 
the order of operands in commutative operations in order to simplify pro­
cessing. 

Integer overflow occurs when any of the most significant 16 bits of the 48-bit 
result differs from the most significant bit of the 32-bit output value. 

Cycles 1 

Status Bits LUF Unchanged. 
LV 1 if an integer overflow occurs, unchanged otherwise. 
UF 1 if an integer underflow occurs, 0 otherwise. 
NO. 
Z O. 
V 1 if an integer overflow occurs, 0 otherwise. 
C Unaffected. 

Mode Bit OVM Operation is affected by OVM bit value. 
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MPYI311SUBI3 Parallel MPYI3 and SUBI3 

sxamp~ MPYI3 R2,*++ARO(1),RO 
II SUBI!ARS- - (IR1) ,R4,R2 
or 

MPYI3 *++ARO(1),R2,RO 
II SUBI!ARS- - (IR1), R4, R2 

BefOre Instruction: 

R2 = 32h = 50 
ARO = 80 98E3h 
RO=Oh 
AR5 = 80 99FCh 
IR1 = OCh 
R4 = 07DOh = 2000 
Data at 80 98E4h = 62h = 98 
Data at 80 99FCh = 4BOh = 1200 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R2 = 320h = 800 
ARO = 80 98E4h 
RO = 01324h = 4900 
AR5 = 80 99FOh 
IR1 = OCh 
R4 = 07DOh = 2000 
Data at 80 98E4h = 62h = 98 
Data at 80 99FCh = 4BOh = 1200 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Multiply Signed Integer and Produce 32 MSBs MPYSHI 
'" 

Syntax MPYSHI src, dst 

Operation dst x src ~ dst 

Operands src general addressing modes 
dst register mode (any register in CPU primary register file) 

Encoding 
31 2423 1615 87 

dst I i 
i i 

IOiOiOi1i1i1 i Oi1i11 G 
I i 

src 

Instruction Word Fields 

G src addressing modes 

00 register mode (any CPU register) 

01 direct mode 

10 indirect mode 

11 immediate mode 

Description The 32 MSBs of the product of the numbers at dst and src are loaded into 
the dst register. These numbers, when read, are assumed to be signed 
32-bit integers. The result is assumed to be a signed 64-bit integer. The 
output to the dst register is the 32 most significant bits of the result. 

Cycles 1 

Status Bits If ST (SET COND) = 0 and the destination register is RO - R11 , the condition 
flags are modified. If ST (SET CON D) = 1, they are modified for all destina­
tion registers. 
LUF Unchanged. 
LV Unchanged. 
UF O. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if all 64 bits of the product are 0,0 otherwise. 
V O. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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MPYSHI3 Multiply Signed Integer Producing 32 MSBs, 3 Operands ... 

Syntax MPYSHI3 src2, src1, dst 

Operation src1 x src2 ~ dst 

Operands src1 type 1 or type 2 three-operand addressing modes 
src2 type 1 or type 2 three-operand addressing modes 
dst register mode (any register in CPU primary register file) 

Encoding 

TYpe 1 
31 2423 1615 87 

101 0 1 1 1 0 11 10 10 10 1 11 
1 1 

1 

1 1 1 

1 

1 1 

T dst src1 src2 

lYpe2 
31 2423 1615 87 

1010111111101010111 
1 1 

I 
1 1 1 

I 
1 1 

T dst src1 src2 

Instruction Word Fields 

T src1 addressing modes src2 addressing modes 

00 register mode (any CPU register) register mode (any CPU register) 

Type 1 01 indirect mode (disp = 0, 1, IRO, IR1) register mode (any CPU register) 

10 register mode (any CPU register) indirect mode (disp = 0, 1, IRO, IR1) 

11 indirect mode (disp = 0, 1, IRO, IR1) indirect mode (disp = 0, 1, IRO, IR1) 

T src1 addressing modes src2 addressing modes 

00 register mode (any CPU register) 8-bit signed immediate 

Type 2 
01 register mode (any CPU register) indirect mode *+ARn(5-bit unsigned 

displacement) 

10 indirect mode *+ARn(5-bit unsigned 8-bit signed immediate displacement) 

11 indirect mode *+ARn1 (5-bit unsigned indirect mode * +ARn2(5-bit unsigned 
displacement) displacement) 

0 

1 

0 

I 

-

Description The product ofthe numbers atthe src1 and src20perands is loaded into the 
dst register. The numbers at the src1 and src2 operands are assumed to 
be 32-bit signed integers. The result is assumed to be a signed 64-bit inte­
ger. The output to the dstregister is the 32 most significant bits of the result. 
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Multiply Signed Integer Producing 32 MSBs. 3 Operands MPYSHI3 

Cycles 1 

Status Bits If ST (SET COND) = 0 and the destination register is RO - R 11, the condition 
flags are modified. If ST (SET COND) = 1 , they are modified for all destina­
tion registers. 
LUF Unchanged. 
LV 1 if an integer overflow occurs, unchanged otherwise. 
UF o. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an integer overflow occurs, 0 otherwise. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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MPYUHI Multiply Unsigned Integer and Produce 32 MSBs 

Syntax MPYUHI sre, dst 

Operation dst x sre ~ dst 

Operands sre general addressing modes 
dst register mode (any register in CPU primary register file) 

Encoding 
31 2423 1615 87 o 

i i 
dst I i i I 

src 

Instruction Word Fields 

G src addressing modes 

00 register mode (any CPU register) 

01 direct mode 

10 indirect mode 

11 immediate mode 

Description The 32 MSBs of the product of the numbers at dst and src operands are 
loaded into the dst register. These numbers, when read, are assumed to 
be unsigned 32-bit integers. The result is assumed to be an unsigned 64-bit 
integer. The output to the dst register is the 32 most significant bits of the 
result. 

Cycles 1 

Status Bits If ST (SET CON D) = 0 and the destination register is RO - R 11 , the condition 
flags are modified. If ST (SET COND) = 1, they are modified for all destina­
tion registers. 
LUF Unchanged. 
LV Unchanged. 
UF O. 
N O. 
Z 1 if all 64 bits of the product are 0, 0 otherwise. 
V O. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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Multiply Unsigned Integer Producing 32 MSBs, 3 Operands MPYUHI3 

Syntax MPYUHI3 sre2, sret, dst 

Operation sret x sre2 ~ dst 

Operands sret, sre2 
dst 

both type 1 or type 2 three-operand addressing modes 
register mode (any register in CPU primary register file) 

Encoding 

Type 1 
31 2423 

I I 

dst 

Type 2 

31 2423 1615 I I I I I I I I I I 
?01110010 T 

I I 

dst I I 
Instruction Word Fields 

T src1 addressing modes 

00 register mode (any CPU register) 

Type 1 01 indirect mode (disp = 0, 1, IRa, IR1) 

10 register mode (any CPU register) 

11 indirect mode (disp = 0, 1, IRa, IR1) 

T src1 addressing modes 

00 register mode (any CPU register) 

01 register mode (any CPU register) 
Type 2 

10 
indirect mode * +ARn(5-bit unsigned 
displacement) 

11 indirect mode * +ARn 1 (5-bit unsigned 
displacement) 

I I 

srat 

I i 

srat 

r 
87 

I I 

src2 

I I 

src2 

src2 addressing modes 

register mode (any CPU register) 

register mode (any CPU register) 

indirect mode (disp = 0, 1, IRO, IR1) 

indirect mode (disp = 0, 1, IRa, IR1) 

src2 addressing modes 

8-bit signed immediate 

indirect mode * +ARn(5-bit unsigned 
displacement) 

8-bit signed immediate 

indirect mode *+ARn2(5-bit unsigned 
displacement) 

o 

o 

Description The product of the numbers at the sret and sre20perands is loaded into the 
dstregister. The numbers atthe sret and sre20perands are assumed to be 
32-bit signed integers. The result is assumed to be an unsigned 64-bit inte­
ger. The output to the dst register is the 32 most significant bits of the result. 

Cycles 1 
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MPYUH13 Multiply Unsigned Integer Producing 32 MSBs, 3 Operands 

Status Bits If ST (SET CONO) = 0 and the destination register is RO - R11 , the condition 
flags are modified. If ST (SET CONO) = 1, they are modified for all destina­
tion registers. 
LUF Unchanged. 
LV Unchanged. 
UF o. 
N o. 
Z 1 if all 64 bits of the product are 0,0 otherwise. 
V o. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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Negative Integer With Borrow NEGB 
.. :1 ..... 

Syntax NEGB sre, dst 

Operation 0 - src - C -+ dst 

Operands src general addressing modes (G): 
00 register (any register in CPU primary register file) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (any register in CPU primary register file) 

Encoding 
31 2423 

I I I I I I I I I I 
000010110G 

87 
I I 

src 

Description The difference of the 0, src, and C operands, calculated as shown, is loaded 
into the dst register. The dst and src are assumed to be signed integers. 

Cycles 1 

Status Bits If ST (SETCOND) = 0 and the destination register is RO - A11, the condition 
flags are modified. If ST (SETCOND) = 1, they are modified for all destina­
tion registers. 
LUF Unaffected. 
LV 1 if an integer overflow occurs, unchanged otherwise. 
UF O. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an integer overflow occurs, 0 otherwise. 
C 1 if a borrow occurs, 0 otherwise. 

Mode Bit OVM Operation is affected by OVM bit value. 

Example NEGB R5, R 7 

Before Instruction: 

AS = OFFFF FFCBh = - 53 
A7=Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 1 

After Instruction: 

AS = OFFFF FFCBh = - 53 
A7 = 34h =52 
LUF LV UF N Z V C = 0 0 0 0 0 0 1 
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NEGF Negate Floating-Point Value 
II" A¥4i' $)WM:r'VW5fH::f U" 

Syntax NEGF sre, dst 

Operation 0 - sre ~ dst 

Operands sregeneral addressing modes (G): 
00 register (RO - R11) 
01 direct 
1 0 indirect 
1 1 immediate 

dstregister (RO - R11) 

Encoding 
31 2423 I I I I I I I I I I I I I I I 
o 0 0 0 1 0 1 1 1 G dst 

1615 

I II 
87 o 
i i 

I I src 

Description The difference of the 0 and sre operands is loaded into the dst register. The 
dst and sre operands are assumed to be floating-point numbers. 

Cycles 1 

Status Bits LUF 1 if a floating-point underflow occurs, unchanged otherwise. 
LV 1 if a floating-point overflow occurs, unchanged otherwise. 
UF 1 if a floating-point underflow occurs, 0 otherwise. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if a floating.-point overflow occurs, 0 otherwise. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
exampm NEGF *++AR3(2),.Rl 

11-168 

Before Instruction: 
AR3 = 80 9800h 
R1 = 05 7840 0025h = 6.28125006e + 01 
Data at 80 9802h = 70C 8000h = 1 .4050e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR3 = 80 9802h 
R 1 = 07 F380 OOOOh = -1.4050e + 02 
Data at 80 9802h = 70C 8000h = 1.4050e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Parallel NEGF and STF NEGFIISTF 
~ ;u;:;s::o, ::S:::;SS~~S~:IS ;$~;:.l$~R:C$S~~$S.: S :I:·;:;S~.;~S~~:iIeO.'';:;~~W$«·YX,:~~·W'-::·' '~':"'~'$':~, $~$~: S' x; . ";W.«i~';:;Y.< 'S6 ;:.:«.~ .:. :~ :.O!:i'!<,Yw,M' ":;:;.S::S:~·S· "~:*",r,....,;x;:IS';:;,;s"1llWS ,Id 

Syntax NEGF src2, dst1 
II STF src3, dst2 

Operation 0 - src2 ~ dst1 
II src3 ~ dst2 

Operands src2 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (RO - R7) 
src3 register (RO - R7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

Encoding 
31 2423 1615 

11 I 1 11 I 0 I 0 I 0 I 1 1 ~st~ I 0 I 0 I 0 1 Isrc~ 1 I 

87 o 
dst2 1 I 

I I I iii 

src2 I I 
Description A floating-point negation and a floating-point store are performed in parallel. 

All registers are read at the beginning and loaded at the end of the execute 
cycle. This means that if one of the parallel operations (STF) reads from a 
register and the operation being performed in parallel (NEGF) writes to the 
same register, then STF accepts as input the contents of the register before 
it is modified by the NEGF. 

If src2 and dst2 point to the same location, src2 is read before the write to 
dst2. 

Cycles 1 

Status Bits LUF 1 if a floating-point underflow occurs, 0 unchanged otherwise. 
LV 1 if a floating-point overflow occurs, unchanged otherwise. 
UF 1 if a floating-point underflow occurs, 0 otherwise. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if a floating-point overflow occurs, 0 otherwise. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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NEGFIISTF Parallel NEFG and SrF 

Examp~ NEGF*AR4- -(1),R7 

11-170 

II STF R2, *++AR5 (1) 

Before Instruction: 

AR4 = 80 98E1 h 
R7=Oh 
R2 = 07 33CO OOOOh = 1.79750e + 02 
AR5 = 80 9803h 
Data at 80 98E1 h = 57 840 OOOOh = 6.281250e + 01 
Data at 80 9804h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR4 = 80 98EOh 
R7 = 05 84CO OOOOh = - 6.281250e + 01 
R2 = 07 33CO OOOOh = 1.79750e + 02 
AR5 = 80 9804h 
Data at 80 98E1 h = 578 4000h = 6.281250e + 01 
Data at 80 9804h = 733 COOOh = 1.79750e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Negate Integer NEGI 
__ """"'..,.,.. ___ ·_f '~_·!Z!>.~~~;~~~N~_:;S)"S_·?N""'~9$("',.S~""':.ssSlG_:·Sse;.".?m._~.~,",,'.":.~_Y.o . .... ·~Y.H ......... : ... ·~~ ..... ~~o'!Hfi;1 &xSf~' 

Syntax NEGI src, dst 

Operation 0 - src ~ dst 

Operands srcgeneral addressing modes (G): 
00 register (any register in CPU primary register file) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (any register in CPU primary register file) 

87 
I I 

000011000 G src 

Description The difference of the 0 and srcoperands is loaded into the dstregister. The 
dst and src operands are assumed to be signed integers. 

Cycles 1 

Status Bits If ST (SETCOND) = 0 and the destination register is RO - R11, the condition 
flags are modified. If ST (SETCOND) = 1, they are modified for all destina­
tion registers. 
LUF Unaffected. 
LV 1 if an integer overflow occurs, unchanged otherwise. 
UF O. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an integer overflow occurs, 0 otherwise. 
C 1 if a borrow occurs, 0 otherwise. 

Mode Bit OVM Operation is affected by OVM bit value. 

Example NEGI 174,R5 (174 = OAEh) 

Before Instruction: 

R5 = ODCh = 220 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R5 = OFFFFFF52 = -174 
LUF LV UF N Z V C = 0 0 0 1 0 0 1 
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Syntax NEGI src2, dst1 
II STI src3, dst2 

Operation 0 - src2 ~ dst1 
II src3 ~ dst2 

Operands src2 indirect (disp = 0,1, IRO, IR1) 
dst1 register (RO - R7) 
src3 register (RO - R7) 
dst2 indirect(disp = 0, 1, IRO, IR1) 

Encoding 
31 2423 I I I I I I I I I I ~ 1 1 0 0 1 0 dst1 

1615 
I I i iii 

dst2 src2 

Description An integer negation and an integer store are performed in parallel. All regis­
ters are read at the beginning and loaded at the end of the execute 
cycle.This means that if one of the parallel operations (STI) reads from a 
register and the operation being performed in parallel (NEGI) writes to the 
same register, then STI accepts as input the contents of the register before 
it is modified by the NEGI. 

If src2 and dst2 point to the same location, src2 is read before the write to 
dst2. 

Cycles 1 

Status Bits LUF Unaffected. 
LV t if an integer overflow occurs, unchanged otherwise. 
UF O. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an integer overflow occurs, 0 otherwise. 
C 1 if a borrow occurs, 0 otherwise. 

Mode Bit OVM Operation is affected by DVM bit value. 
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Parallel NEGI and STI NEGIIiSTI 

EX8mp~ NEGI *-AR3,R2 
II STI R2,*AR1++ 

Before Instruction: 

AR3 = 80 982Fh 
R2 = 19h = 25 
AR 1 = 80 98A5h 

. ~.. ~*:~";';~ "1 !,r n"' 

Data at 80 982Eh = ODCh = 220 
Data at 80 98A5h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR3 = 80 982Fh 
R2 = OFFFF FF24h = -220 
AR1 = 80 98A6h 
Data at 80 982Eh = ODCh = 220 
Data at 80 98A5h = 19h = 25 
LUF LV UF N Z V C = 0 0 0 1 0 0 1 

1$. 1S" "f 
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NOP No Operation 
~S:'w,' ~w.~""'; ; __ !_~"_""'_''''_:I1~_W'_~'''''~f$1_~*,'''''' ___ :,~~..s""*,*_.~~ __ "," . .... ,_w~_"' __ ;::;~_ 

Syntax NOP src 

Operation No ALU or multiplier operations. 
ARn is modified if src is specified in indirect mode. 

Operands src general addressing modes (G): 
00 register (no operation) 
1 0 indirect (modify ARn, 0 ~ n ~ 7) 

Encoding 
87 o 
i I 

I I src 

Description If the src operand is specified inthe indirect mode, the specified addressing 
operation is performed and a dummy memory read occurs. If the src oper­
and is omitted, no operation is performed. 

Cycles 1 

Status Bits LUF Unaffected. 
lV Unaffected. 
UF Unaffected. 
N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 

Example NOP 

Example 

11-174 

Before Instruction: 

PC = 3Ah 

After Instruction: 

PC = 3Bh 

NOP *AR3- -(1) 

Before Instruction: 

PC =5h 
AR3 = 80 9900h 

After Instruction: 

PC =6h 
AR3 = 80 98FFh 
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Normalize NORM 

Syntax NORM src, dst 

Operation norm (src) --+ dst 

Operands srcgeneral addressing modes (G): 
00 register(RO-R11} 
01 direct 
1 0 indirect 
1 1 immediate 

Encoding 
31 2423 1615 87 o 
I ii I I I I I I I 
?00011010 G 

IdS~ I I I I I 
I I src 

Description The src operand is assumed to be an unnormalized floating-point number; 
i.e., the implied bit is set equal to the sign bit. The dst is set equal to the nor­
malized srcoperand with the implied bit removed. The dstoperand expo­
nent is set to the srcoperand exponent minus the size of the left shift neces­
sary to normalize the src. The dst operand is assumed to be a normalized 
floating-point number. 

For values of src: 
Q If src (exp) = -128 and src (man) = 0, then dst= 0, Z = 1, and UF = O. 
Q If src (exp) = -128 and src (man):;l: 0, then dst= 0, Z = 0, and UF = 1. 
Q For all other cases of the src, if a floating-point underflow occurs, then 

dst (man) is forced to 0 and dst (exp) = -128. If src (man) = 0, then 
dst (man) = 0 and dst (exp) = -128. Refer to Section 4.7 on page 4-24. 

Cycles 1 

Status Bits LUF 1 if a floating-point underflow occurs, unchanged otherwise. 
LV Unaffected. 
UF 1 if a floating-point underflow occurs, 0 otherwise. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V O. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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NORM Normalize 

EKamp~ NORM Rl,R2 

Before Instruction; 

R 1 = 04 0000 3AF5h 
R2 = 07 OC80 OOOOh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R1 = 04 0000 3AF5h 
R2 = F2 68D4 OOOOh = 1.12451613e - 04 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Bitwise Logical Complement NOT 

Syntax NOT sre, dst 

Operation -sre ~ dst 

Operands sregeneral addressing modes (G): 
00 register (any register in CPU primary register file) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (any register in CPU primary register file) 
Encoding 
31 2423 1615 87 I 0 I 0 I 0 I 0 I 1 I 1 I 0 I 1 I 1 I ~ I I I ds~ I Iii iii i i ~rc i 
Description The bitwise logical complement of the sreoperand is loaded into the dstreg­

ister. The complement is formed by a logical NOT of each bit of the sreoper­
and. The dst and sre operands are assumed to be unsigned integers. 

Cycles 1 

Status Bits If ST (SETCOND) = 0 and the destination register is RO - R11, the condition 
flags are modified. If ST (SETCOND) = 1, they are modified for all destina­
tion registers. 
LUF Unaffected. 
LV Unaffected. 
UF o. 
N MSB of the output. 
Z 1 if a zero result is generated, 0 otherwise. 
V O. 
C Unaffected. 

Mode Bit OVM Operation is affected by DVM bit value. 

Example NOT @982Ch,R4 

Before Instruction: 
DP = 80h 
R4=Oh 
Data at 80 982Ch = 5E2Fh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

DP = 80h 
R4 = OFFFF A 1 DOh 
Data at 80 982Ch = 5E2Fh 
LUF LV UF N Z V C = 0 0 0 1 0 0 0 
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NOTIISTI Parallel NOT and STI 

Syntax NOT src2, dst1 
II ST. src3, dst2 

Operation -src2 ~ dst1 
II src3 ~ dst2 

Operands src2 indirect (disp= 0, 1, IRa, IR1) 
dst1 register (RO - R7) 
src3 register (RO - R7) 
dst2 indirect (disp = 0, 1, IRa, IR1) 

Encoding 

(' I ' , , , (4,23, I ' , I ' ,1r5, I I I 

dst2 
I I I 

src2 

Description A bitwise logical NOT and an integer store are performed in parallel. All reg­
isters are read at the beginning and loaded at the end of the execute cycle. 
This means that if one of the parallel operations (STI) reads from a register 
and the operation being performed in parallel (NOT) writes to the same reg­
ister, then STI accepts as input the contents of the register before it is modi­
fied by the NOT. 

If src2 and dst2 point to the same location, src2 is read before the write to 
dst2. 

Cycles 1 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF o. 
N MSB of the output. 
Z 1 if a zero result is generated, a otherwise. 
V O. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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Parallel NOT and STI NOTIISTI 
_____ ........ ___ ........... ~_f·::e_,'r«_w~».~»::l(h'~·~.~·;I: . ··.;,·····%r.).:6!··f«~ .. ~ ..... ~ ........ ~~~ .. ~.. ¥::o:o: 

Example NOT * + AR2 , R3 
II STI R7,*- -AR4 (IR1) 

Before Instruction: 

AR2 = 80 99CBh 
R3 =Oh 
R7 = ODCh = 220 
AR4 = 80 9850h 
IR1=10h 
Data at 80 99CCh = OC2Fh 
Data at 80 9840h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR2 = 80 99CBh 
R3 = OFFFF F3DOh 
R7 = ODCh = 220 
AR4 = 80 9840h 
IR1 = 10h 
Data at 80 99CCh = OC2Fh 
Data at 80 9840h = ODCh = 220 
LUF LV UF N Z V C = 0 0 0 1 0 0 0 
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OR Bitwise Logical OR 

Syntax OR src, dst 

Operation dst OR src -7 dst 

Operands srcgeneral addressing modes (G): 
o 0 register (any register in CPU primary register file) 
01 direct 
1 0 indirect 
1 1 immediate (not sign-extended) 

dst register (any register in CPU primary register file) 
Encoding 
31 2423 1615 87 I 0 ' 0 ' 0 I ~ , 0 ' 0 ' 0 ' 0 ' 0 I ~. I ' , dS~ , I ' , , , , , , ~rc' o 

'J 
Description The bitwise logical OR between the srcand dstopreands is loaded into the 

dstregister. The dstand srcoperands are assumed to be unsigned integers. 
Cycles 1 

Status Bits If ST (SETCOND) = 0 and the destination register is RO - R11 , the condition 
flags are modified. If ST (SETCOND) = 1, they are modified for all destina­
tion registers. 
LUF Unaffected. 
LV Unaffected. 
UF O. 
N MSB of the output. 
Z 1 if a zero result is generated, 0 otherwise. 
V O. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 

Example OR *++AR1(IR1),R2 

Before Instruction: 
AR 1 = 80 9800h 
IR1 = 4h 
R2 = 01256 OOOOh 
Data at 80 9804h = 2BCDh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 
AR 1 = 80 9804h 
IR1 = 4h 
R2 = 01256 2BCDh 
Data at 80 9804h = 2BCDh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Bitwise Logical OR, 3 Operands OR3 

Syntax OR3 src2, src1, dst 

Operation src1 I src2 ~ dst (I = OR) 

Operands src1, src2 
dst 

both type 1 or type 2 three-operand addressing modes 
register mode (any register in CPU primary register file) 

Encoding 

Type 1 
31 2423 

Type 2 

31 2423 

I I 

dst 

I I 

dst 

Instruction Word Fields 

T src1 addressing modes 

00 register mode (any CPU register) 

Type 1 01 indirect mode (disp = 0, 1, IRO, IR1) 

10 register mode (any CPU register) 

11 indirect mode (disp = 0, 1, IRO, IR1) 

T src1 addressing modes 

00 register mode (any CPU register) 

01 register mode (any CPU register) 
Type 2 

10 indirect mode * +ARn(5-bit unsigned 
displacement) 

11 
indirect mode *+ARn1 (5-bit unsigned 
displacement) 

I I r I i 

sre1 src2 

I I r I I 

sre1 src2 

src2 addressing modes 

register mode (any CPU register) 

register mode (any CPU register) 

indirect mode (disp = 0, 1, IRO, IR1) 

indirect mode (disp = 0, 1, IRO, IR1) 

src2 addressing modes 

8-bit signed immediate 

indirect mode *+ARn(5-bit unsigned 
displacement) 

8-bit signed immediate 

indirect mode * +ARn2(5-bit unsigned 
displacement) 

o 
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OR3 Bitwise Logical OR, 3 Operands 

Descripti()n The bitwise logical OR between the numbers at the sre1 and src2 operands 
is loaded into the dst register. The numbers atthe sret, sre2, and dstoper­
ands are assumed to be unsigned integers. 

Cycles 1 

Status Bits If ST {SETCOND} = 0, the condition flags are modified if the destination reg­
isteris RO-R11. IfST {SETCOND}= 1, they are modified for all destination 
registers. 
LUF Unaffected. 
LV Unaffected. 
UF O. 
N MSB of the output. 
Z 1 if a zero result is generated, 0 otherwise. 
V O. 
C Unaffected. 

M()de Bit OVM Operation is not affected by OVM bit value. 
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Parallel ORS and STI OR311STI 
___ """"'_ ....... ____ ""'!,:s_ss~""'~_""_~_·.~""''''_~ ___ ~''''',:s_. · __ ~s_·Sl'r_fS __ ·sSS""'·ror!_!·:;(_H~·_~·;'ll!"""·n~_~~_'~'Ro_:'~S~.~.~.M .. (~'!"'·5Sse:~9.··.f r f fSS,.! 

Syntax OR3 sre2, sre1, dst1 
II STI sre3, dst2 

Operation sre1 OR sre2 ~ dst1 
II sre3 ~ dst2 

Operands sre1 register (RO - R7) 
sre2 indirect (disp = 0, 1, IRa, IR1) 
dst1 register (RO - R7) 
sre3 register (RO - R7) 
dst2 indirect (disp = A, 1, IRa, IR1) 

Encoding 
31 2423 1615 I I I I I I I I I I I I I I 

I 
I 

dstt sret sre3 .1 1.1 0 1 0 O. 

87 0 
I I I 

I 
I I I I I 

I dst2 src2 

A bitwise logical OR and an integer store are performed in parallel. All regis­
ters are r~ad at the beginning and loaded at the end of the execute cycle. 
This means that if one of the parallel operations (STI) reads from a register 
and the operation being performed in parallel (OR3) writes to the same reg­
ister, then STI accepts as input the contents of the register before it is modi­
fied by the OR3. 

If sre2 and dst2 point to the same location, sre2 is read before the write to 
dst2. 

Cycles 1 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF O. 
N MSB of the output. 
Z 1 if a zero result is generated, a otherwise. 
V O. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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OR311STI Parallel OR3 and STI 

EKamp~ OR3 *++AR2,RS,R2 
II STIR6, *AR1- -

Before Instruction: 

AR2 = 80 9830h 
RS = 80 OOOOh 
R2=Oh 
R6 = ODCh = 220 
AR1 = 80 9883h 
Data at 80 9831 h = 9800h 
Data at 80 9883h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR2 = 80 9831h 
RS = 80 OOOOh 
R2 = 80 9800h 
R6 = ODCh = 220 
AR 1 = 80 9882h 
Data at 80 9831 h = 9800h 
Data at 80 9883h = ODCh = 220 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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POP Integer POP 

Syntax POP dst 

Operation *SP- - ---+ dst 

Operands dst register (any register in CPU primary register file) 

Encoding 

(" , 1 ' , , , 24,23
1 

' 1 
1615 87 0 

I dS~ I I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 i 0 I 
Description The top of the current system stack is popped and loaded into the dst regis­

ter. The top of the stack is assumed to be a signed integer. The POP is per­
formed with a post decrement of the stack pointer. 

Cycles 1 

Status Bits If ST (SETCOND) = 0 and the destination register is RO - R11, the condition 
flags are modified. If ST (SETCOND) = 1, they are modified for all destina­
tion registers. 
LUF Unaffected. 
LV Unaffected. 
UF O. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 oth.erwise. 
V O. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 

Example POP R3 

Before Instruction: 

SP = 80 9856h 
R3 = 012DAh = 4,826 
Data at 80 9856h = OFFFF ODA4h = - 62,044 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

SP = 80 9855h 
R3 = OFFFF ODA4h = -62,044 
Data at 80 9856h = OFFFF ODA4h = - 62,044 
LUF LV UF N Z V C = 0 0 0 1 0 0 0 
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POPF POP Floating-Point Value 

Syntax POPF dst 

Operation *sp- - -+ dst1 

Operands dst register (RO - R11) 

Encoding 
31 2423 1615 87 0 

I ii Iii iii I iii i i o 0 0 0 1 1 1 0 1 0 1 dst 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

11-186 

The top of the current system stack is popped and loaded into the dst regis­
ter. The top of the stack is assumed to be a floating-point number. The POP 
is performed with a post decrement of the stack pointer. 

1 

LUF Unaffected. 
UF O. 
LV Unaffected. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V O. 
C Unaffected. 

OVM Operation is not affected by OVM bit value. 

POPF R4 

Before Instruction: 

SP = 80 984Ah 
R4 = 02 5D2E 0123h = 6.91186578e + 00 
Data at 80 984Ah = 5F2C 1302h = 5.32544007e + 28 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

SP = 80 9849h 
R4 = 5F 2C13 0200h = 5.32544007e + 28 
Data at 80 984Ah = 5F2C 1302h = 5.32544007e + 28 
LUF LV UF N Z V C = 0 0 0 0 00 0 
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PUSH Integer PUSH 

Syntax PUSH src 

Operation src -+ *++SP 

Operands src register (any register in CPU primary register file) 

Encoding 
31 2423 1615 87 0 

I I I I I I I II I I I I I I I I I I I I I I I I I I I I I I I I 
00001111001 sroOOOOOOOOOOOOOOOO 

Description The contents of the srcregister are pushed on the current system stack. The 
src is assumed to be a signed integer. The PUSH is performed with a prein­
crement of the stack pointer. 

Cycles 1 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF Unaffected. 
N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 

Example PUSH R6 

Before Instruction: 

SP =80 98AEh 
R6 = 815Bh = 33,115 
Data at 80 98AFh = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

SP = 80 98AFh 
R6 = 815Bh = 33,115 
Data at 80 98AFh = 815Bh = 33,115 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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PUSHF PUSH Floating-Point Value 

SyntaK PUSHFsro 

Operation src ~ * ++SP 

Operands src register (RO - R11) 

Encoding 
31 2423 1615 87 0 

I ii Iii i i · I · I · · · ~0001111101 sre • 1 o· o· o· O' O' O' O' O' O' O' O' O' O' O' 0 • 01 

Description The contents of the src register are pushed onto the current system stack. 
The src is assumed to be a floating-point number. The PUSH is performed 
with a preincrement of the stack pointer. 

Cycles 1 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF Unaffected. 
N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 

Example PUSHF R2 

11-188 

Before Instruction: 

SP =809801h 
R2 = 02 5C12 8081h = 6.8n25854e + 00 
Data at 80 9802h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

SP =80 9802h 
R2 = 02 5C1 28081h = 6.87725854e + 00 
Data at 80 9802h = 025C 1280h = 6.87725830e + 00 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Reciprocal of Floating-Point Value RCPF 

Syntax RCPF src, dst 

Operation 16-bit reciprocal of src -+ dst 

Operands src 
dst 

extended-precision register, direct and indirect addressing modes 
RO- R11 

Encoding 
3' 2423 '6 '5 87 ° 

L.I 0_
1
_0_

1
_0_

1
_,_1_,_1 _,_1 _o_1 ,_I_0...lI_G.....&. __ 1 ds_l_t _...II_' _______ ~_I _____ --...11 ' 

Instruction Word Fields 

G src addressing modes 

00 
extended-precision register 
(RO - R11) 

01 direct mode 

10 indirect mode 

Description The 16-bit approximation of the reciprocal of the src operand is loaded into 
the dstregister. The dstand srcoperands are assumed to be floating-point 
numbers. 

Cycles 1 

Status Bits LUF 1 if a floating-point underflow occurs, unchanged otherwise. 
LV 1 if a floating-point overflow occurs, unchanged otherwise. 
UF 1 if a floating-point underflow occurs, 0 otherwise. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 is a zero result, 0 otherwise. 
V 1 if a floating-point overflow occurs, 0 otherwise. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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RETlcond Return From Interrupt or Trap Oonditionally 

Syntax RETlcond 

Operation If (cond is true) 
*(SP) ~ PC 
ST(PGIE) ~ ST(GIE) 
ST(PCF) ~ ST(CF) 

Else, continue 

Operands None 

Encoding 
31 2423 1615 87 0 

Description If the condition Is true, then the top of the stack is popped to the PC, PGIE 
is copied to GIE, and PCF is copied to CF. If the condition is not true, then 
continue normal operation (see Section 11.2 on page 11-10 for a list of con.,. 
dition mnemonics, encoding, and flags). . 

Cycles 4 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF Unaffected. 
N Unaffected. 
Z Unaffected. 
V Unaffected. 
C ' Unaffected . 

. Mode Bit OVM Operation is not affected by OVM bit value. 
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Return From Interrupt or Trap Conditionally Delayed RETlcondD 
Sfst" r "ocr <I". r· X ~t I . 

Syntax RETlconol) 

Operation If ( condis true) 
*(SP) -+ PC 
ST(PGIE) -+ ST(GIE) 
ST(PCF) -+ ST(CF) 

Else, continue 

Operands None 

Encoding 
31 2423 1615 870 

101 1 11 1 111101 0 1 0 10 1 0 111 

Description Performs a delayed return from an interrupt or trap. 

Since this is a delayed return, the three instructions following the 
RETlconoO are fetched and executed. These three instructions may nei­
ther modify the program flow nor load the status register (see Section 11.2 
on page 11-10 for a list of condition mnemonics, encoding, and flags). 

Interrupts are disabled for the duration of the RETlconoO. 

Cycles 1 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF Unaffected. 
N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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RETScond Retum from Subroutine Conditionally 

Syntax 

Operation 

RETScond 
If cond is true: 

*SP--~PC. 
Else, continue. 

Operands None 

Encoding 

1
311 1 1 1 1 1 1241231 1 1 

·01111000100 

1615 87 0 

Description A conditional return is performed. If the condition is true, the top of the stack 
is popped to the PC. 

The TMS320C40 provides 20 condition codes that can be used with this in­
struction (see Section 11.2 on page 11-10 for a list of condition mnemonics, 
encoding, and flags). 

Cycles 4 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF Unaffected. 
N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 

Example RETSGE 

Before Instruction: 

PC = 123h 
SP = 80 983Ch 
Data at 80 983Ch = 456h 
LUF LV UF N Z V C = 0 o· 0 0 0 0 0 

After Imdructlon: 

PC = 456h 
SP=80983Bh 
Data at 80 983Ch = 456h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Round Floating-Point Value RND 

Syntax RND src, dst 

Operation rnd(src) -+ dst 

OptIrands srcgeneral addressing modes (G): 
00 register (RO - R11) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (RO - R11) 

Encoding 
31 2423 I I I I I I I I I I I I I I I 
o 0 0 1 0 0 0 1 o· G dst 

87 o 
I i 

I I src 

Description The result of rounding the srcoperand is loaded into the dstregister.The src 
operand is rounded to the nearest single-precision floating-point value. If 
the src operand is exactly halfway between two single-precision values, it 
is rounded to the most positive of those values. 

Cycles 1 

Status Bits LUF 1 if a floating-point underflow occurs, unchanged otherwise. 
LV 1 if a floating-point overflow occurs, unchanged otherwise. 
UF 1 if a floating-point underflow occurs, 0 otherwise. 
N 1if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if a floating-point overflow occurs, 0 otherwise. 
C Unaffected. 

Mode Bit OVM Operation is affected by OVM bit value. 

Example RND R5, R2 

Before Instruction: 

R5 = 07 33C1 6EEFh = 1.7975559ge + 02 
R2=Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R5 = 07 33C1 6EEFh = 1.7975559ge + 02 
R2 = 07 33C1 6FOOh = 1.79755600e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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ROL Rotate Left 

Syntax ROL dst 

Operation dst left-rotated 1 bit -+ dst 

Operands dst register (any register in CPU primary register file) 

Encoding 
31 24 23 16 15 8 7 0 

'0'0'01/0'0'0'1'111\1' IdS; , '0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'01 

Description The contents of the dstoperand are left-rotated one bit and loaded into the 
dst register. This is a circular rotate with the MSB transferred into the LSB. 

Rotate left: 

[~}-r __ dS_: __ ~ 

Cycles 1 

Status Bits If ST (SETCOND) = 0 and the destination register is RO - R11 , the condition 
. flags are modified. If ST (SETCOND) = 1, they are modified for all destina­
tion registers. 
LUF Unaffected. 
LV Unaffected. 
UF O. 
N MSB of the output. 
Z 1 if a zero output is generated, 0 otherwise. 
V O. 
C Set to the value of the bit rotated out of the high-order bit. Unaffected 

if dst is not RO - R7. 

Mode Bit OVM Operation is not affected by OVM bit value. 

Example ROL R3 

Before Instruction: 

R3 = 8002 SCD4h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R3 = 0004 B9A9h 
LUF LV UF N Z V C = 0 0 0 0 0 0 1 
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Rotate Left Through Carry ROLe 

Syntax ROLC dst 

Operation dst left-rotated 1 bit through carry bit -+ dst 

Operands dst register (any register in CPU primary register file) 

Encoding 
31 24 23 16 15 8 7 0 I 0 I 0 I 0 11 I 0 I 0 I 1 I 0 I 0 11 I 1 1 I I dS~ I 1 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 01 

Description The contents of the dstoperand are left-rotated one bit through the carry bit 
and loaded into the dst register. The MSB is rotated to the carry bit, at the 
same time the carry bit is transferred to the LSB. 

Rotate left through carry bit: 

Cycles 1 

Status Bits If ST (SETCON D) = 0 and the destination register is RO - R 11, the condition 
flags are modified. If ST (SETCOND) = 1, they are modified for all destina­
tion registers. 
LUF Unaffected. 
LV Unaffected. 
UF o. 
N MSB of the output. 
Z 1 if a zero output is generated, 0 otherwise. 
V O. 
C Set to the value of the bit rotated out of the high-order bit. If dst is not 

RO - R7, then C is shifted into the dst but not changed. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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ROLe Rotate Left Through Carry 

Example ROLC R3 

Before Instryctlon: 

R3 = 0000 0420h 
LUF LV UF N Z V C = 0 0 0 0 0 0 1 

After Instryction: 

R3 = 00000 0841 h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Example ROLC R3 

Before Instruction: 

R3 = 8000 4281h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R3 = 0000 8502h 
LUF LV UF N Z V C = 0 0 0 0 0 0 1 
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Syntax ROR dst 

Operation dst right-rotated 1 bit through carry bit -+ dst 

Operands dst register (any register in CPU primary register file) 

Encoding 

Rotate Right ROR 
$ 

31 2423 1615 87 0 

I I I I I I I I I I I I 
00010010111 

Description The contents of the dstoperand are right-rotated one bit and loaded into the 
dst register. The LSB is rotated into the carry bit and also transferred into 
the MSB. 

Rotate right: 

rlo..._<_ds_t --r~ 
Cycles 1 

Status Sits If ST (SETCOND) = 0 and the destination register is RO - R11, the condition 
flags are modified. If ST (SETCOND) = 1, they are modified for all destina­
tion registers. 
LUF Unaffected. 
LV Unaffected. 
UF o. 
N MSB of the output. 
Z 1 if a zero output is generated, 0 otherwise. 
V O. 
C Set to the value of the bit rotated out of the high-order bit. Unaffected 

if dstis not RO- R7. 

Mode sn OVM Operation is not affected by OVM bit value. 

Example ROR R 7 

Before Instruction: 

R7 = 00000421 h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R7 = 8000021 Oh 
LUF LV UF N Z V C = 0 0 0 1 0 0 1 
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RORe Rotate Right Through Carry 

Syntax RORC dst 

Operation dst right-rotated 1 bit through carry bit ~ dst 

Operands dst register (any register in CPU primary register file) 

Encoding 
31 2423 1615 87 0 I 0 1 0 10 11 1 0 1 01 1 1 1 1 01 1 11 1 1 1 dS~ 1 11 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 11 1 1 11 1 1 1 1 1 1 11 

Description The contents of the dst operand are right-rotated one bit through the status 
register'S carry bit. This could be viewed as a 33-bit shift. The carry bit value 
is rotated into the MSB of the dst, at the same time, the dst LSB is rotated 
into the carry bit. 

Rotate right through carry bit: 

Cycles 1 

Status Bits If ST (SETCOND) = 0 and the destination register is RO - R 11, the condition 
flags are modified. If ST (SETCOND) = 1, they are modified for all destina­
tion registers. 
LUF Unaffected. 
LV Unaffected. 
UF O. 
N MSB of the output. 
Z 1 if a zero output is generated, 0 otherwise. 
V O. 
C Set to the value of the bit rotated out of the high-order bit. If dst is not 

RO - R7, then C is shifted in but not changed. 

Mode Bit OVM Operation is not affected by OVM bit value. 

Example RORe R4 

Before Instruction: 

R4 = 80000081 h 
LUF LV UF N Z V C = 0 0 0 1 0 0 0 

After Instruction: 

R4 = 4000 0040h 
LUF LV UF N Z V C = 0 0 0 0 0 0 1 
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Repeat Block RPTB 

Syntax RPTB src 

Operation src + PC + 1 ~ RE 
1 ~ ST (RM) 
Next PC ~ RS 

Operands src 24-bit signed immediate displacement or register mode 

Encoding 

For 24-bit signed immediate or register mode: 
31 2423 1615 87 

JO
'1'1'0'0'1'0'OJ' , , , , , , , , 

. . src (displacement) 
I I I I I I I I 

For register mode: 
31 2423 16 15 87 I 0 ' 1 ' 1 ' 1 ' 1 ' 0 ' 0 ' 1 ' 0 I 0 ' 0 ' 0 ' 0 ' 0 ' 0 ' 0'0 ' 0 ' 0 ' 0 ' 0 ' 0 ' 0 ' 0 ' 0 ' 0 ' 0 I . i I I i 0

1 
src . 

Description RPTB allows a block of instructions to be repeated a number of times with­
out any penalty for looping. 

It activates the block repeat mode of updating the PC. The srcoperand may 
be a 32-bit register value or a 24-bit signed immediate value (displacement). 
The resulting src address is the end address of the block to be repeated. 
This address is loaded into the repeat end address (RE) register. A 1 is writ­
ten into the repeat mode bit of status register (ST(RM)} to indicate that the 
PC is to be updated in the repeat mode. The address of the next instruction 
is loaded into the repeat start address (RS) register. 

Cycles 4 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF Unaffected. 
N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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RPTBD Repeat Block Oe/ayed 

Syntax RPTBD src 

Operation if src is an immediate value (displacement) 
src + PC + 3 ~ RE 

Else: 
src~ RE 

1 ~ST(RM) 
PC of RPTBD +4~ RS 

Operands src 24-bit signed immediate displacement or register mode 
Encoding 

For 24-bit signed immediate or register mode: 
31 2423 1615 87 

1 0'1'1'0'0'1'0'11' "'" III 
I· I I I I I 
src (displacement) 

For register mode: 
31. . 2423 1615 87 

0 , 
1 

0 , , , 
I src 

Description RPTBD allows a block of instructions to be repeated a number of times with­
out any penalty for looping and with single-cycle execution of the RPTBD 
instruction. 
It activates the block repeat mode of updating the PC. The srcoperand may 
be a 32-bit register value or a 24-bit signed immediate value (displacement). 
The resulting src address is loaded into the repeat end address (RE) regis­
ter (block end address). A 1 is written to the status-register repeat mode 
bit (ST(RM)). indicating the PC is to be updated in the repeat mode. The ad­
dress of the next instruction +3 is loaded into the repeat start address (RS) 
register. 
RPTBD does notflush the pipeline. The three instructions following RPTBD 
are executed and may not be an instruction that modifies tbe program flow. 
These three instructions are not part of the block that is repeated. 

Cycles 1 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF Unaffected. 
N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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Syntax RPTS src 

Operation src -? RC 
1 -? ST (RM) 
1-?S 
Next PC -? RS 
Next PC -? RE 

Operands srcgeneral addressing modes (G): 
00 register 
01 direct 
1 0 indirect 
1 1 immediate 

Encoding 
31 2423 

I I I I I I I I I I 
000100111 

1615 

Repeat Single RPTS 

87 
I I 

src 

Description The RPTS instruction allows a single instruction to be repeated a number 
of times without any penalty for looping. Fetches can also be made from the 
instruction register (IR), thus avoiding repeated memory access. 

The src operand is loaded into the repeat counter (RC). A 1 is written into 
the repeat mode bit of the status register ST (RM). A 1 is also written into 
the repeat single bit (S). This indicates that the program fetches are to be 
performed only from the instruction register. The next PC is loaded into the 
repeat end address (RE) register and the repeat start address (RS) register. 

Forthe immediate mode, the srcoperand is assumed to be an unsigned in­
teger and is not sign-extended. 

Cycles 4 

Status Bits LUF 
LV 
UF 
N 
Z 
V 
C 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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RPTS Repeat Single 

Example RPTS AR5 

Before Instruction: 

PC = 123h 
ST=Oh 
RS=Oh 
RE=Oh 
RC=Oh 
AR5 = OFFh 
LUF LV UF N Z V C = 0 0 0 0 00 0 

After Instruction: 

PC = 124h 
ST = 100h 
RS = 124h 
RE = 124h 
RC =OFFh 
AR5 = OFFh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Reciprocal of Square Root Floating-Point Value RSQRF 

Syntax RSQRF src, dst 

Operation 16-bit reciprocal of the square root of src ~ dst 

Operands src 
dst 

extended-precision register, direct and indirect addressing mode~ 
extended-precision register 

Encoding 
31 2423 1615 87 o 

i i 

dst I i I I 

src 

Instruction Word Fields 

G src addressing modes 

00 extended-precision register 
(RO - R11) 

01 direct mode 

10 indirect mode 

Description The 16-bit approximation of the reciprocal of the square root of the number 
at the srcoperand is loaded into the dstregister. The number at the srcop­
erand is assumed to be positive. The operation for negative inputs is unde­
fined. 

The value at the dstand srcoperands are assumed to be floating-point num­
bers. 

Cycles 1 

Status Bits LUF Unchanged. 
LV 1 if input is zero unchanged otherwise. 
UF o. 
N o. 
Z 0 
V 1 if input is zero, 0 otherwise. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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SIGI Signal, Interlocked 

Syntax SIGI src, dst 

Operation LOCK (or LLOCK) pin brought low. 
src-+ dst 
LOCK (or """LL-':OC"""""""'K) pin brought high. 

Operands src direct and indirect addressing modes (assumed to be signed integer) 
dst register mode (assumed to be signed integer) 

Encoding 
31 2423 87 o 

I i I i 
dst src 

Instruction Word F/e/ds 

G arc addressing modes 

01 direct mode 

10 indirect mode 

Description An interlocking operation is signaled using the appropriate bus-lock signal 
(LOCK or LLOCK) if and only if an external memory access is performed. 
The srcand dstoperands are assumed to be signed integers. After the read 
is performed, the bus-lock signal is deasserted. If an internal memory ac­
cess is performed, SIGI will perform the read but will not assert a bus-lock 
signal. 

The numbers at the src and dst operands are treated as signed integers. 

Cycles 1 

Status Bits If ST (SETCOND) = 0 and the destination register is RO - R 11 , the condition 
flags are modified. If ST (SETCOND) = 1, they are modified for all destina­
tion registers. 
LUF Unaffected. 
LV Unaffected. 
UF O. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V O. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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Store Floating-Point Value STF 

Syntax STF sre, dst 

Operation src ~ dst 

Operands src register (RO - R 11 ) 

dstgeneraJ addressing modes (G): 
01 direct 
1 0 indirect 

Encoding 
31 2423 I I I I I I I I I I 
000101000 ~I 

87 
i i 

dst 

Description The sreregister is loaded into the dstmemory location. The sreand dstoper­
ands are assumed to be floating-point numbers. 

Cycles 1 

Status Bits LUF 
LV 
UF 
N 
Z 
V 
C 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 

Example STF R2, @98Alh 

Befort Instruction: 

DP=80h 
R2 = 052 C501 900h = 4.30782204e + 01 
Data at 80 98A1h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

DP=80h 
R2 = 05 2C50 1900h .. 4.30782204e + 01 
Data at 80 98A 1 h .. 52C 5019h = 4.30782204e + 01 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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STFI Store Floating-Point Value, Interlocked 

Syntax STFI src, dst 

Operation src ~ dst 
Signal end of interlocked operation. 

Operands src register (RO - R11) 

dstgeneral addressing modes (G): 
a 1 direct 
1 0 indirect 

Encoding 
31 2423 1615 87 o 
I ii I I Iii I I ° 0 o. 1 0 1 0 0 1 G 

iii I I 
src . 

i i 
i I dst 

Description The srcregister is loaded into the dstmemory location. An interlocked oper­
ation is signaled over LOCK or LLOCK. The src and dst operands are as­
sumed to be floating-point numbers. Refer to Section 7.7 on page 7-39 for 
detailed information. 

Cycles 1 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF Unaffected. 
N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 

Example STFI R3, *-AR4 
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Before Instruction: 

R3 = 07 33CO OOOOh = 1.79750e + 02 
AR4 = 80 993Ch 
Data at 80 993Bh = Oh 
LUF LV UF N Z V C = a a 0 a a 0 a 
After Instruction: 

R3 = 07 33CO OOOOh = 1.79750e + 02 
AR4 = 80 993Ch 
Data at 80 993Bh = 733 COOOh = 1.79750e + 02 
LUF LV UF N Z VC = a a a a a a a 
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Parallel Store Floating-Point Value STFIISTF 
___ ....... _ ....... _____ ....... """"'_~::.:~·~;:;·I$·~;;~~~r 

Syntax STF src2, dst2 
II STF src1, dst1 

Operation src2 ~ dst2 
II src1 ~ dst1 

Operands src1 register (Rn1, Os; n1 s; 7) 
dst1 indirect (disp = 0, 1, IRO, IR1) 
src2 register (Rn2, ° s; n2 s; 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

Encoding 

31 2423 1615 

I I I I I I I I I I I I I I I I I I 
1 1 0 0 0 0 0 src2 0 0 0 src1 

I I I 

dstt 

87 o I I I I I 

dst2 I I 
Description Two STF instructions are executed in parallel. Both src1 and src2 are as­

sumed to be floating-point numbers. 

Cycles 1 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF Unaffected. 
N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 

11-207 



STFIISTF Parallel Store Floating-Point Value 

£Kamp~ STFR4,*AR3- -

11-208 

II STF R3,*++AR5 

Before Instruction: 

R4 = 07 OC80 OOOOh = 1.4050e + 02 
AR3 = 80 9835h 
R3 = 07 33CO OOOOh = 1.79750e + 02 
AR5 = 80 99D2h 
Data at 80 9835h = Oh 
Data at 80 99D3h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R4 = 07 OC80 OOOOh = 1.4050e + 02 
AR3 = 80 9834h 
R3 = 07 33CO OOOOh = 1.79750e + 02 
AR5 = 80 99D3h 
Data at 80 9835h = 070C 8000h = 1.4050e + 02 
Data at 80 99D3h = 0733 COOOh = 1.79750e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Syntax STI src, dst 

Operation src ~ dst 

Operands src register (any register in CPU primary register file) 

dstgeneral addressing modes (G): 
01 direct 
1 0 indirect 

Encoding 
31 2423 

I I I I I I I I I I 
000101010G 

1615 87 
i i 

I I I 
src . 

I I 
dst 

Description The srcregister is loaded into the dstmemory location. The srcand dstoper­
ands are assumed to be signed integers. 

Cycles 1 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF Unaffected. 
N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 

Example STI R4, @982Bh 

Before Instruction: 

DP = 80h 
R4 = 42BD7h = 273,367 
Data at 80 982Bh = OE5FCh = 58,876 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

DP = 80h 
R4 = 42 BD7h = 273,367 
Data at 80 982Bh = 42BD7h = 273,367 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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STII Store Integer, Interlocked 

Syntax STU src, dst 

Operation src ~ dst 
Signal end of interlocked operation. 

Operands src register (any register in CPU primary register file) 

dstgeneral addressing modes (G): 
01 direct 
1 0 indirect 

Encoding 
31 2423 

I I I I I I I I I I 
000101011G 

87 
I I 

dst 

Description The srcregisteris loaded into the dstmemory location. An interlocked oper­
ation is signaled over LOCK or LLOCK. The srcand dstoperands are as­
sumed to be signed integers. Refer to Section 7.7 on page 7-39 for detailed 
information. 

Cycles 1 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF Unaffected. 
N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 

Mode Bit OVM Operation is not affected by DVM bit value. 

Example 
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STII Rl, @98AEh 

Before Instruction: 

DP = 80h 
R1 = 78Dh 
Data at 80 98AEh = 25Ch 

After Instruction: 

DP = 80h 
R1 = 78Dh 
Data at 80 98AEh = 7BDh 
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Syntax ST. src2, dst2 
II ST. src1, dst1 

Operation src2 -+ dst2 
II src1 -+ .dst1 

Operands src1 register (RO - R7) 

Encoding 

dst1 indirect (disp = 0, 1, IRa, IR1) 
src2 register (RO - R7) 
dst2 indirect (disp = 0, 1, IRa, IR1) 

Parallel STI and STI STIIISTI 

iii iii 

dst1 dst2 

Description Two integer stores are performed in parallel. If both stores are executed to 
the same address, the value written is that of STI src2, dst2. 

Cycles 1 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF Unaffected. 
N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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STIIISTI Parallel STI and STI 

Example 

!<Sl' 

STI RO,*++AR2(IRO) 
I I STI R5,*ARO 

Before Instruction: 

RO = ODCh = 220 
AR2 = 80 9830h 
IRO = 8h 
R5 = 35h = 53 
ARO = 80 98D3h 
Data at 80 9838h = Oh 
Data at 80 98D3h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

RO =ODCh = 220 
AR2 = 80 9838h 
IRO = 8h 
R5 = 35h = 53 
ARO = 80 98D3h 
Data at 80 9838h = ODCh = 220 
Data at 80 98D3h = 35h = 53 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Store Integer Immediate Value STIK 

Syntax STIK src, dst 

Operation src ~ dst 

Operands src 
dst 

5-bit signed integer 
direct and indirect mode 

Encoding 
31 2423 1615 

10' 0'0'1'0' l' 0'1'01 G 

, , I ' dst 

Instruction Word Fields 

G dst addressing modes 

00 direct mode 

11 indirect mode 

87 o 
I i 

src 

Description The 5-bit signed integer src value is loaded into the dst memory location. 
The src and dst operands are assumed to be signed integers. 

Cycles 1 

Status Bits LUF 
LV 
UF 
N 
Z 
V 
C 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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SUBB Subtract Integer With Borrow 

Syntax SUBB sre, dst 

Operation dst - sre - C ""'+ dst 

Operands sre general addressing modes (G): 
o 0 register (any register in CPU primary register file) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (any register in CPU primary register file) 

Encoding 
31 2423 1615 87 I 0 I 0 I 0 11 I 0 I 1 I 1 I 0 I 1 1 ~ 1 I I dS~ I 1 I I I I I I I ;rc I 

o 
I 1 

Description The difference of the dst, sre, and C operands, as calculated above, is 
loaded into the dst register. The dst and sre operands are assumed to be 
signed integers. 

Cycles 1 

Status Bits If ST (SETCOND) = 0 and the destination register is RO - R11 , the condition 
flags are modified. If ST (SETCOND) = 1, they are modified for all destina­
tion registers. 
LUF Unaffected. 
LV 1 if an integer overflow occurs, unchanged otherwise. 
UF O. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an integer overflow occurs, 0 otherwise. 
C 1 if a borrow occurs, 0 otherwise. 

Mode Bit OVM Operation is affected by OVM bit value. 

Example SUBB * AR5 ++ (4) , R5 

BefOre Instruction: 

AR5 = 80 9800h 
R5 = OFAh = 250 
Data at 80 9800h = OC7h = 199 
LUF LV UF N Z V C = 0 0 0 0 0 0 1 

After Instruction: 

AR5 = 80 9804h 
R5 = 032h = 50 
Data at 80 9800h = OC7h = 199 
lUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Subtract Integer With Borrow, 3 Operands SUBB3 
":':~'sr~'" '··i·-'····S~·M'*'.Mlll' ·,· .. x .. f '(''l!.rs:S!il"S1S:,,.nl' . ,. f":;:" 'f:,!, 

Syntax SUBB3 src2, src1, dst 

Operation src1 - src2 - C -? dst 

Operands src1, src2 
dst 

both type 1 or type 2 three-operand addressing modes 
register mode (any register in CPU primary register file) 

Encoding 

Type 1 
31 2423 1615 87 0 

I_O_i_O_i_1_i __ Oi_O_i_1_i_1_i_O __ iO~1 __ T~ ____ i_dS_: __ ~I __ i ______ ;_ro_/ ____ ~I~ ____ ~_ro_~ ______ ~I 

Type 2 

31 2423 1615 87 

src1 src2 

i i i i 

dst I i i i 

Instruction Word Fields 

T src1 addressing modes src2 addressing modes 

00 register mode (any CPU register) register mode (any CPU register) 

Type 1 01 indirect mode (disp = 0, 1, IRO, IR1) register mode (any CPU register) 

10 register mode (any CPU register) indirect mode (disp = 0, 1, IRO, IR1) 

11 indirect mode (disp = 0, 1, IRO, IR1) indirect mode (disp = 0, 1, IRO, IR1) 

T src1 addressing modes src2 addressing modes 

00 register mode (any CPU register) 8-bit signed immediate 

lYpe2 

01 register mode (any CPU register) 
indirect mode *+ARn(5-bit unsigned 
displacement) 

10 
indirect mode * +ARn(5-bit unsigned 

8-bit signed immediate displacement) 

11 
indirect mode *+ARn1 (5-bit unsigned indirect mode * +ARn2(5-bit unsigned 
displacement) displacement) 
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SUBB3 Subtract Integer With Borrow, 3 Operands 

Description The difference of the src 1 and src20perands and the C (carry) flag is loaded 
into the dstregister. The src1, src2, and dstoperands are assumed to be 
signed integers. 

Cycles 1 

Status Sits If ST (SETCOND) = 0 and the destination register is RO - R 11 , the condition 
flags are modified. If ST (SETCOND) = 1, they are modified for all destina­
tion registers. 
LUF . Unaffected. 
LV 1 if an integer overflow occurs. unchanged otherwise. 
UF O. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated. 0 otherwise. 
V 1 if an integer overflow occurs, 0 otherwise. 
C 1 if a borrow is generated. 0 otherwise. 

Mode sn OVM Operation is affected by OVM bit value. 
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Subtract Integer Conditionally SUBC 

Syntax SUBC src, dst 

Operation If (dst- src~ 0): 
(dst- src« 1) OR 1 -+ dst 
Else: 
dst« 1 -+ dst 

Operands srcgeneral addressing modes (G): 
00 register (any register in CPU primary register file) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (any register in CPU primary register file) 

Encoding 
31 2423 1615 87 

1 0 1 0 10 11 1 0 1 1 1 11 1 1 0 1 ~ 1 1 1 dS~ 1 1 1 1 1 1 1 1 1 ;,c 1 

Description The src operand is subtracted from the dst operand. The dst operand is 
loaded with a value that depends upon the result of the subtraction. If (dst 
- src) is greater than or equal to zero, then (dst- src) is left-shifted one bit, 
the least-significant bit is set to 1, and the result is loaded into the dstregis­
ter. If (dst - src) is less than zero, dst is left-shifted one bit and loaded into 
the dstregister. The dstand srcoperands are assumed to be unsignedinte­
gers. 

SUBC may be used to perform a single step of a multi-bit integer division. 
See subsection 12.3.4 for a detailed description. 

Cycles 1 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF Unaffected. 
N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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SUBC Subtract Integer Conditionally 

SXamp. SUBC @98C5h,Rl 

Before Instruction; 

DP=80h 
R1 = 04F6h = 1270 
Data at 80 98C5h = 492h = 1170 

4.W = 

LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

DP=80h 
R1 = OC9h = 201 
Data at 80 98C5h = 492h = 1170 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Examp. SUBC 3000,RO (3000 = OBB8h) 

Before Instruction; 

RO = 07DOh = 2000 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

RO = OFAOh = 4000 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

-
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Subtract Floating-Point Value SUBF 

SUBF src, dst 

dst - src --+ dst 

Syntax 

Operation 

Operands src general addressing modes (G): 
00 register (RO- R11) 
01 direct 
1 0 indirect 
1 1 immediate 

dstregister (RO - R11) 

Encoding 
31 2423 I I I I I I I I I I I I I I I 
?OO 101111 G dst 

1615 

I I I 87 o 
i i 

I I src 

Description The result of the dst operand minus the src operand is loaded into the 
dst register. The dst and src operands are assumed to be floating-point 
numbers. 

Cycles 1 

Status Bits LUF 1 if a floating-point underflow occurs, unchanged otherwise. 
LV 1 if an floating-point overflow.occurs, unchanged otherwise. 
UF 1 if a floating-point underflow occurs. 0 otherwise. 
N 1 if a negative result is generated. 0 otherwise. 
Z 1 if a zero result is generated. 0 otherwise. 
V 1 if an floating-point overflow occurs, 0 otherwise. 
C Unaffected. 

Mode Bn OVM Operation is not affected by OVM bit value. 

Example SUBF *ARO-- (IRO) ,RS 

BefOre Instruction: 

ARO = 80 9888h 
IRO = 80h 
R5 = 07 33CO OOOOh = 1.79750000e + 02 
Data at 80 9888h = 70C 8000h = 1.4050e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

ARO ;.. 80 9808h 
IRO = 80h 
R5 = 05 1000 OOOOh = 3.9250e + 01 
Data at 80 9888h = 70C 8000h = 1.4050e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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SUBF3 Subtract Floating-Point, 3 Operands 

Syntax SUBF3 src2, sre1, dst 

Operation sre1 - sre2 -+ dst 

Operands sre 1, src2 both type 1 or type 2 three-operand addressing modes 
dst register mode (RO - R11) 

Encoding 

Type 1 
31 2423 1615 

i I 

dst I I 
Type 2 
31 2423 1615 I I I I I I I I I I 
001101101 T dst II 

I I 

Instruction Word Fields 

T sre1 addressing modes 

00 register mode (RO - R11 ) 

Type 1 01 indirect mode (disp = 0, 1, IRO, IR1) 

10 register mode (RO - R11) 

11 indirect mode (disp = 0, 1, IRO, IR1) 

T src1 addressing modes 

01 register mode (any CPU register) 

Type 2 
11 indirect mode *+ARn1 (S-bit unsigned 

displacement) 

87 
I I i I 

sre1 src2 

I I r i I 
sre1 src2 

src2 addressing modes 

register mode (RO - R11) 

register mode (RO - R11) 

indirect mode (disp = 0, 1, IRO, IR1) 

indirect mode (disp = 0, 1, IRO, IR1) 

src2 addressing modes 

indirect mode *+ARn(S-bit unsigned 
displacement) 

indirect mode * +ARn2(S-bit unsigned 
displacement) 

o 
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Subtract Floating-Point Value, 3 Operands SUBF3 

Description The difference of the sre1 and src20perands is loaded into the dst register. 
The sre1, src2, and dst operands are assumed to be floating-point numbers. 

Cycles 1 

Status Bits LUF 1 if a floating-point underflow occurs, unchanged otherwise. 
LV 1 if an floating-point overflow occurs, unchanged otherwise. 
UF 1 if a floating-point underflow occurs, 0 otherwise. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an floating-point overflow occurs, 0 otherwise. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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SllBF311STF Parallel SUBF3 and STF 

Syntax SUBF3 sre1, sre2, dst1 
II STF src3, dst2 

Operation src2- sre1-+ dst1 

II src3 -+ dst2 

Operands sre1 register (RO - R7) 

Encoding 

sre2 indirect (disp = 0, 1, IRO, IR1) 
dst1. register (RO - R7) 
sre3 register (RO - R7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

31 2423 1615 
i ·1 

srat 
I I I I 
src3 

I I 

dst2 

87 I I o 
I I I 

src2 I I 
Description A floating-point subtraction and a floating-point store are performed in paral­

lel. All registers are read at the beginning and loaded at the end of the ex­
ecute cycle. This means that if one of the parallel operations (STF) reads 
from a register and the operation being performed in parallel (SUBF3) writes 
to the same register, then STF accepts as input the contents of the register 
before it is modified by the SUBF3. 

If sre3 and dst1 point to the same location, sre3 is read before the write to 
dst1. 

Cycles 1 

Status Bits LUF 1 if a floating-point underflow occurs, unchanged otherwise. 
LV 1 if an floating-point overflow occurs, unchanged otherwise. 
UF 1 if a floating-point underflow occurs, 0 otherwise. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an floating-point overflow occurs, 0 otherwise. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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Example 

Parallel SUBF3 and STF SUBF311STF 

SUBF3 Rl,*-AR4(IR1),RO 
I I STF R7, *+AR5 (IRO) 

Before Instruction: 

w 

R1 = 05 7B40 OOOOh = 6.28125e + 01 
AR4 = 80 98B8h 
IR1 = 8h 
RO=Oh 
R7 = 07 33CO OOOOh = 1.79750e + 02 
AR5 = 80 9850h 
IRO = 10h 
Data at 80 98BOh = 70C8000h = 1.4050e + 02 
Data at 80 9860h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R1 = 05 7B40 OOOOh = 6.28125e + 01 
AR4 = 8098B8h 
IR1 = 8h 
RO = 061 B60 OOOOh == 7.768750e + 01 
R7 = 07 33CO OOOOh = 1.79750e + 02 
AR5 = 80 9850h 
IRO = 10h 
Data at 80 98BOh = 70C 8000h = 1.4050e + 02 
Data at 80 9860h = 733 COOOh = .1.79750e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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SUBI Subtract Integer 

Syntax SUBI src, dst 

Operation dst - src ~ dst 

Operands srcgeneral addressing modes (G): 
o 0 register (any register in CPU primary register file) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (any register in CPU primary register file) 

Encoding 
31 2423 

I ii I I I I I I I 
000110000G 

1615 87 
I I 

src 

o 
i I 

Description The difference of the dst operand minus the src operand is loaded into the 
dst register. The dst and src operands are assumed to be signed integers. 

Cycles 1 

Status Bits If ST (SETCOND) = 0 and the destination register is RO - R 11 , the condition 
flags are modified. If ST (SETCOND) = 1, they are modified for all destina­
tion registers. 
LUF Unaffected. 
LV 1 if an integer overflow occurs, unchanged otherwise. 
UF o. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an integer overflow occurs, 0 otherwise. 
C 1 if a borrow occurs, 0 otherwise 

Mode Bit OVM Operation is affected by OVM bit value. 

Examp~ SUBr 220,R7 

Before Instruction: 

R7 = 226h = 550 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R7 = 14Ah = 330 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Subtract Integer, 3 Operands SUBI3 
------~""--_____ """"''''''''' _____ ,_;ss..~_~%S6_~!H ... __ fr~~ .... I'S~~!·1~~,;,_..,.~·~f..,.~~_..,._..,. 

Syntax SUBI3 src2, src1, dst 

Operation src 1 - src2 -7 dst 

Operands src1, src2 
dst 

both type 1 or type 2 three-operand addressing modes 
register mode (any register in CPU primary register file) 

Encoding 

Type 1 
31 2423 1615 I ii I Iii iii 
001001110T 

i i 
dst 

, i 

Type 2 

31 2423 
I i 

dst 

Instruction Word Fields 

T src1 addressing modes 

00 register mode (any CPU register) 

Type 1 01 indirect mode (disp = 0,1, IRO, IR1) 

10 register mode (any CPU register) 

11 indirect mode (disp = 0, 1, IRO, IR1) 

T src1 addressing modes 

00 register mode (any CPU register) 

01 register mode (any CPU register) 
Type 2 

10 
indirect mode * +ARn(5-bit unsigned 
displacement) 

11 
indirect mode *+ARn1 (5-bit unsigned 
displacement) 

i i 
src1 

I I 

src1 

87 

r 
i i 
src2 

I i 

src2 

src2 addressing modes 

register mode (any CPU register) 

register mode (any CPU register) 

indirect mode (disp = 0, 1, IRO, IR1) 

indirect mode (disp = 0, 1, IRO, IR1) 

src2 addressing modes 

8-bit signed immediate 

indirect mode *+ARn(5-bit unsigned 
displacement} 

8-bit signed immediate 

indirect mode *+ARn2(5-bit unsigned 
displacement} 

o 

o 
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SUBI3 Subtract Integer, 3 Operands 

Description The result of the sre1 operand minus the sre20perand is loaded into the dst 
register. The sre1, sre2, and dstoperands are assumed to be signed inte­
gers. 

Cycles 1 

Status Bits If ST (SETCOND) = 0 and the destination register is RO - R 11 , the condition 
flags are modified. If ST (SETCOND) = 1, they are modified for all destina­
tion registers. 
LUF Unaffected. 
LV 1 if an integer overflow occurs, unchanged otherwise. 
UF O. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an integer overflow occurs, 0 otherwise. 
C 1 if a borrow is generated, 0 otherwise, 

Mode Bit OVM Operation is affected by OVM bit value. 
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Parallel SUBI3 and STI SUBI311STI 

Syntax SUBI3 src1, src2, dst1 
II STI src3, dst2 

Operation src2 - src1 ~ dst1 
II src3 ~ dst2 

Operands src1 register (RO - R7) 
src2 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (RO - R7) 
src3 register (RO - R7) 
dst2 indirect (disp = 0,1, IRO, IR1) 

Encoding 
31 2423 I I I I I I I I I I 
1110110 dst1 

I I 

src1 

1615 
I I I I 
src3 

87 o 
I I I I I I 

I I dst2 src2 

Description An integer subtraction and an integer store are performed in parallel. All reg­
isters are read at the beginning and loaded at the end of the execute cycle. 
This means that if one of the parallel operations (STI) reads from a register 
and the operation being performed in parallel (SUBI3) writes to the same 
register, then STI accepts as input the contents of the register before it is 
modified by the SUBI3. 

If src3 and dstt point to the same location, src3 is read before the write to 
dst1. 

Cycles 1 

Status Bits LUF Unaffected. 
LV 1 if an integer overflow occurs, unchanged otherwise. 
UF o. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an integer overflow occurs, 0 otherwise. 
C 1 if a borrow occurs, 0 otherwise. 

Mode Bit OVM Operation is affected by OVM bit value. 
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SUBI311STI Parallel SUBI3 and STI 

EXBmp~ SUBI3 R7,*+AR2(IRO),Rl 
I I STI R3,*++AR7 

Before Instruction; 

R7 = 14h = 20 
AR2 = 80 982Fh 
IRO = 10h 
R1 =Oh 
R3 = 35h = 53 
AR7 = 80 983Bh 
Data at 80 983Fh = ODCh = 220 
Data at 80 983Ch = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction; 

R7 = 14h = 20 
AR2 = 80 982Fh 
IRO = 10h 
R1 = OC8h = 200 
R3 = 35h = 53 
AR7 = 80 983Ch 
Data at 80 983Fh = ODCh = 220 
Data at 80 983Ch = 35h = 53 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Subtract Reverse Integer With Borrow SUBRB 

SyntBX SUBRB src, dst 

Operation src - dst - C ~ dst 

Operands srcgeneral addressing modes (G): 
o 0 register (any register in CPU primary register file) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (any register in CPU primary register file) 

Encoding 
31 2423 1615 87 o 
1 0 i 0 i 0 11 i 1 i 0 i 0 i 0 i 1 1 ~ 1 i i dS~ iii iii iii ~rc i 

Description The difference of the src, dst, and C operands, as calculated above, is 
loaded into the dst register. The dst and src operands are assumed to be 
signed integers. 

Cycles 1 

Status Bits If ST (SETCOND) = 0 and the destination register is RO - R11, the condition 
flags are modified. If ST (SETCOND) = 1, they are modified for all destina­
tion registers. 
LUF Unaffected. 
LV 1 if an integer overflow occurs, unchanged otherwise. 
UF O. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an integer overflow occurs, 0 otherwise. 
C 1 if a borrow occurs, 0 otherwise. 

Mode Bit OVM Operation is affected by OVM bit value. 

SXamp~ SUBRB R4,R6 

Before Instruction: 

R4 = 03CBh = 971 
R6 = 0258h = 600 
LUF LV UF N Z V C = 0 0 0 0 0 0 1 

After InStruction: 

R4 = 03CBh = 971 
R6 = 0172h = 370 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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SUBRF Subtract Reverse Floating-Point Values 
, SS:Q:<;~ 'WC~f'P!'~f' 

Syntax SUBRF src, dst 

Operation src - dst ~ dst 

Operands srcgeneral addressing modes (G): 
o 0 register (RO - R11) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (RO - R 11 ) 

Encoding 
31 2423 

I ii Iii iii I 000110010G 

1615 i dS~ iii 87 o 
i i 

i I sra 

Description The result of the src operand minus the dst operand is loaded into the dst 
register.The dst and src operands are assumed to be floating-point num­
bers. 

Cycles 1 

Status Bits LUF 1 if a floating-point underflow occurs, unchanged otherwise. 
LV 1 if a floating-point overflow occurs, unchanged otherwise. 
UF 1 if a floating-point underflow occurs, 0 otherwise. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if a floating-point overflow occurs, 0 otherwise. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 

Examp~ SUBRF @9905h,R5 
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Before Instruction: 

DP = 80h 
R5 = 05 7840 OOOOh = 6.281250e + 01 
Data at 80 9905h = 733 COOOh = 1.79750e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

DP = 80h 
R5 = 06 69EO OOOOh = 1.16937500e + 02 
Data at 80 9905h = 733 COOOh = 1.79750e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Subtract Reverse Integer SUBRI 

Syntax SUBRI src, dst 

Operation src - dst ~ dst 

Operands src general addressing modes (G): 
a a register (any register in CPU primary register file) 
a 1 direct 
1 a indirect 
1 1 immediate 

dst register (any register in CPU primary register file) 
Encoding 

31 2423 1615 87 I 0 i 0 ' 0 11 ' 1 ' 0 ' 0' 1 ' 1 I ~ I ' 'dS~ , Ii' , , , , , ~rc' o 
, 1 

Description The result of the src operand minus the dst operand is loaded into the dst 
register. The dst and src operands are assumed to be signed integers. 

Cycles 1 

Status Bits If ST (SETCOND) = a and the destination register is RO - R11 , the condition 
flags are modified. If ST (SETCOND) = 1, they are modified for all destina­
tion registers. 
LUF Unaffected. 
LV 1 if an integer overflow occurs, unchanged otherwise. 
UF O. 
N 1 if a negative result is generated, a otherwise. 
Z 1 if a zero result is generated, a otherwise. 
V 1 if an integer overflow occurs, a otherwise. 
C 1 if a borrow occurs, a otherwise. 

Mode Bit OVM Operation is affected by OVM bit value. 

Example SUBRI *AR5++(IRO),R3 

Before Instruction: 
AR5 = 80 9900h 
IRa = 8h 
R3 = ODCh = 220 
Data at 80 9900h = 226h = 550 
LUF LV UF N Z V C = a a a a a a 0 
After Instruction: 
AR5 = 80 9908h 
IRa = 8h 
R3 = 014Ah = 330 
Data at 80 9900h = 226h = 550 
LUF LV UF N Z V C = a a a a a a 0 
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SWI Software Interrupt 

Syntax SWI 

Operation Performs an emulation interrupt 

Operands None 

Encoding 
31 2423 1615 87 0 I 0 1 

1 1 1 1 0
1 

0
1 

1 1 11 0
1 

0
1 

0
1 

01 0
1 

0
1 

0
1 

0
1 

0
1 

0
1 

0
1 

0
1 

0
1 

0
1 

0
1 

0
1 

0
1 

0
1 

0
1 

0
1 

0
1 

0
1 

0
1 

0
1

01 

Description The SWI instruction performs an emulator interrupt. This is a reserved in­
struction and should not be used in normal programming. 

Cycles 4 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF Unaffected. 
N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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Convert to IEEE Format TOIEEE 

Syntax TOIEEE src, dst 

Operation convert src to IEEE format -+ dst 

Operands src extended-precision register (RO - R11), 
direct and indirect addressing modes 

dst extended-precision register 

Encoding 
31 2423 1615 

I i 

dst I I 
Instruction Word Fle/ds 

G src addressing modes 

00 
register mode (extended-preci-
sion register RO - R 11 ) 

01 direct mode 

10 indirect mode 

87 o 
I i 

src 

Description The src operand is converted from a twos-complement floating-point format 
to the IEEE floating-point format. 

The srcoperand is assumed to be a single-precision floating-point number. 
The converted result goes into the 32 MSBs of the dst register. STF can be 
used to store the result to memory. 

Cycles 1 

Status Bits LUF Unaffected. 
LV 1 if an overflow occurs, unchanged otherwise. 
UF O. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an overflow occurs, 0 otherwise. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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TOIEEEIISTF Parallel TOIEEE and STF 

Syntax TOIEEE src2, dst1 
II STF src3, dst2 

Operation convert src2 to IEEE format -+ dst1 
in parallel with 
src3-+ dst2 

Operands src2 indirect mode (disp = 0, 1, IRO, IR1) 
dst1 register mode (Rn1, 0 s n1 S 7) 
src3 register mode (Rn1, 0 S n1 S 7) 
dst2 indirect mode (disp = 0, 1, IRO, IR1) 

Encoding 
31 2423 1615 

I I I I I I I I I I II I I 
1 1 1 1 0 0 0 dst1 0 0 0 

Iii 

dst2 

87 o I I iii 

src2 I I 
Description The srd2. operand is converted from a twos-complement floating-point for­

mat to the IEEE floating-point format. 

The srd2. operand is assumed to be a single-precision floating-point number. 
The converted result goes into the 32 MSBs of the dst1 register. In parallel 
a floating-point store is done. 

If src2 and dst2 point to the same location, then src2 is read before the write 
to dst2. 

Cycles 1 

Status Bits LUF Unaffected. 
LV 1 if an overflow occurs, unchanged otherwise. 
UF O. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an overflow occurs, 0 otherwise. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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Syntax TRAPcond N 

Operation If (cond is true) 
ST(GIE) ~ ST(PGIE) 
ST(CF) ~ ST(PCF) 
o~ ST(GIE) 
1 ~ ST(CF) 
next PC ~ *(++SP) 
trap vector N ~ PC 

Else, continue. 

Operands N immediate mode (0 S; N S; 511) 

Encoding 
31 2423 1615 

Trap Conditionally TRAPcond 

87 o 
i i 

N I I 
Description If traps are to be nested, you may need to save the status register before 

executing TRAPcond. If the condition is true, then GIE and CF are saved 
in PGIE and PCF in the status register, all interrups are disabled (0 ~ GIE), 
and the cache is frozen (1 ~ CF). Then, the contents of the PC are pushed 
onto the system stack, and the PC is loaded with the contents of the speci­
fied trap vector (N). If the condition is not true, then continue normal opera­
tion. 

Cycles 5 

Status Bits GIE Set to 0 if TRAP executes. 
LUF Unaffected. 
LV Unaffected. 
UF Unaffected. 
N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 



TSTB Test BitFields 

Syntax TSTB sre, dst 

Operation dst AND sre 

Operands sregeneral addressing modes (G): 
o 0 register (any register in CPU primary register file) 
01 direct 
1 0 indirect· 
1 1 immediate 

dst register (any register in CPU primary register file) 

Encoding 
31 2423 1615 87 o 

Description The bitwise logical AND of the dstand sreoperands is formed, but the result 
is not loaded in any register. This allows for nondestructive compares. The 
dst and sre operands are assumed to be unsigned integers. 

Cycles 1 

Status Bits These condition flags are modified for all destination registers. 
LUF Unaffected. 
LV Unaffected. 
UF O. 
N MSB of the output. 
Z 1 if a zero output is generated, 0 otherwise. 
V O. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value . 

. Example TSTB *-AR4 (1) ,R5 

Before Instruction: 

AR4 = 80 99C5h 
RS = 898h = 2200 
Data at 80 99C4h = 767h = 1895 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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After Instruction: 

AR4 = 80 99C5h 
R5 == 898h = 2200 
Data at 80 99C4h = 767h = 1895 
LUF LV UF N Z V C = 0 0 0 0 1 0 0 
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Test Bit Fields, 3 Operands TSTB3 
_....",,,_::::~ _______ ~_"'''''''' __________ :w~~:~::::: .. ~_; :::"";;;:::;""'. __ ::::*_~'~_>';,~_~_'::::~o::'~~~';n;f;;';'!' i:S.:S:::: .. ;s:;,s,;::::*,~ 

Syntax TSTB3 src2, srct 

Operation src t & src2 

Operands srct, src2 both type 1 or type 2 three-operand addressing modes 

Encoding 

Type 1 
31 2423 1615 

1 0 '0'1 ' 0'0'1'1'1 '11 

lYpe2 
31 2423 1615 

Instruction Word Fields 

T src1 addressing modes 

00 register mode (any CPU register) 

Type 1 01 indirect mode (disp = 0, 1, IRO, IR1) 

10 register mode (any CPU register) 

11 indirect mode (disp = 0, 1, IRO, IR1) 

T src1 addressing modes 

00 register mode (any CPU register) 

01 register mode (any CPU register) 
Type 2 

10 
indirect mode *+ARn(5-bit unsigned 
displacement) 

11 indirect mode * +ARn 1 (5-bit unsigned 
displacement) 

67 
j I , , 

sre1 sre2 

i I r I i 
sre1 sre2 

src2 addressing modes 

register mode (any CPU register) 

register mode (any CPU register) 

indirect mode (disp = 0, 1, IRO, IR1) 

indirect mode (disp = 0, 1, IRO, IR1) 

src2 addressing modes 

8-bit signed immediate 

indirect mode * +ARn(5-bit unsigned 
displacement) 

8-bit signed immediate 

indirect mode * +ARn2(5-bit unsigned 
displacement) 

o 

o 
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1S183 Test Bit Fields, 3 Operands 

Description 

Cyeies 

Status Bits 

Mode Bit 

11-238 

The bitwise logical AND between the src1 and src20perands is formed but 
is not loaded into any register. This allows for nondestructive compares. The 
src1 and srC2 operands are assumed to be signed integers. 

1 

LUF Unaffected. 
LV Unaffected. 
UF O. 
N MSB of the output. 
Z 1 if a zero output is generated, 0 otherwise. 
V O. . 
C Unaffected. 

OVM Operation is not affected by OVM bit value. 
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Bitwise Exclusive OR XOR 

Syntax XOR src, dst 

Operation dst XOR src -+ dst 

Operands srcgeneral addressing modes (G): 
00 register (any register in CPU primary register file) 
01 direct 
1 0 indirect 
1 1 immediate 

dst register (any register in CPU primary register file) 

Encoding 
31 2423 

I ii I I I i I I I 
000110101G 

1615 87 
, i 

src 

o 
i I 

Description The bitwise exclusive OR of the src and dst operands is loaded into the dst 
register. The dst and src operands are assumed to be unsigned integers. 

Cycles 1 

Status Bits If ST (SETCOND) = 0 and the destination register is RO- R11, the condition 
flags are modified. If ST (SETCOND) = 1, they are modified for all destina­
tion registers. 
LUF Unaffected. 
LV Unaffected. 
UF O. 
N MSB of the output. 
Z 1 if a zero output is generated, 0 otherwise. 
V O. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 

eKamp~ XOR Rl,R2 

Before Instruction; 

R1 = OF FA32h 
R2 = OF F5C1h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R1 = OF F412h 
R2 = 00 OFF3h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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XOR3 Bitwise Exclusive OR, 3 Operands 

Syntax XOR3 src2, sre1, dst 

Operation sre1 XOR sre2 -+ dst 

Operands sre1, sre2 
dst 

both type 1 or type 2 three-operand addressing modes 
register mode (any register in CPU primary register file) 

Encoding 

Type 1 
31 2423 1615 87 

10' 0'1' 0'0'0' 0'0 '01 • • I • • • I • • 
T dst src1 src2 

Type 2 

31 2423 1615 87 

I · · · · · · · · I • • I • • • I • • 
001110000 T dst src1 src2 

Instruction Word Fields 

T src1 addressing modes src2 addressing modes 

00 register mode (any CPU register) register mode (any CPU register) 

Type 1 01 indirect mode (disp = 0, 1, IRO, IR1) register mode (any CPU register) 

10 register mode (any CPU register) indirect mode (disp = 0,1, IRO, IR1) 

11 indirect mode (disp = 0, 1, IRO, IR1) indirect mode (disp = 0,1, IRO, IR1) 

T src1 addressing modes src2 addressing modes 

00 register mode (any CPU register) 8-bit signed immediate 

Type 2 
01 register mode (any CPU register) 

indirect mode *+ARn(5-bit unsigned 
displacement) 

10 
indirect mode *+ARn(5-bit unsigned 

8-bit signed immediate displacement) 

11 
indirect mode * +ARn 1 (5-bit unsigned indirect mode * +ARn2(5-bit unsigned 
displacement) displacement) 
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Bitwise Exclusive OR, 3 Operands XOR3 
'C f 

Description The bitwise exclusive OR between the sre1 and sre20perands is loaded into 
the dstregister. The sre1, sre2, and dstoperands are assumed to be signed 
integers. 

Cycles 1 

Status Bits If ST (SETCOND) = 0 and the destination register is RO - R11, the condition 
flags are modified. If ST (SETCOND) = 1, they are modified for all destina­
tion registers. 
LUF Unaffected. 
LV Unaffected. 
UF o. 
N MSB of the output. 
Z 1 if a zero output is generated, 0 otherwise. 
V O. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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XOR311STI Parallel XOR3 and ST/ 

Syntax XOR3 src2, src1, dst1 
II STI src3, dst2 

Operation src1 XOR src2 ~ dst1 
II src3 ~ dst2 

Operands src1 register (RO - R7) 

Encoding 

src2 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (RO - R7) 
src3 register (RO - R7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

31 2423 1615 

1 111111111111111111111 
1 1 1 0 1 1 1 dst src1 srcS dst2 

Iii 
src2 

Description A bitwise exclusive-XOR and an integer store are performed in parallel. All 
registers are read at the beginning and loaded at the end of the execute 
cycle. This means that if one of the parallel operations (STI) reads from a 
register and the operation being performed in parallel (XOR3) writes to the 
same register, then STI accepts as input the contents of the register before 
it is modified by the XOR3. 

If src2 and dst2 point to the same location, src2 is read before the write to 
dst2. 

Cycles 1 

Status Bits LUF Unaffected. 
LV Unaffected. 
UF O. 
N MSB of the output. 
Z 1 if a zero output is generated, 0 otherwise. 
V O. 
C Unaffected. 

Mode Bit OVM Operation is not affected by OVM bit value. 
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Parallel XOR3 and STI XOR311STI 
__ ....... _________ """~·_~ .. ·_~,:s,:,:.,:.s:;_·~_H_··_·~~_·.~_·:"""·~~~.6~-'l'· ·~~~,;e-~~'!lOi,~s::<,.~.'Slo,m·:sS,.f:'~!·~ 

Exampm XOR3 *AR1++,R3,R3 
I I 
STI R6,*-AR2(IRO) 

Before Instruction: 

AR1 = 80 987Eh 
R3 = 8Sh 
R6 = ODCh = 220 
AR2 = 80 98B4h 
IRO = 8h 
Data at 80 987Eh = 8Sh 
Data at 80 98ACh = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR1 = 80 987Fh 
R3=Oh 
R6 = ODCh = 220 
AR2 = 80 98B4h 
IRO = 8h 
Data at 80 987Eh = 8Sh 
Data at 80 98ACh = ODCh = 220 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Chapter 12 

Software Applications 
I I U IlllliUi !I II I_I II 11811111 j 

This chapter explains how to use the instruction set, the architecture, and 
the interface of the 'C40. It presents coding examples for frequently used 
applications and discusses more involved examples and applications. It 
also defines the principles involved in the application and gives the corre­
sponding assembly-language code for instructional purposes and for imme­
diate use. Whenever the detailed explanation of the underlying theory is too 
extensive to be included in this manual, appropriate references are given 
for further information. 

Major topics discussed in this chapter are listed below: 

Section Page 

12.1 Processor Initialization .............................. 12-3 

• Reset Process ................................. 12-3 

• Initialization.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 12-3 

12.2 Program Control ................................... 12-9 

• Regular and Zero-Overhead Subroutine Calls ...... 12-9 

• Software Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 12-13 

• Interrupt Service Routines ....................... 12-14 

• Delayed Branches ............................. 12-22 

• Repeat Modes ................................. 12-23 

• Computed GOTOs .............................. 12-27 

12.3 Logical and Arithmetic Operations .................... 12-28 

• Bit Manipulation ................................ 12-28 

• Block Moves ................................... 12-29 

• Byte and Half Word Manipulation ................. 12-30 

• Bit Reversed Addressing ........................ 12-31 
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Software Applications 

Section Page 

• Division... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 12-33 
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12.1 Processor Initialization 

12.1.1 Reset Process 

Before you execute a DSP algorithm, it is necessary to initialize the proces­
sor. Generally, initialization takes place any time the processor is reset. 

When reset is activated by applying a low level to the RESET input for sever­
al cycles, the 'C40 terminates execution and puts the RESET vector in the 
program counter. The RESET vector of 'C40 may be mapped to one of four 
different locations, controlled by the value of the RESETLOC(1 ,0) pins at 
RESET (shown in Table 12-1). The RESET vector normally contains the 
address Of the system initialization routine. The hardware reset also initial­
izes various registers and status bits (reset conditions are further defined 
in Section 6.6 on page 6-18). 

Table 12-1. Relationship of RESETLOC(1,O) Pins to RESET Vector Location 

RESETLOC(1,0) RESET Vector Address 

a a 0000 OOOOh 

o 1 

1 a 
1 1 

7FFF FFFFh 

8000 OOOOh 

FFFF FFFFh 

After reset, initialize the processor further by executing instructions that set 
up operational modes, memory pointers, interrupts, and the remaining 
functions needed to meet system requirements. 

12.1.2 Initialization 

To configure the processor at reset, the following internal functions should 
be initialized: 

o CPU expansion register file 

o Memory-mapped registers 

o Interrupt structure 
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Example 12-1 shows coding for initializing the 'C40 to the following ma­
chine state, in addition to the initialization performed during the hardware 
reset (for conditions after hardware reset, see Section 6.6 on page 6-18): 

Q All interrupts are enabled. 

Q The program cache is enabled. 

Q The overflow mode is disabled. 

Q The data memory page pointer is set to zero. 

Q The stack pointer is set to internal RAM address 002FFFOOH 

Q The internal memory is filled with zeros. 

Note that all constants larger than 16 bits should be placed in memory and 
accessed through direct or indirect addressing. 

Example 12-1. Processor Initialization Example 

* * TITLE 'PROCESSOR INITIALIZATION EXAMPLE' 

* 

12-4 

.global 

. global 

. global 

.global 

.global 

.global 

.global 

.global 

.global 

.global 

.global 

.global 

.global 

.global 

.global 

.global 

.global 

.global 

.global 

.global 

RESET,INIT,BEGIN 
TlMEO,TlME1,TINTO,TINTl 
NMI,INTO,INT1,INT2,INT3 
NON MASK, ISRO, ISR1, ISR2,ISR3 
ICFULLO,ICRDYO,OCRDYO,OCEMPTYO 
ICFSRO,ICRSRO,OCRSRO,OCESRO 
ICFULL1,ICRDY1,OCRDY1,OCEMPTYl 
ICFSR1,ICRSR1,OCRSR1,OCESRl 
ICFULL2,ICRDY2,OCRDY2,OCEMPTY2 
ICFSR2,ICRSR2,OCRSR2,OCESR2 
ICFULL3,ICRDY3,OCRDY3,OCEMPTY3 
ICFSR3,ICRSR3,OCRSR3,OCESR3 
ICFULL4,ICRDY4,OCRDY4,OCEMPTY4 
ICFSR4,ICRSR4,OCRSR4,OCESR4 
ICFULL5,ICRDY5,OCRDY5,OCEMPTY5 
ICFSR5,ICRSR5,OCRSR5,OCESR5 
DINTO,DINT1,DINT2,DINT3,DINT4,DINT5 
DMAO,DMA1,DMA2,DMA3,DMA4,DMA5 
TRAPO,TRAP1,TRAP2,TRAP3,TRAP4,TRAP5 
TRPO,TRP1,TRP2,TRP3,TRP4,TRP5 

Software Applications 



Processor Initialization 

Example 12-1. Processor Initialization Example (Continued) 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
RESET 
* 

* 
NMI 

TINTO 
* 
INTO 
INTl 
INT2 
INT3 

* 
ICFULLO 
ICRDYO 
OCRDYO 
OCEMPTYO 

* 
ICFULLl 
ICRDYl 
OCRDYl 
OCEMPTYl 

* 
ICFULL2 
ICRDY2 
OCRDY2 
OCEMPTY2 
* 
ICFULL3 
ICRDY3 
OCRDY3 
OCEMPTY3 

PROCESSOR INITIALIZATION FOR THE TMS320C40. 

RESET AND INTERRUPT VECTOR SPECIFICATION. THIS ARRANGEMENT 
ASSUMES THAT DURING LINKING, THE FOLLOWING TEXT SEGMENT 
WILL BE PLACED TO START AT MEMORY LOCATION AS: 

SEGMENT NAME I MEMORY LOCATION 
--------------+----------------~---------------
reset adr 
int vect 
trap vect 
. data 
.text 

SAME AS RESETLOC(l,O) SETUP 
00000200h 
00000400h 
00000500h 
00000600h 

NOTE THAT THE INTERRUPT AND TRAP VECTORS TABLE CAN BE 
RELOCATED TO A 512-WORD BOUNDARY BY CHANGING THE VALUES 
OF THE IVTP AND TVTP. 

.sect "reset adr" 

.word INIT 

.sect "int vect" 

. space 1 

.word NON MASK 

.word TIMEO 

. word ISRO 

.word ISRl 

.word ISR2 

.word ISR3 

.space 6 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

ICFSRO 
ICRSRO 
OCRSRO 
OCESRO 

ICFSRl 
ICRSRl 
OCRSRl 
OCESRl 

ICFSR2 
ICRSR2 
OCRSR2 
OCESR2 

ICFSR3 
ICRSR3 
OCRSR3 
OCESR3 

Named section for RESET vector 
RS-load address INIT to PC 

Named section for interrupt 
structures 
Reserved space 
Non Maskable Interrupt NMI-loads 
address NMI to PC 
Timer 0 interrupt processing 

INTO- loads address INTO to PC 
INT1- loads address INTl to PC 
INT2- loads address INT2 to PC 
INT3- loads address INT3 to PC 
Reserved space 

Comm. 
Comm. 
Comm. 
Comm. 

port 0 input full processing 
port 0 input ready processing 
port 0 output ready processing 
port 0 output empty processing 

Comm. 
Comm. 
Comm. 
Comm. 

Comm. 
Comm. 
Comm. 
Comm. 

port 
port 
port 
port 

1 input full processing 
1 input ready processing 
1 output ready processing 
1 output empty processing 

port 2 input full processing 
port 2 input ready processing 
port 2 output ready processing 
port 2 output empty processing 

Comm. port 3 input full processing 
Comm. port 3 input ready processing 
Comm. port 3 output ready processing 
Comm. port 3 output empty processing 
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Example 12-1. Processor Initialization Example (Continued) 
ICFULL4 
ICRDY4 
OCRDY4 
OCEMPTY4 
* 
ICFULL5 
ICRDY5 
OCRDY5 
OCEMPTY5 
* 
DINTO 
DINT1 
DINT2 
DINT3 
DINT4 
DINT5 
TINT1 

* 
TRAP 0 
TRAP 1 
TRAP 2 
TRAP 3 
TRAP 4 
TRAP 5 

* 
* 
* 
MASK 
BLKO 
BLK1 
CTRL 
GLOINT 

.word ICFSR4 

.word ICRSR4 

. word OCRSR4 

.word OCESR4 

.word 

.word 

.word 

.word 

ICFSR5 
ICRSR5 
OCRSR5 
OCESR5 

.word DMAO 

.word DMA1 

.word DMA2 

.word DMA3 

.word DMA4 

.word DMA5 

.word TIME1 

.space 21 

. sect "trap vect" 

.word TRPO -

.word TRP1 

.word TRP2 

.word TRP3 

.word TRP4 

.word TRP5 

.space 506 

; Comm. 
; Comm. 
; Comm. 
; Comrn. 

Comm. 
Comm. 
Comm. 
Comm. 

port 4 input full processing 
port 4 input ready processing 
port 4 output ready processing 
port 4 output empty processing 

port 5 input full processing 
port 5 input ready processing 
port 5 output ready processing 
port 5 output empty processing 

DMA Channel 0 interrupt 
; DMA Channel 1 interrupt 
; DMA Channel 2 interrupt 
; DMA Channel 3 interrupt 
; DMA Channel 4 interrupt 
; DMA Channel 5 interrupt 
; Timer 1 interrupt processing 

Reserved space 

Named section for trap structures 
Trap 0 vector processing begins 
Trap 1 vector processing begins 
Trap 2 vector processing begins 
Trap 3 vector processing begins 
Trap 4 vector processing begins 
Trap 5 vector processing begins 
Leave space for.the other 506 traps 

IN THIS SECTION, CONSTANTS THAT CANNOT 
IN THE SHORT FORMAT ARE INITIALIZED . 

BE REPRESENTED 

. data 

.word 

.word 

.word 

.word 

.word 

OFFFFFFFF.H 
02FF800H 
02FFCOOH 
0100000H 
OOOOOOOH 

Beginning address of RAM block 0 
Beginning address of RAM block 1 

; Pointer for peripheral-bus memory map 
Init of global memory interface 
control (0) 

LOCALINT .word OOOOOOOH Ini t of local memory interface 
control (4) 

DMAOCTL 
DMA1CTL 
DMA2CTL 
DMA3CTL 
DMA4CTL 
DMA5CTL 
CPOCTL 
CP1CTL 
CP2CTL 
CP3CTL 
CP4CTL 
CP5CTL 
TIMOCTL 
TIM1CTL 
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.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

OOOOOOOH 
OOOOOOOH 
OOOOOOOH 
OOOOOOOH 
OOOOOOOH 
OOOOOOOH 
.OOOOOOOH 
OOOOOOOH 
OOOOOOOH 
OOOOOOOH 
OOOOOOOH 
OOOOOOOH 
OOOOOOOH 
OOOOOOOH 

Initialization for DMA 0 control (160) 
Initialization for DMA 1 control (176) 
Initialization for DMA 2 control (192) 
Initialization for DMA 3 control (208) 
Initialization for DMA 4 control (224) 
Initialization for DMA 5 control (240) 
Init of comm. port 0 control (64) 
Init of comm. port 1 control (80) 
Init of comm. port 2 control (96) 
Init of comm. port 3 control (112) 
Init of comm. port 4 control (128) 
Init of comm. port 5 control (144) 
Initialization of timer 0 control (32) 
Initialization of timer 1 control (48) 
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Example 12-1. Processor Initialization Example (Continued) 

ANACTL 
STCK 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* 
* 
* 
INIT 

* 
* 
* 

* 
* 
* 

II 
* 
* 
* 
* 
* 
* 
* 
* 
* 

.word 

.word 

.text 

OOOOOOOH 
02FFFOOH 

Initialization of analysis module (16) 
Beginningof stack 

THE ADDRESS AT RESET VECTOR DIRECTS EXECUTION TO BEGIN HERE 
FOR RESET PROCESSING THAT INITIALIZES THE PROCESSOR. WHEN 
RESET IS APPLIED, THE FOLLOWING REGISTERS ARE INITIALIZED 
TO ZERO: 

ST 
DIE 
IIE 
IIF 

IVTP 
TVTP 

CPU STATUS REGISTER 
DMA INTERRUPT ENABLE REGISTER 
INTERNAL INTERRUPT ENABLE REGISTER 
IIOF PINS AND INTERRUPT FLAG REGISTER 

INTERRUPT-VECTOR TABLE POINTER 
TRAP-VECTOR TABLE POINTER 

THE STATUS REGISTER HAS THE FOLLOWING ARRANGEMENT: 
BITS: 31-17 16 15 14 13 12 11 10 
FUNCTION: RESRV ANALYSIS SET PGIE GIE CC CE CF 

IDLE COND 
BITS: 9 8 7 6 5 4 3 2 1 
FUNCTION: PCF RM OVM LUF . LV UF N Z V 

o 
C 

LDPX MASK 
LDI 1800H, ST 

Point the DP register to page 0 
Clear and enable cache,and 
disable OVM 

SET UP IVTP AND TVTP TO 200H AND 400H 

LDI 0200H,ARO Set Primary Register ARO to 200H 
LDPE ARO,IVTP Set Expansion Register IVTP to 200H 
ADDI 0200H,ARO Set Primary Register ARO to 400H 
LDPE ARO,TVTP Set Expansion Register TVTP to 400H 
LDI @MASK,IE Enable all interrupts 

INTERNAL DATA MEMORY INITIALIZATION TO FLOATING POINT ZERO 

@BLKO,ARO 
@BLKl,ARl 
O.O,RO 

ARO points to block 0 
ARI points tohlock 1 
Zero register RO 
Repeat 1024 times 

LDI 
LDI 
LDF 
RPTS 
STF 
STF 

1023 
RO,*ARO++(l) 
RO,*ARl++(l) 

Zero out location in RAM block 0 and 
Zero out location in RAM block 1. 

THE PROCESSOR IS INITIALIZED. THE REMAINING APPLICATION­
DEPENDENT PART OF THE SYSTEM (BOTH ON- AND OFF-CHIP SHOULD 
NOW BE INITIALIZED. 

FIRST, INITIALIZE THE CONTROL REGISTERS. IN THIS EXAMPLE, 
EVERYTHING IS INITIALIZED TO ZERO SINCE THE ACTUAL 
INITIALIZATION IS APPLICATION DEPENDENT. 
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Example 12-1. Processor Initialization Example (Concluded) 
LOI @CTRL,ARO LOAD in ARO the pointer to control 

registers 
LOI @GLOINT,RO 
STI RO,*ARO . Init global memory interface control I 

LDI @LOCALINT,RO 
STI RO,*+ARO(4) Init local memory interface control 
LOI @OMAOCTL,RO 
STI RO,*+ARO(160) Init OMA 0 control 
LOI @OMA1CTL,RO 
STI RO,*+ARO(176) Init OMA 1 control 
LOI @OMA2CTL,RO 
STI RO, *+ARO (192) Init OMA 2 control 
LOI @OMA3CTL,RO 
STI RO,*+ARO(208) Init OMA 3 control 
LOI @OMA4CTL,RO 
STI RO,*+ARO(224) Init OMA 4 control 
LOI @OMASCTL,RO 
STI RO,*+ARO(240) Init DMA 5 control 
LOI @CPOCTL,RO 
STI RO, *+ARO (64) Init conununication port 0 control 
LOI @CP1CTL,RO 
STI RO,*+ARO(80) Init conununication port 0 control 
LOI @CP2CTL,RO 
STI RO, *+ARO (96) Init conununication port 0 control 
LOI @CP3CTL,RO 
STI RO, *+ARO (112) Init conununication port 0 control 
LOI @CP4CTL,RO 
STI RO,*+ARO(128) Init conununication port o .control 
LOI @CPSCTL,RO 
STI RO,*+ARO(144) ; Init conununication port o control 
Lor @TIMOCTL,RO 
STI RO,*+ARO(32) Init timer 0 control 
LOI @TIM1CTL,RO 
STI RO,*+ARO(48) ; Init timer 1 control 
LOI @ANACTL,RO 
STI RO,*+ARO(16) ; Init analysis module control 

* 
LOI @STCK,SP Initialize the stack pointer 
OR 2000H,ST Global interrupt enable 

* 
BR BEGIN ; Branch to the beginning of 

; application. 
.end 
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12.2 Program Control 

TMS320C40 instructions provide program control and facilitates high­
speed processing. These instructions directly handle: 

Q Regular and zero-overhead subroutine calls 

Q Software stack 

Q Interrupts 

Q Delayed branches 

Q Single- and multiple-instruction loops without any overhead 

12.2.1 Subroutines 

The 'C40 provides two ways to invoke the subroutine calls: regular and zero­
overhead. The regular and zero-overhead subroutine calls use software 
stack (SP) and extended-precision register R 11 respectively to save the re­
turn address. The following subsections use example programs to explain 
how this works. 

12.2.1.1 Regular Subroutine Calls 

The 'C40 has a 32-bit program counter (PC) and a practically unlimited soft­
ware stack. The CALL and CALLcond subroutine calls cause the stack 
pointer to increment and store the contents of the next value of the PC 
counter on the stack. At the end of the subroutine, RETScond performs a 
conditional return. 

Example 12-2 illustrates the use of a subroutine to determine the dot prod­
uct between two vectors. Given two vectors of length N, represented by the 
arrays a[O], a[1], ... , a[N-1] and b[O], b[1], ... , b[N-1], the dot product is com­
puted from the expression 

d = a[DJ b[DJ + a[1J b[1J + ... + a[N-1J b[N-1J 

Processing proceeds in the main routine to the point where the dot product 
is to be computed. It is assumed that the arguments of the subroutine have 
been appropriately initialized. At this point, a CALL is made to the subrou­
tine, transferring control to that section of the program memory for execu­
tion, then returning to the calling routine via the RETS instruction when ex­
ecution has completed. Note that for this particular example, it would suffice 
to save the register R2. However, a larger number of registers are saved for 
demonstration purposes. The saved registers are stored on the system 
stack, which should be large enough to accommodate the maximum antici­
pated storage requirements. Other methods of saving registers could be 
used equally well. 
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Example 12-2. Regular Subroutine Call (Dot Product) 

* * TITLE REGULAR SUBROUTINE CALL (DOT PRODUCT) 
* 
* 
* MAIN ROUTINE THAT CALLS THE SUBROUTINE 'DOT' TO COMPUTE THE 
* DOT PRODUCT OF TWO VECTORS. 

ARO points to vector a 
ARl points to vector b 

LDI 
LDI 
LDI 
DOT 

@blkO,ARO 
@blkl,ARl 
N,RC RC contains the number of elements 

CALL 

* 
*SUBROUTINE DOT 
* 
* 
*EQUATION: 
* 

d = a(O) * b(O) + a(l) * bel) + ••• + a(N-l) * b(N-l) 

*THEDOT PRODUCT OF a AND b IS PLACED IN REGISTER RO. N MUST 
*BE GREATER THAN OR EQUAL TO 2. 
* 
* ARGUMENT ASSIGNMENTS: 
* ARGUMENT I FUNCTION 
* ----------+-------------------------
* ARO I ADDRESS OF a(O) 
* ARl I ADDRESS OF b(O) 
* RC I LENGTH OF VECTORS (N) 
* 
* REGISTERS USED AS INPUT: ARO, ARl, RC 
* REGISTER MODIFIED: RO 
* REGISTER CONTAINING RESULT: RO 
* 
* 
* 

* DOT 

. global DOT 

; Save status register PUSH 
PUSH 
PUSHF 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 

ST 
R2 
R2 
ARO 
ARl 
RC 
RS 
RE 

; Use the stack to save R2's 
; bottom 32 and top 32 bits 
; Save ARO 

* 
II 

* 
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MPYF3 
SUBF 
SUBI 

, 
*ARO, *ARl, RO ; 
R2.R2,R2 
2,RC 

Save ARl 
Save RC 

Initialize RO: 
a(O) * b(O) -> RO 
Initialize R2. 
Set RC = N-2 
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* DOT PRODUCT (1 <= i < N) 

* 

II 
* 
* 
* 
* 

* 

RPTS 
MPYF3 
ADDF3 

ADDF3 

RETURN 

POP 
POP 
POP 
POP 
POP 
POPF 
POP 
POP 
RETS 

RC 
*++ARO(1),*++AR1(1),RO 
RO, R2, R2 

Setup the repeat single. 
a(i) * b(i) -> RO 
a(i-1)*b(i-1) + R2 -> R2 

RO,R2,RO 

SEQUENCE 

RE 
RS 
RC 
AR1 
ARO 
R2 
R2 
ST 

a(N-1)*b(N-1) + R2 -> RO 

; Restore RC 
; Restore AR1 
; Restore ARO 
; Restore top 32 bits of R2 
; Restore bottom 32 bits of R2 
; Restore ST 
; Return 

* end 

* 
.end 

12.2.1.2 Zero-Overhead Subroutine Calls 

Two 'C40 instructions, link and jump (LAJ) and link and jump conditional 
(LAJcond), allow zero-overhead subroutine calls to be implemented on the 
'C40. Unlike the CALL and CALLcondwhich put the value of PC+ 1 into the 
software stack, the LAJ and LAJcondput the value of PC+4 into the exten­
ded-precision register R11. Three instructions following LAJ or LAJcondwill 
be executed before going to the subroutine. The restriction of these three 
instructions is the same as that of the three instructions following a delayed 
branch. Atthe end of the subroutine, a delayed branch conditional, BcondD, 
using the register addressing mode with R11 as source, can be used to per­
form a zero-overhead subroutine return. 

For comparison, the same dot product example with zero-overhead subrou­
tine call is given in the following example program. 
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Example 12-3. Zero-Overhead Subroutine Call (Dot Product) 

* 
* 
* 
* 
* 
* 

* 

TITLE ZERO-OVERHEAD SUBROUTINE CALL (DOT PRODUCT) 

MAIN ROUTINE THAT CALLS THE SUBROUTINE 'DOT' TO COMPUTE THE 
DOT PRODUCT OF TWO VECTORS. 

LAJ 
LDI 
LDI 
LDI 

DOT 
@blkO,ARO 
@blkl,ARl 
N,RC 

ARO points to vector a 
ARl points to vector b 
RC contains the number of elements 

*SUBROUTINE DOT 
* 
*EQUATION: d = a(O) * b(O) + a(l) * b(l) + •.• + a(N-l) * b(N-l) 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* 
* 
* 
* 
* 
* 
* 
* 
DOT 

* 
II 

* 
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THE DOT PRODUCT OF a AND b IS PLACED IN REGISTER RO. N MUST 
BE GREATER THAN OR EQUAL TO 2. 

ARGUMENT ASSIGNMENTS: 
ARGUMENT I FUNCTION 
----------+-------------------------

ARO I ADDRESS OF a (0) 
ARl I ADDRESS OF b(O) 
RC I LENGTH OF VECTORS (N) 

REGISTERS USED AS INPUT: ARO, AR1, RC 
REGISTER MODIFIED: RO 
REGISTER CONTAINING RESULT: RO 

. global DOT 

PUSH 
PUSH 
PUSHF 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 

MPYF3 
SUBF 
SUBI 

ST 
R2 
R2 
ARO 
ARl 
RC 
RS 
RE 

*ARO,*AR1,RO 
R2.R2,R2 
2,RC 

Save status register 
Use the stack to save R2's 
bottom 32 and top 32 bits 
Save ARO 
Save ARl 
Save RC 

Initialize RO: 
a(O) * b(O) -> RO 
Initialize R2. 
Set RC = N-2 
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* DOT PRODUCT (1 <= i < N) 
* 

II 
* 
* 

RPTS 
MPYF3 
ADDF3 

ADDF3 

RC ; Setup the repeat single 
*++ARO(1),*++AR1(1),RO ; a(i) * b(i) -> RO 
RO,R2,R2 a(i-l)*b(i-1) + R2 -> R2 

RO,R2,RO a(N-l)*b(N-l) + R2 -> RO 

* RETURN SEQUENCE 

* 

* 

POP 
POP 
POP 
POP 
POP 

BUD 

POPF 
POP 
POP 

RE 
RS 
RC 
AR1 
ARO 

Rll 

R2 
R2 
ST 

Restore RC. 
Restore ARl 
Restore ARO 

Return 

Restore top 32 bits of R2 
Restore bottom 32 bits of R2 
Restore ST 

* end 
* 

.end 

12.2.2 Software Stack 

Location of the 'C40 software stack is determined by the contents of the 
stack pointer register (SP). The stack pOinter increments from low to high 
values, and provisions should be made to accommodate the anticipated 
storage requirements. The stack can be used not only during the subroutine 
CALL and RETS, but also inside the subroutine as a place of temporary stor­
age of the registers as shown in Example 12-2. SP always points to the last 
value pushed onto the stack. 

The CALL and CALLcond instructions push the value of the program count­
er onto the stack, as do the interrupt routines. Then, RETScond and 
RETlcond pop the stack and place the value in the program counter. The 
integer value of any register can be pushed onto and popped off the stack 
. by using the PUSH and POP instructions. 

Two additional instructions, PUSHF and POPF, are for floating-point num­
bers. These instructions can be used to pop and push floating-point num­
bers to registers RO - R 11. This feature is very useful for saving the ex­
tended precision registers (see Example 12-2 and Example 12-3). You can 
use PUSH and PUSHF on the same register to save the lower 32 and upper 
32 bits. PUSH saves the lower 32 bits; PUSHF, the upper 32 bits. To recover 
this extended-precision number, execute a POPF followed by POP. It is im­
portant to do the integer and floating-point PUSH and POP in the above or­
der. POPF forces the last eight bits of the extended-precision registers to 
zero. 

12-13 



Program Control- Interrupt Service Routines 
-,: ·~_~;X;_U_"';S:_::I:~~~_· _____ "'~;:"~';S:~~O;O;-~~M_·:lSJ6:_:;: ___ _ 

The stack pOinter (SP) can be read as well as written to. Multiple stacks for 
different program segments may be easily created. SP is not initialized by 
the hardware during reset; therefore, it is importantto rememberto initialize 
its value so that SP points to a predetermined memory location. This avoids 
the problem of SP attempting to write into ROM or write over other useful 
data. 

12.2.3 Interrupt Service Routines 
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There are two types of interrupts on the 'C40: maskable and nonmaskable. 
The maskable interrupts include internal and external interrupts. All the in­
terrupts are vectored and prioritized. The vector table for the various inter­
rupts is located in relation to the interrupt-vector table pointer (IVTP, shown 
in Section 3.2 on page 3-15). The nonmaskable interrupt (NMI) has the high­
est priority over other interrupts. Unlike other interrupts, the NMI cannot be 
masked by its own mask or by the GIE bit in the ST. It is temporarily masked 
during delayed branches and multicycle CPU operation. 

When an interrupt occurs, the corresponding flag is set in the interrupt flag 
register (IIF - explained in subsection 3.1.10, page 3-12). For nonmask­
able interrupt, if the corresponding NMI flag is set, NMI begins the interrupt 
processing, as long as the CPU is not executing delayed branches or multi­
cycle operation. For maskable interrupts, in order to respond to the interrupt 
when the corresponding interrupt flag is set, the GIE bit in the ST must be 
set to enable maskable interrupts globally, and the corresponding bit in the 
interrupt enable register (liE - described in subsection 3.1.9, page 3-1 O) 
or IIF register (for external interrupts) must be set also. Since pins 
IIOF(3 - O} can be either general-purpose liD or external interrupt pins, 
you must configure (using IIF register) those pins as interrupt pins to enable 
an external interrupt. Also, if the IIOF(3 - O} pins are configured as interrupt 
pins, they can be configured (also at IIF register) as either edge-triggered 
or level-triggered interrupts. You can also write to the IIF register, making 
it possible to force an interrupt by software or to clear interrupts without pro­
cessing them. 

The interrupt flag register can be read, and action can be taken, depending 
on whether the interrupt has occurred. This is true even when the maskable 
interrupt is disabled.This can be useful when an interrupt-driven interface 
is not implemented. Example 12-4 shows the case in which a subroutine 
is called when external interrupt 1 has not occurred. 
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Example 12-4. Use of Interrupts for Software Polling 

* TITLE INTERRUPT POLLING 

. 
TSTB 40H,IIF 
CALLZ StTBROUTINE 

Test if interrupt 1 has occurred 
If not, call subroutine 

When interrupt processing begins, the program counter is pushed on the 
stack, and the interrupt vector is loaded in the program counter. Interrupts 
are then disabled by setting GIE=O, and the program continues from the ad­
dress loaded in the program counter. Since all maskable interrupts are dis­
abled, interrupt processing may proceed without further interruption unless 
the interrupt service routine re-enables interrupts, or the NMI occurs. 

Except for very simple interrupt service routines, it is important to assure 
that the processor context is saved during execution of this routine. The 
context must be saved before you execute the routine itself, and it must be 
restored after the routine is finished. The procedure is called context switch­
ing. Context switching is also useful for subroutine calls, especially when 
extensive use is made of the auxiliary and the extended-precision registers. 
Code examples of context switching and an interrupt service routine are 
provided in this section. 

12.2.3.1 Context Switching 

Context switching is commonly required when processing a subroutine call 
or interrupt. It may be quite extensive or simple, depending on system re­
quirements. For the 'C40, the program counter is automatically pushed onto 
the stack. Important information in other 'C40 registers, such as the status, 
auxiliary, or extended-precision registers must be saved by special com­
mands. The status register should be saved first and restored last in order 
to preserve the processor status without any further change caused by other 
context-switching instructions. 
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Example 12-4 and Example 12-5 show saving and restoring ofthe 'C40 
state. In both examples, the stack is used for saving the registers, and it ex­
pands towards higher addresses. If you don't want to use the stack pointed 
at by the SP, you can create a separate stack by using an auxiliary register 
as the stack pointer. Registers saved in these examples: 

a Status register (ST) - should be saved first and restored last 

a Extended-precision registers RO through R11 

a Auxiliary registers ARO through AR7 

a Data-page pointer (DP) 

a Index registers (IRO and IR1) 

a Block-size register (BK) 

a Interrupt-related registers liE, IIF, and DIE 

a Repeat-related registers RS, RE, and RC 
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Example 12-5. Context-Save for the TMS320C40 

* 
* 
* 
* 
* 
* 
SAVE: 
* 
* 
* 

* 
* 
* 

* 

* 
* 

TITLE CONTEXT-SAVE FOR THE TMS320C40 

. global SAVE 

CONTEXT SAVE ON SUBROUTINE CALL OR INTERRUPT. 

PUSH ST i Save status register 

SAVE THE EXTENDED PRECISION REGISTERS 

PUSH RO 
PUSHF RO 
PUSH Rl 
PUSHF RI 
PUSH R2 
PUSHF R2 
PUSH R3 
PUSHF R3 
PUSH R4 
PUSHF R4 
PUSH R5 
PUSHF R5 
PUSH R6 
PUSHF R6 
PUSH R7 
PUSHF R7 
PUSH R8 
PUSHF R8 
PUSH R9 
PUSHF R9 
PUSH RIO 
PUSHF RIO 
PUSH Rll 
PUSHF Rll 

SAVE THE AUXILIARY REGISTERS 

PUSH ARO 
PUSH ARI 
PUSH AR2 
PUSH AR3 
PUSH AR4 
PUSH AR5 
PUSH AR6 
PUSH AR7 

SAVE THE REST REGISTERS FROM 

Save the lower 32 bits of 
and the upper 32 bits 
Save the lower 32 bits of 
and the upper 32 bits 
Save the lower 32 bits of 
and the upper 32 bits 
Save the lower 32 bits of 
and the upper 32 bits 
Save the lower 32 bits of 
and the upper 32 bits 
Save the lower 32 bits of 
and the upper 32 bits 
Save the lower 32 bits of 
and the upper 32 bits 
Save the lower 32 bits of 
and the upper 32 bits 
Save the lower 32 bits of 
and the upper 32 bits 
Save the lower 32 bits of 
and the upper 32 bits 
Save the lower 32 bits of 
and the upper 32 bits 
Save the lower 32 bits of 
and the upper 32 bits 

Save ARO 
Save ARI 
Save AR2 
Save AR3 
Save AR4 
Save AR5 
Save AR6 
Save AR7 

THE REGISTER FILE 

Save data page pointer 
Save index register IRO 
Save index register IRI 
Save block-size register 

RO 

RI 

R2 

R3 

R4 

R5 

R6 

R7 

R8 

R9 

RIO 

Rll 

PUSH 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 

OP 
IRO 
IRI 
BK 
IIE 
IIF 

Save interrupt enable register 
Save interrupt flag register 
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PUSH 
PUSH 
PUSH 
PUSH 

* 
* SAVE IS 
* 

DIE 
RS 
RE 
RC 

COMPLETE 

Save DMA interrupt enable register 
Save repeat start address 
Save repeat end address 
Save repeat counter 

Example 12-6. Context-Restore for the TMS320C40 

* 
* 
* 
* 
* 
* 
RESTR: 
* 
* 
* 

* 
* 
* 

* 
* 
* 
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TITLE CONTEXT-RESTORE FOR THE TMS320C40 

. global RESTR 

CONTEXT RESTORE AT THE END OF A SUBROUTINE CALL OR INTERRUPT. 

RESTORE THE REST REGISTERS FROM THE REGISTER FILE 

POPRC 
POPRE 
POPRS 
POP DIE 
POP IIF 
POP lIE 
POPBK 
POP IRl 
POP IRO 
POPDP 

Restore repeat counter 
Restore repeat end address 
Restore repeat start address 
Restore DMA interrupt enable register 
Restore interrupt flag register 
Restore interrupt enable register 
Restore block-size register 
Restore index register IRl 
Restore index register IRO 
Restore data page pointer 

RESTORE THE AUXILIARY REGISTERS 

POPAR7 Restore AR7 
POPAR6 Restore AR6 
POPAR5 Restore AR5 
POPAR4 Restore AR4 
POPAR3 Restore AR3 
POPAR2 Restore AR2 
POPARI Restore ARI 
POPARO Restore ARO 

RESTORE THE EXTENDED PRECISION REGISTERS 

POPF Rll Restore the upper 32 bits and 
POP Rll the lower 32 bits of Rll 
POPF RIO Restore the upper 32 bits and 
POP RIO the lower 32 bits of RIO 
POPF R9 Restore the upper 32 bits and 
POP R9 the lower 32 bits of R9 
POPF R8 Restore the upper 32 bits and 
POP R8 the lower 32 bits of R8 
POPF R7 Restore the upper 32 bits and 
POP R7 the lower 32 bits of R7 
POPF R6 ; Restore the upper 32 bits and 
POP R6 the lower 32 bits of R6 
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* 

POPF 
POP 
POPF 
POP 
POPF 
POP 
POPF 
POP 
POPF 
POP 
POPF 
POP 
POPST 

R5 
R5 
R4 
R4 
R3 
R3 
R2 
R2 
Rl 
Rl 
RO 
RO 

Restore the upper 32 bits and 
the lower 32 bits of RS 
Restore the upper 32 bits and 
the lower 32 bits of R4 
Restore the upper 32 bits and 
the lower 32 bits of R3 
Restore the upper 32 bits and 
the lower 32 bits of R2 
Restore the upper 32 bits and 

the lower 32 bits of Rl 
Restore the upper 32 bits and 
the lower 32 bits of RO 
Restore status register 

* RESTORE IS COMPLETE 
* 
12.2.3.2 Interrupt-Vector Table 

The interrupt-vector table (IVT, shown in Figure 3-8 on page 3-16) of the 
'C40 is relocatable. The location of the IVT is relative to the interrupt-vector 
table pointer (IVTP). The IVTP is a 32-bit expansion register that points to 
the base address of the IVT. Since the IVT is required to lie on a 512-word 
boundary, the 9 LSBs of the IVTP should always be zero. The two instruc­
tions, LDEP and LDPE, read from and write to the expansion registers, IVTP 
and trap-vector table pointer (TVTP). Example 12-6 shows how to change 
the value of the IVTP (it is similar to changing the value of the TVTP). With 
this relocatable feature, an interrupt signal can be used for different ser­
vices.ln Example 12-7, the IVTP is reset in the external INTO interruptser­
vice routines EINTOA and EINTOB. After the value of the IVTP is changed, 
CPU will go to a different interrupt service routine when the same interrupt 
Signal occurs again. 
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Example 12-7. Use of One Interrupt Signal for Two Different Services 

* TITLE USE OF ONE INTERRUPT SIGNAL FOR TWO DIFFERENT SERVICES 
* * IN THIS EXAMPLE, THE ADDRESS OF EINTOA AND EINTOB ARE IN 
* MEMORY LOCATION 03H AND l003H RESPECTIVELY. ASSUMING THE IVTP 
* HAS NOT BEEN CHANGED AFTER DEVICE RESET AND THE EXTERNAL 
* INTERRUPT IIOFO IS ENABLED. WHEN THE FIRST IIOFO INTERRUPT 
* SIGNAL COMES IN, THE EINTOA ROUTINE WILL BE EXECUTED. AND THEN 
* IF THE NEXT IIOFO INTERRUPT SIGNAL OCCURS, THE EINTOB ROUTINE 
* WILL BE EXECUTED, AND SO ON. THE EINTOA AND EINTOB ROUTINES 
* WILL TAKE TURN TO BE EXECUTED WHEN IIOFO INTERRUPT SIGNAL 
* OCCURS. 
* * External IIOFO interrupt service routine A 
* * . global EINTOA 
EINTOA: 

* 

* 

LDI 
LDPE 

RETI 

lOOOH,RO 
RO,IVTP 

Change IVTP to point to lOOOH 

; Return and enable interrupts 

* External IIOFO interrupt service routine A 
* 
* 
EINTOB: 

* 

. global EINTOB 

LDI 
LDPE 

RETI 

O,RO 
RO, IVTP 

Change IVTP to point to 0 

Return and enable interrupts 

12~2.3.3 Interrupt Priority 
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Interrupts on the 'C40 are automatically prioritized. This allows interrupts 
that occur simultaneously to be serviced in a predefined order. Infrequent, 
but lengthy, interrupt service routines may need to be interrupted by more 
frequently occurring interrupts. Since the GIE bit in ST is reset when the in­
terrupt vector is taken, this nesting interrupt will occur only if it is the NMI in­
terrupt or if the interrupt is re-enabled in the interrupt service routine. 
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In Example 12-8, the interrupt service routine for INT2 temporarily modifies 
the interrupt enable register (liE) and interrupt flag register (IIF) to permit 
interrupt processing when an interruptto INTO or NMI (but no other interrupt) 
occurs. When the routine has finished processing, the liE register is re­
stored to its original state. Notice that the RETlcond instruction not only 
pops the next program counter address from the stack, but also restores 
GIE and CF bits from the PGIE and PCF bits. This re-enables all interrupts 
that were enabled before the INT2 interrupt was serviced. 

Example 12-8. Interrupt Service Routine 

* TITLE INTERRUPT SERVICE ROUTINE 
* . global ISR2 
* 

* 

ENABLE 
MASK 

.set 

.set 
2000h 
9h 

* INTERRUPT PROCESSING FOR EXTERNAL INTERRUPT INT2-
* 
ISR2: 

* 

PUSH 
PUSH 
PUSH 
PUSH 
PUSH 
PUSHF 
PUSH 
PUSHF 
LDI 
LDI 
MHO 
OR 

ST 
DP 
lIE 
IIF 
RO 
RO 
Rl 
Rl 
O,IIE 
MASK, RO 
RO, IIF 
ENABLE,ST 

Save status register 
Save data page pointer 
Save interrupt enable register 

Save lower 32 bits and 
upper 32 bits of RO 
Save lower 32 bits and 
upper 32 bits of Rl 
Unmask all internal interrupts 

Enable INT2 
Enable all interrupts 

* MAIN PROCESSING SECTION FOR ISR2 

* 

XOR 
POPF 
POP 
POPF 
POP 
POP 
POP 
POP 
POP 

RETI 

ENABLE,ST 
Rl 
Rl 
RO 
RO 
IIF 
lIE 
DP 
ST 

Disable all interrupts 
Restore upper 32 bitsand 
lower 32 bits of Rl 
Restore upper 32 bits and 

; lower 32 bits of RO 

Restore interrupt enable register 
Restore data page register 
Restore status register 

Return and enable interrupts 
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12.2.4 Delayed Branches 

12-22 

The 'C40 uses delayed branches to create single-cycle branching. The 
delayed branches operate like regular branches but do not flush the pipe­
line. Instead, the three instructions following a delayed branch are also ex­
ecuted. Similarly, besides delayed branches, 'C40 also uses link and jump 
(LAJ), link and trap (LAT), delayed repeat block (RPTBD), and delayed re­
turn from interrupt or trap conditionally (RETlcondD) instructions to avoid 
the pipeline flush (as discussed in Section 6.3 on page 6-9) in the Program 
Flow Control chapter (Chapter 6), the only limitations are that none of the 
three instructions following a delayed branch can be a: 

Cl Branch (standard or delayed) 

Cl Branch and annul conditionally 

Cl Call to a subroutine 

Cl Link and jump instruction 

Cl Link and trap instruction 

Cl Return from a subroutine 

Cl Return from an interrupt or trap (standard or delayed) 

Cl Repeat instruction (standard or delayed) 

Cl TRAP instruction 

Cl IDLE instruction 

Conditional delayed branches use the conditions that exist at the end of the 
instruction immediately preceding the delayed branch. Sometimes, a 
branch is necessary in the flow of a program, but fewer than three 
instructions can be placed after a delayed branch. For faster execution, it 
is still advantageous to use a delayed branch. This is shown in 
Example 12-9, with a NOP taking the place of the third unused instruction. 
The tradeoff is more instruction words for less execution time. 
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Example 12-9. Delayed Branch Execution 

* TITLE DELAYED BRANCH EXECUTION 

LDF *+AR1(S),R2 Load contents of memory to R2 
BGED SKIP ; If loaded n1.1mber >=0, branch (delayed) 
LDFN R2,R1 If loaded number <0, load it to Rl 
SUBF 3.0,R1 ; Subtract 3 from R1 
NOP ; Dummy operation to complete delayed 

* branch 
MPYF 1.S,R1 Continue here if loaded number <0 

SKIP LDF R1,R3 Continue here if loaded number >-0 

12.2.5 Repeat Modes 

The 'C40 supports looping without any overhead. For that purpose, there 
are three instructions: RPTB and RPTBD repeat a block of code, and RPTS 
repeats a single instruction. The three control registers 
Cl RS (Repeat Start address), 
Cl RE (Repeat End address), and 
Cl RC (Repeat Counter) 

contain the parameters that specify loop execution (refer to Section 6.1 on 
page 6-2 for a description of RPTB, RPTBD, and RPTS). Registers RS 
and RE are automatically set from the code, while RC must be set by the 
user, as shown in Example 12-10. 

Example 12-10. Use of Block Repeat to Find a Maximum or a Minimum 

* 
* TITLE USE OF BLOCK REPEAT TO FIND A MAXIMUM OR A MINIMUM 
* 
* THIS ROUTINE FINDS THE MAXIMUM OR THE MINIMUM OF N=147 NUMBERS 

LDI 146,RC ; Initialize repeat counter to 147-1 
LDI @ADDR, ARO ; ARO points to the beginning 

; of the array 
LDF *ARO++(1),RO; Initialize MAX or MIN to the 

; first value 
BLT LOOP 2 ; If it is a negative array, find the 

minimum 
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* 
LOOPl 

MAX 

LOOP 2 

MIN 
NEXT 

RPTB 
CMPF 
LDFLT 
B 
RPTB 
CMPF 
LDFLT 

MAX 
*ARO,RO Compare number to the maximum 
*ARO,RO If greater, this is a new maximum 
NEXT 
MIN 
*ARO++(l) ,RO; Compare number to the minimum 
*-ARO(l),RO ; If smaller, this is a new minimum 

12.2.5.1 Block Repeat 

The 'C40 supports both standard and delayed repeat block instructions 
(RPTB and RPTBD). RPTB and RPTBD are the same except that the three 
instructions following RPTBD are not included in the loop (but are included 
in the RPTB loop). For RPTBD, the loop starts at the fourth instruction 
following RPTBD. The restriction of these three following instructions is the 
same as that of the three instructions following a delayed branch. Since 
RPTBD is a single-cycle instruction, it is very useful in making the nesting 
loop program more efficient. Example 12-10 shows the use of the block 
repeat to find the maximum or the minimum value of 147 numbers. The 
elements of the array are either all positive or all negative numbers. Since 
the loop cannot be predetermined, the RPTBD instruction is not suitable 
here. 

12.2.5.2 Specifies Restrictions in the Block-Repeat Construct 
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Because the program counter is modified at the end of the loop according 
to the contents of registers RS, RE, and RC, no operation should attempt 
to modify the repeat counter or the program counter at the end of the loop 
to a different value. 

In principle, it is possible to nest repeat blocks. However, there is only one 
set of control registers: RS, RE, and RC. It is, therefore, necessary to save 
these registers before entering an inside loop and to restore these registers 
after completing the inside loop. It takes four cycles overhead to save and 
restore these registers. Hence, sometimes, it may be more economical to 
implement a nested loop by the more traditional method of using a register 
as a counter, and then using a delayed branch rather than by using the 
nested repeat block approach. 
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Example 12-11 shows an application of the delayed block repeat construct. 
In this example, an array of 64 elements is flipped over by exchanging the 
elements that are equidistant from the end of the array. In other words, if 
the original array is 

a(1), a(2), ... , a(31), a(32), ... , a(64); 

the final array after the rearrangement will be 

a(64), a(63), ... , a(32), 8(31), ... , a(1). 
Because the exchange operation is done on two elements at the same time, 
it requires 32 operations. The repeat counter (RC) is initialized to 31. In gen­
eral, if RC contains the number N, the loop will be executed N+ 1 times. The 
loop is defined by the fourth instruction following the RPTBD instruction and 
the EXCH label. 

Example 12-11. Loop Using Delayed Block Repeat 

* TITLE LOOP USING DELAYED BLOCK REPEAT 
* 
* THIS CODE SEGMENT EXCHANGES THE VALUES OF ARRAY ELEMENTS THAT 
* ARE SYMMETRIC AROUND THE MIDDLE OF THE ARRAY. 
* 

* 

* 

* 
START 
II 
EXCH 

" 

LDI @ADDR,ARO 

RPTBD EXCH 

LDI ARO,AR1 
ADDI 63,AR1 
LDI 31,RC 
»»»»»»»> 
LDI *ARO,RO 

ARO points to the beginning of the 
array 

Repeat RC+1 times between START and 
; EXCH 

AR1 points to the end of the array 
Initialize repeat counter 
Loop starts here 

.LDI *AR1, R1 ; 
Load one memory element in RO, 
and the other in R1 

STI R1, *ARO++ (1) ; Then, exchange their locations 
STI RO,*AR1--(1) 
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12.2.5.3 Single-Instruction Repeat 

The single-instruction repeat uses control registers AS, AE, and AC in the 
same way as does the block repeat. The advantage over the block repeat 
is that the instruction is fetched only once, and then the buses are available 
for moving operands. One difference to note is that the single-instruction re­
peat construct is not interruptible, while block repeat is interruptible. 

Example 12-12 shows an application of the repeat-single construct. In this 
example, the sum of the products of two arrays is computed. The arrays are 
not necessarily different. If the arrays are a(i) and b(i), and if each is of length 
N=512, register AO will contain, after computation, this quantity: 

a(1) b(1) + a(2) b(2) + ... + a(N) b(N). 

The value of the repeat counter (AC) is specified to be 511 in the instruction. 

Example 12-12. Loop Using Single Repeat 

* TITLE LOOP USING SINGLE REPEAT 

* 

LDI @ADDR1,ARO ARO points to array a(i) 
LDr @ADDR2,AR1 AR1 points to array b(i) 

* 
LDF O.O,RO Initialize RO 

* 
MPYF3 *ARO++(1),*AR1++(1),R1 Compute first product 

* 
RPTS 511 Repeat 512 times 

* 
MPYF3 *ARO++(1),*AR1++(1),R~ Compute next product and 

II ADDF3 Rl,RO,RO accumulate the 
previous one 

* 
ADDF R1,RO One final addition 
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12.2.6 Computed GOTOs to Select Subroutines at Runtime 

Occasionally, it is convenient to select during runtime, and not during as­
sembly, the subroutine to be executed. The 'C40's computed GOTO sup­
ports this selection. The computed GOTO is implemented by using the 
CALLcond instruction in the register addressing mode. This instruction 
uses the contents of the register as the address of the call. Example 12-13 
shows the case of a task controller. 

Example 12-13. ComputedGOTO 

* TITLE COMPUTED GO TO 
* 
* TASK CONTROLLER 
* 
* THIS MAIN ROUTINE CONTROLS THE ORDER OF TASK EXECUTION (6 TASKS 
* IN THE PRESENT EXAMPLE). TASKO THROUGH TASKS ARE THE NAMES OF 
* SUBROUTINES TO BE CALLED. THEY ARE EXECUTED IN ORDER, TASKO, 
* TASKl, ... TASKS. WHEN AN INTERRUPT OCCURS, THE INTERRUPT 
* SERVICE ROUTINE IS EXECUTED, AND THE PROCESSOR CONTINUES 
* WITH THE INSTRUCTION FOLLOWING THE IDLE INSTRUCTION. THIS 
* ROUTINE SELECTS THE TASK APPROPRIATE FOR THE CURRENT CYCLE, 
* CALLS THE TASK AS A SUBROUTINE, AND BRANCHES BACK TO THE IDLE 
* TO WAIT FOR THE NEXT SAMPLE INTERRUPT WHEN THE SCHEDULED TASK 
* HAS COMPLETED EXECUTION. RO HOLDS THE OFFSET FROM THE BASE 
* ADDRESS OF THE TASK TO BE EXECUTED. BIT 15 (SET COND BIT) OF 
* STATUS REGISTER (ST) SHOULD BE SET TO 1. 
* 
* 

WAIT 

* 

* 
TSKSEQ 

ADDR 

LDI 
LDI 

IDLE 
ADDI 

SUBI 
LDILT 
CALLU 
BRWAIT 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

S,IRO 
@ADDR,ARI 

; 
*+ARl(IRO),Rl 

1,IRO 
S,IRO 
Rl 

TASKS 
TASK4 
TASK3 
TASK2 
TASKI 
TASKO 
TSKSEQ 

Initialize IRO 
ARI holds the base address 
of the table 
Wait for the next interrupt 
Add the base address to the table 
entry number 
Decrement IRO 
If IRO<O, reinitialize it to 5 
Execute appropriate task 

Address of TASKS 
Address of TASK4 
Address of TASK3 
Address of TASK2 
Address of TASKI 
Address of TASKO 
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12.3 Logical and Arithmetic Operations 

The 'C40 instruction set supports both integer and floating-point arithmetic 
and logical operations. The basic functions' of such instructions can be com­
bined to form more complex operations. This section examines examples 
of these operations: 

a Bit manipulation 

o Block moves 

a Byte and half-word manipulation 

o Bit-reversed addressing 

a Integer and floating-point division 

a Square root 

o Extended-precision arithmetic 

o Floating-point format conversion between IEEE and 'C40 formats 

12.3.1 Bit Manipulation 

Instructions for logical operations, such as AND, OR, NOT, ANON, and' 
XOR, can be used together with the shift instructions for bit manipulation. 
A special instruction, TSTB, tests bits. TSTB does the same operation as 
AND, but the result of the TSTB is used only to set the condition flags and 
is not written anywhere. Example 12-14 and Example 12.,..15demonstrate 
the use of the several instructions for bit manipulation and testing. 

Example 12-14. Use of rSrB for Software-Controlled Interrupt 

* TITLE USE OF TSTB FOR SOFTWARE-CONTROLLED INTERRUPT 
* 
* 
* 
* 
* 
* 
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IN THIS EXAMPLE, ALL INTERRUPTS HAVE BEEN DISABLED BY 
RESETTING THE GIE BIT OF THE STATUS REGISTER. WHEN AN 
INTERRUPT ARRIVES, IT IS STORED IN THE IF REGISTER. THE 
PRESENT EXAMPLE ACTIVATES THE INTERRUPT SERVICE ROUTINE INTR 
WHEN IT DETECTS THAT INT2- HAS OCCURRED. 

TSTB 
CALLNZ 

4,IIF 
INTR 

Check if bit 2 of IF is set, 
and, if so, call subroutine INTR 
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Example 12-15. Copy a Bit from One Location to Another 

* TITLE COPY A BIT FROM ONE LOCATION TO ANOTHER 
* 
* BIT I OF Rl NEEDS TO BE COPIED TO BIT J OF R2. 
* ARO POINTS TO A LOCATION HOLDING I, AND IT IS ASSUMED THAT THE 
* NEXT MEMORY LOCATION HOLDS THE VALUE J. 

* 

LDI 
LSH 
TSTB 
BZD 
LDI 
LSH 
ANDN 
OR 
CONT 

1,RO 
*ARO,RO 
Rl,RO 
CONT 
1, RO 
*+ARO(l),RO 
RO,R2 
RO,R2 

Shift 1 to align it with bit I 
Test the I-th bit of Rl 
If bit = 0, branch delayed 

Align 1 with J-th location 
If bit 0, reset J-th bit of R2 
If bit = 1, set J-th bit of R2 

12.3.2 Block Moves 

Because the 'C40 directly addresses a large amount of memory, blocks of 
data or program code can be stored off-chip in slow memories and then 
loaded on-chip for faster execution. Data can also be moved from on-chip 
to off-chip for storage or for multiprocessor data transfers. 

Such data transfers can be accomplished efficiently in parallel with CPU 
operations using the DMA. The DMA operation is explained in detail in 
Chapter 9. An alternative to DMA is to perform data transfers under program 
control by using load and store instructions in a repeat mode. 
Example 12-16 shows the transfer of a block of 512 floating-point numbers 
from external memory to block 1 of the on-chip RAM. 
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Example 12-16. Block Move Under Program Control 

* TITLE BLOCK MOVE UNDER PROGRAM CONTROL 
* 
extern • word 01000H 
block1 • word 02FFCOOH 

. 
LDI @extern,~O Source address 
LDI @block1,AR1 Destination address 

LDF *ARO++,RO ; Load the first number 

RPTS 510 Repeat following instruction 
511 times 

LDF *ARO++,RO Load the next number, and ..• 
II STF R,0,*AR1++ store the previous one 

STF RO,*AR1 Store the last number 

12.3.3 Byte and Half-Word Manipulation 

A new set of instructions for byte and half-word accessibility, such as 
LB(3,2,1 ,0), LBU(3,2,1,O), LH(1,O), LHU(1 ,0), LWL(O, 1 ,2,3), LWR(O,1,2,3), 
MB(3,2, 1,0), and MH(1,O), are available on the 'C40. In application such as 
image processing, it is often important to be able to manipulate packed data. 
For example, the pixels in color images are often represented by four 8-bit 
unsigned quantities - red, green, blue and alpha - which are packed 
into a single 32-bit word. The byte and half-word instruction will make it very 
easy to manipulate this packed data. 

Example 12-17 shows the case of packing data from a half-word FIFO to 
32-bit data memory, and Example 12-18 shows the case of unpacking a 
32-bit data array into a four-byte-wide data array (assuming the 32-bit data 
array contains four 8-bit unsigned numbers). 

Example 12-17. Use of Packing Data From Half-Word FIFO to 32-8it Data Memory 

* 
* 
* 
* 
* 
* 

12-30 

TITLE USE OF PACKING DATA FROM HALF-WORD FIFO 
TO 32-BIT DATA MEMORY 

IN THIS EXAMPLE, EVERY TWO INPUT 16 BITS DATA 
HAS BEEN PACKED INTO ONE 32-BIT DATA MEMORY. THE LOOP SIZE 
USED HERE IS ARRAY SIZE, NOT THE INPUT DATA LENGTH. 
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RPTBD PACK 
LDI @fifo adr,AR1 
LDI @array,AR2 
LDI size-1,RC 

* »»»»»»»» 
LWLO *AR1,R9 
LWL1 *AR1,R9 

PACK STI R9, *AR2++ (1) 

Load fifo address 
Load data array address 
Load array size 
Loop starts here 
Pack 16 LSBs 
Pack 16 MSBs 
Store the data 

Example 12-18. Use of Unpacking 32-Bit Data Into Four-Byte-Wide Data Array 
* TITLE USE OF UNPACKING 32-BIT DATA INTO FOUR BYTE-WIDE 
* DATA ARRAY 
* 
* THIS EXAMPLE ASSUMED THAT THE 32-BIT DATA CONTAINS FOUR 8-BIT 
* UNSIGNED DATA. 

LDI @input_adr,ARO Load RPTBD UNPACK input address 
LDI @array1,AR1 Load output data array 1 address 
LDI @array2,AR2 Load output data array 2 address 
RPTBD UNPACK 
LDI @array3,AR3 Load output data array 3 address 
LDI @array4,AR4 Load output data array 4 address 
LDI size-1,RC Load array size 

* »»»»»»»» Loop starts here 
LBUO *ARO,R8 Unpack first byte 
STI R8,*AR1++(1) 
LBU1 *ARO,R8 Unpack second byte 
STI R8, *AR2++ (1) 
LBU2 *ARO,R8 Unpack third byte 
STI, R8,*AR3++(1) 
LBU3 *ARO++(1),R8 Unpack fourth byte 

UNPACK STI R8,*AR4++(1) 

12.3.4 Bit-Reversed Addressing 

The 'C40 can implement fast Fourier transforms (FFT) with bit-reversed ad­
dressing. If the data to be transformed is in the correct order, the final result 
of the FFT is scrambled in bit-reversed order. To recover the frequency-do­
main data in the correct order, certain memory locations must be swapped. 
The bit-reversed addressing mode makes swapping unnecessary. The next 
time data needs to be accessed, the access is done in a bit-reversed man­
ner rather than sequentially. In 'C40, this bit-reversed addressing can be im­
plemented through both the CPU and DMA. 

In CPU bit-reversed addressing, IRO holds a value equal to one-halfthe size 
of the FFT, if real and imaginary data are stored in separate arrays. During 
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accessing, the auxiliary register is indexed by IRO, but with reverse carry 
propagation. Example 12-19 illustrates a 512-point complex FFT being 
moved from the place of computation (pointed at by ARO) to a location 
pointed at by AR1. In this example, real and imaginary parts XR(i) and XI (i) 
of the data are not stored in separate arrays, but they are interleaved with 
XR(O), XI(O), XR(1), XI(1), ... , XR(N1), XI(N 1). Because ofthis arrangement, 
the length of the array is 2N instead of N, and IRO is set to 512 instead of 
256. 

Example 12-19. Bit-Reversed Addressing 

* 
* TITLE BIT-REVERSED ADDRESSING 
* 
* THIS EXAMPLE MOVES THE RESULT OF THE 512-POINT FFT 
* COMPUTATION, POINTED AT BY ARO, TO A LOCATION POINTED AT 
* BY AR1. REAL AND IMAGINARY POINTS ARE ALTERNATING. 

* 

II 
* 
LOOP 

I I 
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LDI 512,IRO 
RPTBD LOOP 
LDI 2,IR1 
LDI 511,RC Repeat 511+1 times 
LDF *+ARO(1),R1 Load first imaginary point 

LDF *ARO++(IRO)B,RO i Load real value (and point 
STF R1,*+AR1(1) to next location) and store 

the imaginary value 
LDF *+ARO(1),R1 Load next imaginary point 

and store 
STF RO, *AR1++ (IR1) previous real value 

In DMA bit-reversed addressing, there are two bits in the DMA control regis­
ter to enable bit-reversed addressing on DMA reads and DMA write. The 
source address index register and destination address index register are 
used to define the size of the bit-reversed addressing. Their function is simi­
lar to the CPU index register IRO. For more detail information about DMA 
operation, refer to Chapter 9. 
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12.3.5 Integer and Floating-Point Division 

'C40 has a single-cycle instruction, RCPF, to generate an estimate of the 
reciprocal of a floating-point number. This estimate has the correct expo­
nent, and the mantissa is accurate to the eighth binary place (the error of 
the mantissa is < z-8). Often, this is a satisfactory estimate of the reciprocal 
of a floating-point number. In other cases, this estimate may be used as a 
seed for an algorithm that computes the reciprocal to even greater accuracy. 
The Newton-Raphson algorithm described later is one such case. 

For integer division, although the special instruction is not provided, the in­
struction set has the capacity to perform an efficient division routine. Be­
sides, the rough estimate can be achieved through FLOAT, RCPF, and FIX 
instructions. 

12.3.5.1 Integer Division 

Division is implemented on the 'C40 by repeated subtractions using SUBC, 
a special conditional subtract instruction. Consider the case of a 32-bit posi­
tive dividend with i significant bits (and 32-i sign bits), and a 32-bit positive 
divisor with j significant bits (and 32-j sign bits). The repetition of the SUBC 
command i-j+ 1 times produces a 32-bit result where the lower i-j+ 1 bits are 
the quotient, and the upper 31-i+j bits are the remainder of the division. 

SUBC implements binary division in the same manner as long division. The 
divisor (assumed to be smaller than the dividend) is shifted left i-j times to 
be aligned with the dividend. Then, using SUBC, the shifted divisor is sub­
tracted from the dividend. For each subtract that does not produce a nega­
tive answer, the dividend is replaced by the difference. It is then shifted to 
the left, and a one is put in the LSB. Ifthe difference is negative, the dividend 
is simply shifted left by one. This operation is repeated i-j+ 1 times. 

As an example, consider the division of 33 by 5 using both long division and 
the SUBC method. In this case, i=6, j=3, and the SUBC operation is re­
peated 6-3+ 1 =4 times. 
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LONG DIVISION: 

Quotient 
00000000000000000000000000000101 

00000000000000000000000000000110 
00000000000000000000000000100001 

-101 
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SUBC METHOD: 

00000000000000000000000000100001 
00000000000000000000000000101000 

Negative difference 

J, 
00000000000000000000000000100001 
00000000000000000000000000101000 
00000000000000000000000000011010 

J, 
00000000000000000000000000100001 
00000000000000000000000000101000 
00000000000000000000000000011010 

J, 
00000000000000000000000000011011 
00000000000000000000000000101000 

Negative difference 

J, 
00000000000000000000000000110110 

Rem;rd~ I Q~. 

Dividend 
Divisor (aligned) 
(1st SUBC command) 

New Dividend + Quotient 
Divisor 

1101 

-101 Remainder 
11 

Difference (>0) (2nd SUBC command) 

New Dividend + Quotient 
Divisor 
Difference (>0) (3rd SUBC command) 

New Dividend + Quotient 
Divisor 
(4th SUBC command) 

Final Result 

When the SUBC command is used, both the dividend and the divisor must 
be positive. Example 12-20 shows a realization of the integer division in 
which the sign ofthe quotient is properly handled. The last instruction before 
returning modifies the condition flag in case subsequent operations depend 
on the sign of the resutt. 
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Example 12-20. Integer Division 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* 
DIVI: 
* 

TITLE INTEGER DIVISION 

SUBROUTINE DIVI 

INPUTS: SIGNED INTEGER DIVIDEND IN RO, 
SIGNED INTEGER DIVISOR IN R1. 

OUTPUT: RO/R1 into RO. 

REGISTERS USED: RO-R3, IRO, IR1 

OPERATION: 1. NORMALIZE DIVISOR WITH DIVIDEND 
2. REPEAT SUBC 
3. QUOTIENT IS IN LSBs OF RESULT 

CYCLES: 31-62 (DEPENDS ON AMOUNT OF NORMALIZATION) 

.globl 
SIGN 
TEMPF 
TEMP 
COUNT 

DIVI 
· set R2 
· set R3 
· set IRO 
· set IR1 

DIVI - SIGNED DIVISION 

* DETERMINE SIGN OF RESULT. GET ABSOLUTE VALUE OF OPERANDS. 
* 

* 
* 
* 
* 

* 

XOR RO,R1,SIGN Get the sign 
ABSI RO 
ABSI R1 
CMPI RO,R1 ; Divisor> dividend ? 
BGTD ZERO ; If so, return 0 

NORMALIZE OPERANDS. USE DIFFERENCE IN EXPONENTS AS SHIFT COUNT 
FOR DIVISOR, AND AS REPEAT COUNT FOR 'SUBC'. 

FLOAT 
PUSHF 
POP 
LSH 
FLOAT 
PUSHF 
POP 
LSH 
SUBI 
LSH 

RO,TEMPF 
TEMPF 
COUNT 
-24, COUNT 
R1,TEMPF 
TEMPF 
TEMP 
-24,TEMP 
TEMP, COUNT 
COUNT,R1 

Normalize dividend 
USH as float 
POP as int 
Get dividend exponent 
Normalize divisor 
PUSH as float 
POP as int 
Get divisor exponent 
Get difference in exponents 
Align divisor with dividend 
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* DO COUNT+1 SUBTRACT & SHIFTS. 
* 

RPTS COUNT 
SUBC R1,RO 

* * MASK OFF THE LOWER COUNT+1 BITS OF RO 
* 

* 

SUBRI 
LSH 
NEGI 
LSH 

31, COUNT 
COUNT,RO 
COUNT 
COUNT,RO 

Shift count is (32 - (COUNT+1» 
Shift left 

Shift right to get result 

* CHECK SIGN AND NEGATE RESULT IF NECESSARY. 
* 

NEGI 
ASH 
LDINZ 
CMPI 

RO,R1 
-31, SIGN 
R1,RO 
O,RO 

Negate result 
Check sign 
If set, use negative result 
Set status from result RETS 

* RETURN ZERO. 
* ZERO: 

LDI O,RO 
RETS 
.end 

If the dividend is less than the divisor and you want fractional division, you 
can perform a division after you determine the desired accuracy of the quo­
tient in bits. If the desired accuracy is k bits, start by shifting the dividend 
left by k pOSitions. Then apply the algorithm described above, where i should 
now be replaced by i + k. It is assumed that i + k is less than 32. 

12.3.5.2 Computation of Floating-Point Inverse and Division 

12-36 

This section presents a method of implementing a single-cycle RCPF in­
struction (reciprocal of a floating-point number) with an algorithm to extend 
the precision of"the mantissa of the reCiprocal of a floating-point number 
generated by RCPF instruction. The floating-point division can be obtained 
by multiplying the divide.nd and the reciprocal of the divisor. 

The input to RCPF is assumed to be v - v(man) x 2v(exp). The output is 
x = x(man) x 2 x(exp). The value v(man) (or x(man» is composed of three 
fields: the sign bit v(sign), an implied nonsign bit, and the fraction field 
v(frac). 

The algorithm for RCPF uses these four rules: 

1) If v > 0, then x(exp) = -v(exp) -1 and x(man) = 2Iv(man). 
For the special case where the ten MSBs of v(man) = 
01.00000000b, then x(man) = 2 - 2 -8 = 01.11111111 b. In both 
cases, the 23 LSBs of x(frac) = O. 
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2) If v < 0, then x(exp) = -v(exp) - 1 and x(man) = 21v(man). 
For the special case of the ten MSBs of v(man) = 1 O.OOOOOOOOb, then 
x(man) =-1-2-8 = 10.11111111 b. In both cases, the 23 LSBsof x(frac) 
=0. 

3) If v = 0 ( v(exp) = -128 ), then x(exp) = 127 and 
x(man) = 01.1111111111111111111111111111111b. 
In other words, if v = 0, then x becomes the largest positive number 
representable in the extended-precision floating-point format. The 
overflow flag (V) is set to 1. 

4) If v(exp) = 127, then x(exp) = -128 and x(man) = O. 
The zero flag (Z) is set to 1. 

The RCPF instruction gives an estimate of the reciprocal of a number. The 
Newton-Raphson algorithm may be used to further extend the precision of 
the mantissa. The algorithm is 

x[n+ 1] = x[n](2.0-vx[n]) 

v is the number for which the reciprocal is desired. x[O] is the seed for the 
algorithm and is given by RCPF. At every iteration of the algorithm, the num­
ber of bits of accuracy in the mantissa doubles. Using RCPF, accuracy starts 
at eight bits. With one iteration, accuracy increases t016 bits, and with the 
second iteration, accuracy increases to 32 bits in the mantissa. 
Example 12-21 shows the program to implementthis algorithm on the 'C40. 

Example 12-21. Inverse of a Floating-Point Number With 32-Bit Mantissa Accuracy 

* * TITLE INVERSE OF A FLOATING-POINT NUMBER 
WITH 32-BIT MANTISSA ACCURACY 

* * SUBROUTINE INVF 
* * THE FLOATING-POINT NUMBER v IS STORED IN RO. AFTER THE 
* COMPUTATION IS COMPLETED, l/v IS STORED IN Rl. 
* 
* 
* 
* 
* 
* 
* 

TYPICAL CALLING SEQUENCE: 
LAJU INVF 
LDF v, RO 
NOP <---- can be other non-pipe line-break 
NOP <---- instructions 

* ARGUMENT ASSIGNMENTS: 
* 
* 
* 
* 
* 
* 

ARGUMENT I FUNCTION 
---------+--------------------------------------------

RO I v = NUMBER TO FIND THE RECIPROCAL OF 
I (UPON THE CALL) 

Rl I l/v (UPON THE RETURN) 
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* 
* 
* 
* 
* 
* 

REGISTER USED AS INPUT: 
REGISTERS MODIFIED: 
REGISTER CONTAINING RESULT: 
REGISTER USED FOR SUBROUTINE CALL: 

RO 
R1, R2 
R1 
Rll 

* CYCLES: 8 WORDS: 8 
* 
* 

* 
INVF: 
* 

* 

* 

* 
* 
* 

. global 

RCPF 

MPYF3 
SUBRF 
MPYF 

BUD 

MPYF3 
SUBRF 
MPYF 

.end 

INVF 

RO,R1 

R1,RO,R2 
2.0,R2 
R2,R1 

Rll 

R1,RO,R2 
2.0,R2 
R2,R1 

Get x[O] = the estimate of l/v, RO = v 

End of first iteration 
; (16 bits accuracy) 

Delayed return to caller 

; End of second iteration 
; (32 bits accuracy) 

R1 = l/v, Return to caller 

12.3.6 Square Root 
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In many applications, normalization of data values is necessary. Often, the 
normalizing factor is the square root of another quantity. For example, given 
a vector, the unit vector in the same direction as the original vector can be 
found by normalizing the original vector by the length of the vector. This 
involves a division by a square root. The 'C40 provides a single-cycle 
instruction, RSQRF, to generate an estimate of the reciprocal of the square 
root of a positive floating-point number. This estimate has the correct 
exponent, and the mantissa is accurate to the eighth binary place (the error 
of the mantissa is < 2-8). Like the algorithm for RCPF, the algorithm for 
RSQRF uses these three rules: 

1) If v(exp) is even, then x(exp) = -(v(exp)/2) -1 and 
x(man) = 2/sqrt(v(man)). For the special case where the ten MSBs of 
y(man) = 01.00000000b, then x(man) = 2 - 2 -8 = 01.11111111 b. 
In both cases, the 23 LSBs of x(frac) = O. 
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2) If v(exp) is odd, then x(exp) = -«v(exp) - 1 )/2) - 1 and 
x(man) = sqrt(2Iv(man)). The 23 LSBs of x(frac) = O. 

3) If v = 0 ( v(exp) = -128 ), then x(exp) = 127 and 
x(man) = 01.1111111111111111111111111111111 b. 
In other words, if v = 0, then x becomes the largest positive number rep­
resentable in the extended-precision floating-point format. The over­
flow flag (V) is set to 1. 

Once the RSQRF instruction gives the estimate of the reciprocal of the 
square root, you can use the Newton-Raphson algorithm to further extend 
the precision of the mantissa. The algorithm is 

x[n+ 1] = x[n](1.5-(v/2)x[n]x[n]) 

v is the number for which the reciprocal is desired. x[O] is the seed for the 
algorithm and is given by RSQRF. At every iteration of the algorithm, the 
number of bits of accuracy in the mantissa doubles. Using RSQRF, accura­
cy starts at eight bits. With one iteration, accuracy increases t016 bits, and 
with the second iteration, accuracy increases to 32 bits in the mantissa. 
Example 12-22 shows the program to implement this algorithm on the 'C40. 

Example 12-22. Reciprocal of the Square Root of a Positive Floating-Point 

* * TITLE RECIPROCAL OF THE SQUARE ROOT OF A POSITIVE 
* FLOATING-POINT 
* * SUBROUTINE RCPSQRF 

* * THE FLOATING-POINT NUMBER v IS STORED IN RO. AFTER THE 
* COMPUTATION IS COMPLETED, l/SQRT(v) IS STORED IN Rl. 
* * TYPICAL CALLING SEQUENCE: 
* LDFv, RO 
* LAJU RCPSQRF 
* 
* 
* 
* 
* 
* 

* 
* 
* 
* 
* 
* 
* 

ARGUMENT ASSIGNMENTS: 

ARGUMENT I FUNCTION 
---------+--------------------------------------

RO I v = NUMBER TO FIND THE RECIPROCAL OF 
I (UPON THE CALL) 

Rl I l/sqrt(v) (UPON THE RETURN) 

REGISTER USED AS INPUT: RO 
REGISTERS MODIFIED: Rl, R2 
REGISTER CONTAINING RESULT: Rl 
REGISTER USED FOR SUBROUTINE CALL: Rll 
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* CYCLES: 11 WORDS: 11 
* 

• global RCPSQRF 
* 
RCPSQRF: RSQRF RO,Rl Get x [0] - the estimate of 

l/sqrt (v), RO = v 
MPYF 0.5,RO RO = v/2 

* 
MPYF3 Rl,R1,R2 First iteration 
MPYF RO,R2 
SUBRF 1. 5, R2 
MPYF R2,R1 End of first iteration 

(16 bits accuracy) 
* 

MPYF3 R1,R1,R2 ; Second iteration 
* 

BRD Rll Delayed return to caller 
* 

MPYF RO,R2 
SUBRF 1.5,R2 
MPYF R2,R1 ; End of second iteration 

; (32 bits accuracy) 
* * R1 = 1/SQRT(v), Return to caller 
* 

12-40 

.end 

Of course, the square root is found by a simple multiplication: sqrt(v) = vx[n] 
where x[n] is the estimate of 1/sqrt(v) as determined by the Newton-Raph­
son algorithm or some other algorithms. 
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12.3.7 Extended-Precision Arithmetic 

The TMS320C40 offers 32 bits of precision for integer arithmetic, and 24 bits 
of precision in the mantissa for floating-point arithmetic. For higher precision 
in floating-point operations, the twelve extended-:precision registers RO to 
R11 contain eight more bits of accuracy. Since no comparable extension is 
available for fixed-point arithmetic, this section discusses how fixed-point 
double precision can be achieved by using the capabilities of the processor . 
. The technique consists of performing the arithmetic by parts and is similar 
to the way in which longhand arithmetic is done. 

In the instruction set, operations ADDC (add with carry) and SUBB (subtract 
with borrow) use the status carry bit for extended-precision arithmetic. The 
carry bit is affected by the arithmetic operations of the ALU and by the rotate 
and shift instructions. It can also be manipulated directly by setting the sta­
tus register to certain values. For proper operation, the overflow mode bit 
should be reset (OVM = 0) so that the accumulator results will not be loaded 
with the saturation values. Example 12-23 and Example 12-24 show 64-bit 
addition and 64-bit subtraction. The first operand is stored in the registers 
RO (low word) and R1 (high word). The second operand is stored in R2 and 
R3, respectively. The result is stored in RO and R1. 

Example 12-23. 64-Bit Addition 

* * TITLE 64-BIT ADDITION 
* * TWO 64-BIT NUMBERS ARE ADDED TO EACH OTHER PRODUCING 
* * A 64-BIT RESULT. THE NUMBERS X (Rl,RO) AND Y (R3,R2) 
* * ADDED, RESULTING IN W (Rl,RO). 
* * Rl RO 
* + R3 R2 
* 
* 
* 

Rl RO 

ADD I R2,RO 
ADDC R3,Rl 
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Example 12-24. 64-8it Subtraction 

* * TITLE 64-BIT SUBTRACTION 
* 
* 
* 
* 
* 

TWO 64-BIT NUMBERS ARE SUBTRACTED FROM EACH OTHER 
PRODUCING A 64-BIT RESULT. THE NUMBERS X (Rl,RO) AND 
Y (R3,R2) ARE SUBTRACTED, RESULTING IN W (Rl,RO). 

* Rl RO 
* - R3 R2 
* 
* 
* 

Rl RO 

SUBI R2,RO 
SUBB R3,Rl 

When two 32-bit numbers are multiplied, a 64-bit product results. To do this, 
'C40 provides a 32 x 32-bit multiplier and two special instructions, MPYSHI 
(multiply signed integer and produce 32 MSBs) and MPYUHI (multiply un­
signed integer and produce 32 MSBs). Example 12-25 shows the imple­
mentation of a 32-bit by 32-bit multiplication. 

Example 12-25. 32-8it by 32-8it Multiplication 

* * TITLE 32 x 32-BIT MULTIPLICATION 
* * TWO 32-BIT NUMBERS ARE MULTIPLIED, PRODUCING A 64-BIT RESULT. 
* THE TWO NUMBERS X (RO) AND Y (Rl) ARE MULTIPLIED, RESULTING 
* IN W (R3,R2). 
* 
* 
* 
* 
* 
* 

RO 
x Rl 

R3 R2 

MPYI3 RO,Rl,R2 
MPYSHI3 RO,Rl,R3 

12.3.8 Floating-Point Format Conversion: IEEE to/from TMS320C40 

12-42 

In fixed-point arithmetic, the binary point that separates the integer from the 
fractional part of the number is fixed at a certain location. For example, if a 
32-bit number has the binary point after the most significant bit (which is also 
the sign bit), only fractional numbers (numbers with absolute values less 
than 1), can be represented. In other words, there is a number with 31 frac­
tional bits called a Q31. All operations assume that the binary point is fixed 
at this location. The fixed-point system, although simple to implement in 
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hardware, imposes limitations in the dynamic range of the represented 
number. This causes scaling problems in many applications. You can avoid 
this difficulty by using floating-point numbers. 

A floating-point number consists of a mantissa m multiplied by base braised 
to an exponent 9: 

m * be 

In current hardware implementations, the mantissa is typically a normalized 
number with an absolute value between 1 and 2, and the base is b = 2. Al­
though the mantissa is represented as a fixed-point number, the actual val­
ue of the overall number floats the binary point because of the multiplication 
by b8. The exponent 9 is an integer whose value determines the position of 
the binary point in the number. IEEE has established a standard format for 
the representation of floating-point numbers. 

To achieve higher efficiency in the hardware implementation, the 'C40 uses 
a floating-point format that differs from the IEEE standard. However, 'C40 
has two single-cycle instructions, TOIEEE and FRIEEE, for the format con­
version. These two instructions can also be used with the STF instruction, 
which allows the data format to be converted within memory to memory 
transfer. This subsection describes briefly the two formats and presents an 
example program to convert between them. 

TMS320C40 floating-point format: 
8 bits 1 23 bits 

9 f 

In a 32-bit word representing a floating-point number, the first 8 bits corre­
spond to the exponent expressed in twos-complement format One bit is for 
sign, and 23 bits are for the mantissa. The mantissa is expressed in twos­
complement form with the binary pOint after the most significant nonsign bit. 
Since this biUs the complement of the sign bit s, it is suppressed. In other 
words, the mantissa actually has 24 bits. One special case occurs when 
e = -128. In this case, the number is interpreted as zero, independently of 
the values of sand f (which are by default set to zero). To summarize, the 
values of the represented numbers in the 'C40 floating-point format are as 
follows: 

28 * (01.f) if s = 0 
28 * (10.f) if s = 1 
o if 9=-128 
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IEEE floating-point format: 
1 8 bits 23 bits 

e f 

The IEEE floating-pointformat uses sign-magnitude notation forthe mantis­
sa, and offset by 127 for the exponent. In a 32-bit word representing a floa­
ting-point number, the first bit is the sign bit. The next 8 bits correspond to 
the exponent, expressed in an offset-by-127 format (the actual exponent is 
e-127). The following 23 bits represent the absolute value of the mantissa 
with the most significant 1 implied. The binary point is after this most signifi­
cant 1. In other words, the mantissa actually has 24 bits. There are several 
special cases, summarized below. 

These are values of the represented numbers in the I EEE floating-point for­
mat: 

(-1)S * 2e-127 * (01.1) 

Special cases: 

(-1)s*0.0 
(-1)s* 2-126 * (OJ) 
(-1)S * infinity 
NaN (not a number) 

if 0 < e< 255 

if e = 0 and f = 0 (zero) 
if e = 0 and f <> 0 (denormalized) 
if e = 255 and f = 0 (infinity) 
if e = 255 and f <> 0 

Based on these definitions of the formats, 'C40 has developed the hardware 
to do the conversion. It assumes that the source data for the IEEE format 
is in memory only and that for the 'C40 floating-point format, the source data 
is in either memory or an extended-precision register. The destination for 
both conversions must be in an extended-precision register. In the case of 
block memory transfer, the no penalty data format conversion can be 
achieved by parallel instruction with STF. Example 12-26 and 
Example 12-27 show the data format conversion within the data transfor­
mation between communication port and internal RAM. 
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Example 12-26. IEEE to TMS32OC40 Conversion Within Block Memory Transfer 

* TITLE IEEE TO TMS320C40 CONVERSION WITHIN BLOCK MEMORY 
* TRANSFER 
* 
* PROGRAM ASSUMES THAT THE INPUT FIFO OF COMMUNICATION PORT 0 
* ARE FULL OF IEEE FORMAT DATA. EIGHT DATA ARE TRANSFERRED FROM 
* COMMUNICATION PORT 0 TO INTERNAL RAM BLOCK 0 AND THE DATA 
* FORMAT ARE CONVERTED FROM IEEE FORMAT TO TMS320C40 FLOATING-
* POINT FORMAT. 
* 

LDI @CPO_IN,ARO Load comm. port 0 input Fifo 
address 

LDI @RAMO,ARl Load internal RAM block o address 
FRIEEE *ARO,RO Convert first data 

RPTS 6 
FRIEEE *ARO,RO Convert next data 
II STF RO,*AR1++(1) Store previous data 

STF RO,*AR1++(1) Store last data 

Example 12-2Z TMS320C40 to IEEE Conversion Within Block Memory Transfer 

* TITLE TMS320C40 TO IEEE CONVERSION WITHIN BLOCK MEMORY 
* TRANSFER 
* 
* PROGRAM ASSUMES THAT THE OUTPUT FIFO OF COMMUNICATION PORT 0 
* IS EMPTY. EIGHT DATA ARE TRANSFERRED FROM INTERNAL RAM BLOCK 0 
* TO COMMUNICATION PORT 0 AND THE DATA FORMAT ARE CONVERTED FROM 
* TMS320C40 FLOATING-POINT FORMAT TO IEEE FORMAT. 
* 

LDI @CPO OUT,ARO ; Load comm. port 0 output Fifo address 
LDI @RAMO,ARl Load internal RAM block 0 address 
TOIEEE *AR1++(1),RO i Convert first data 

RPTS 6 
TDIEEE *AR1++(1),RO Convert next data 

II STF RO,*ARO ; Store previous data 

STFRO, *ARO ; Store last data 
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12.4 Application-Oriented Operations 

Certain features of the 'C40 architecture and instruction set facilitate the so­
lution of numerically intensive problems. This section presents examples 
of applications that use these features, such as companding, filtering, matrix 
arithmetic, and fast Fourier transforms (FFT). 

12.4.1 Companding 

12-46 

In the area of telecommunications, one of the primary concerns is to 
conserve the channel bandwidth and, at the same time, to preserve high 
speech quality. This is achieved by quantizing the speech samples 
logarithmically. It has been demonstrated that an 8-bit logarithmic quantizer 
produces speech quality equivalent to a 13-bit uniform quantizer. The 
logarithmic quantization is achieved by companding 
(COMpress/exPANDing). Two international standards have been 
established for companding: the /l-Iaw (used in the United States and 
Japan), and the A-law (used in Europe). Detailed descriptions of J.l-Iaw and 
A-law companding are presented in an application report on companding 
routines included in the book Digital Signal Processing Applications with the 
TMS320 Family (literature number SPRA012A). 

During transmission, logarithmically compressed data in sign-magnitude 
form are transmitted along the communications channel. If any processing 
is necessary, these data should be expanded to a 14-bit (for J.l-Iaw) or 13-bit 
(for A-law) linear format. This operation occurs when data is received at the 
digital signal Process9r. After processing, and in order to continue 
transmission, the result is compressed back to 8-bit format and transmitted 
through the channel. 

Example 12-28 and Example 12-29 show J.l-Iaw compression and 
expansion (Le., linear to J.l-Iawand J.l-Iaw to linear converSion), while 
Example 12-30 and Example 12-31 show A-law compression and 
expansion. For expansion, using a look-up table is an alternative approach. 
It trades memory space for speed of execution. Since the compressed data 
is 8 bits long, a table with 256 entries can be constructed to contain the 
expanded data. If the compressed data is stored in the register ARO, the 
following two instructions will put the expanded data in register RO: 

ADDI @TABL,ARO ; @TABL = BASE ADDRESS OF TABLE 
LDI *ARO,RO ; PUT EXPANDED NUMBER IN RO 

The same look-up table approach could be used for compression, but the 
required table length would then be 16,384 words for J.l-Iaw or 8,192 words 
for A-law. If this memory size is not acceptable, the subroutines presented 
in Example 12-28 or Example 12-30 should be used. 
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Example 12-28. J.l-Law Compression 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* 
MUCMPR 

TITLE J.l-LAW COMPRESSION 

SUBROUTINE MUCMPR 

TYPICAL 
LAJU 
LDI 

CALLING SEQUENCE: 

NOP 
NOP 

MUCMPR 
v, RO 
<---­
<----

ARGUMENT ASSIGNMENTS: 

can be other non-pipe line-break 
instructions 

ARGUMENT I FUNCTION 
---------+-------------------------------

RO I v = NUMBER TO BE CONVERTED 

REGISTERS USED AS INPUT: RO 
REGISTERS MODIFIED: RO, R1 
REGISTER CONTAINING RESULT: RO 

CYCLES: 15 

.global MUCMPR 

LSH3 -6,RO,R1 
ABSI RO,RO 
CMPI 1FDEH,RO 
LDIGT 1FDEH,RO 
ADDI 33,RO 

FLOAT RO 
MPYF O.03125,RO 
LSH 1,RO 
PUSHF RO 
POP RO 
LSH -20,RO 

BUD Rll 

AND 080H,R1 
ADDI R1,RO 

WORDS: 15 

i Save sign of number 

i If RO>Ox1FDE, 
saturate the result 
Add bias 

Normalize: (seg+5)OWXYZx ... x 
Adjust segment number by 2**(-5) 
(seg) WXYZx ... x 

Treat number as integer 
Right-justify 

i Delayed return 

Set sign bit 
i RO = compressed number 

NOT RO Reverse all bits for transmission 
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Example 12-29. Jl-Law Expansion 

* 
*TITLE 'Jl-LAW EXPANSION' 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* 
MUXPND 

SUBROUTINE MUXPND 

TYPICAL 
LAJU 
LDI 

CALLING SEQUENCE: 
MUXPND 
v, RO 

NOP 
NOP 

<---- can be other non-pipeline-break 
<---- instructions 

ARGUMENT ASSIGNMENTS: 

ARGUMENT I FUNCTION 
---------+-------------------------------

RO I v = NUMBER TO BE CONVERTED 

REGISTERS USED AS INPUT: RO 
REGISTERS MODIFIED: RO, R1, R2 
REGISTER CONTAINING RESULT: RO 

CYCLES: 14 (WORST CASE) WORDS: 14 

. global MUXPND 

NOT RO,RO Complement bits 
AND3 OFH,RO,Rl Isolate quantization 
LSH 1,R1 
ADDI 33,Rl Add bias to introduce 

LSH3 -4,RO Isolate segment code 
TSTB OSH,RO Test sign 

BZD Rll if positive, delayed 
AND 7,RO 
LSH3 RO,R1,RO Shift and put result 
SUBI 33,RO Subtract bias 
BUD Rll Delayed return 
NEGI RO Negate if a negative 
NOP 
NOP 

bin 

lxxxx1 

return 

in RO 

number 
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Example 12-30. A-Law Compression 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* 
ACMPR 

END 

* 

TITLE A-LAW COMPRESSION 

SUBROUTINE ACMPR 

TYPICAL CALLING SEQUENCE: 
LAJACMPR 
LDIv, RO 
NOP<---- can be other non-pipe line-break 
NOP<---- instructions 

ARGUMENT ASSIGNMENTS: 
ARGUMENT I FUNCTION 
---------+---------------------------

RO I v = NUMBER TO BE CONVERTED 

REGISTERS USED AS INPUT: RO 
REGISTERS MODIFIED: RO, R1 
REGISTER CONTAINING RESULT: RO 

CYCLES:17 WORDS: 

.global ACMPR 

LSH3 -5,RO,R1 
ABSI RO,RO 
CMPI 1FH,RO 
BLED END 
CMPI OFFFH,RO 
LDIGT OFFFH,RO 
LSH -l,RO 

FLOAT RO 
MPYF O.125,RO 
LSH 1,RO 
PUSH FRO 
POP RO 
LSH -20,RO 

BUD Rll 
AND 080H,R1 
ADDI R1,RO 
XOR OD5H,RO 

17 

Save sign of number 

If RO<Ox20, 
Do linear coding 
If RO>OxFFF, 
saturate the result 
Eliminate rightmost bit 

Normalize: (seg+3)OWXYZx ... x 
Adjust segment number by 2**(-3) 
(seg)WXYZx ... x 

Treat number as integer 
Right-justify 

Delayed return 
Set sign bit 
RO = compressed number 
Invert even bits for 
transmission 
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Example 12-31. A-Law Expansion 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
'Ii: 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
AXPND 

SKIPl 
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TITLE A-LAW EXPANSION 

SUBROUTINE AXPND 

TYPICAL 
LAJU 
LDI 

CALLING 
AXPND 
v, RO 

SEQUENCE: 

NOP 
NOP 

<---­
<----

can be other non-pipeline-break 
instructions 

ARGUMENT ASSIGNMENTS: 

ARGUMENT I FUNCTION 
---------+-------------------------------

RO I v = NUMBER TO BE CONVERTED 

REGISTERS USED AS INPUT: RO 
REGISTERS MODIFIED: RO, R1, R2 
REGISTER CONTAINING RESULT: RO 

CYCLES: 19 (WORST CASE) 

.global AXPND 

XOR 

ASH3 
AND 
BZD 
AND 3 
LSH 
ADDI 
ADDI 
SUBI 
LSH3 
TSTB 
BZAT 

NEGI 
NOP 
NOP 
BU 

OD5H,RO,R2 

-4,R2,RO 
7, RO 
SKIP1 
OFH,R2,R1 
1,R1 
1, R1 
32,R1 
1,RO 
RO,Rl,RO 
80H,R2 
Rll 

RO 

Rll 

WORDS: 16 

Invert even bits 

Store for bit sign 
Isolate segment code 

Isolate quantization bin 

Create Oxxxx1 
Or 1xxxx1 

Shift and put result in RO 
Test sign bit 
If positive, delayed return and 
annul next three instructions 
Negate if a negative number 

Return 
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12.4.2 FIR, IIR, and Adaptive Filters 

Digital filters are a common requirement for digital signal processing sys­
tems. There are two types of digital filters: finite impulse response (FIR) and 
infinite impulse response (IIR). Each of these types-ean have either fixed or 
adaptable coefficients. In this section, the fixed-coefficient filters are pres­
ented first, and then the adaptive filters are discussed. 

12.4.2.1 FIR Filters 

Figure 12-1. 

Ifthe FIR filter has an impulse response h[O], h[1],oo., h[N-1], and x[n] repre­
sents the input of the filter at time n, the output y[n] at time n is given by this 
equation: 

YEn] = h[O] x[n] + h[1] x[n-1] + ... + h[N-1] x[n-(N-1J] 

Two features of the 'C40 that facilitate the implementation of the FIR filters 
are paraJlel multiply/add operations and circular addressing. The first one 
permits the performance of a multiplication and an addition in a single ma­
chine cycle, while the second one makes a finite buffer of ~ength N sufficient 
for the data x. 

Figure 12-1 shows the arrangement of the memory locations in order 
to implement circular addressing, while Example 12-32 presents the 
'C40 assembly code for an FIR filter. 

Data Memory Organization for an FIR Filter 

Impulse Initial filial 

low 
response Input samples Input samples 

address I h(N -1) oldest input x[n - (N -1)] x(n) 
h(N -2) x[n - (N -2)] x[n - (N -1)] 

• • • 
• • • circular 

• • • queue 

high I h(1) I newest input 

x(n -1) x(n-2) 
h(O) x(n) x(n -1) 

address 
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In order to set up circular addressing, initialize the block-size registerBK to 
block length N. Also, the locations for signal x should start from a memory 
location whose address is a multiple of the smallest power of 2 that is greater 
than N. For instance, if N = 24, the first address for x should be a multiple 
of 32 (the lower 5 bits of the beginning address should be zero). To under­
stand this requirement, look at Section 5.3 on page 5-25, Circular Address­
ing. 

In Example 12-32. the pointer to the input sequence x is incremented and 
assumed to be moving from an older input to a newer input. At the end of 
the subroutine, AR1 will point to the position for the next input sample. 

Example 12-32. FIR Riter 
* * TITLE FIR FILTER 
* 
* * SUBROUTINE FIR 
* * EQUATION: yIn) = h(O) * x(n) + h(l) * x(n-l) + 
* ... + h(N-l) * x(n-(N-l)) 
* * TYPICAL CALLING SEQUENCE: 
* 
* 
* 
* 
* 
* 
* 
* 

LOAD 
LAJU 
LOAD 
LOAD 
LOAD 

ARO 
FIR 
ARl 
RC 
BK 

* ARGUMENT ASSIGNMENTS: 
* 
* 
* 
* 
* 
* 
* 
* 

ARGUMENT I FUNCTION 
---------+---------------------------------

ARO I ADDRESS OF h(N-l) 
ARl I ADDRESS OF x(N-l) 
RC I LENGTH OF FILTER - 2 (N-2) 
BK I LENGTH OF FILTER (N) 

* REGISTERS USED AS INPUT: ARO, AR1, RC, BK 
* REGISTERS MODIFIED: RO, R2, ARO, ARl, RC 
* REGISTER CONTAINING RESULT: RO 
* 
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WORDS: 9 

FIR . global FIR 
* 

* 

* 

RPTBD 

MPYF3 
LDF 
NOP 

CONY Setup the repeat cycle. 
, Initialize RO: 

*ARO++(1),*AR1++(1)%,RO; h(N-1) *x(n-(N-1» ->RO 
O.O,R2 Initialize R2. 

* FILTER (1 <- i < N) 
* 
CONY 
II 
* 

* 

MPYF3 
ADDF3 

BUD 
ADDF 
NOP 
NOP 

*ARO++(l),*ARl++(l)%,RO; h(N-1-i)*x(n-(N-1-i»->RO 
RO,R2,R2 Multiply and add operation 

Rll 
RO,R2,RO 

Delayed return 
Add last product 

* end 
* 

.end 

12.4.2.2 IIR Filters 

The transfer function of the IIR filters has both poles and zeros. Its output 
depends on both the input and the past output. As a rule, the filters need less 
computation than an FIR with similar frequency response, but the filters 
have the drawback of being sensitive to coefficient quantization. Most often, 
the IIR filters are implemented as a cascade of second-order sections, 
called biquads. Example 12-33 and Example 12-34 show the implementa­
tion for one biquad and for any number of biquads, respectively. 

YIn] = a1 y[n-1] + a2 y[n-2] + bO x[n] + b1 x[n-1] + b2 x[n-2] 
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However, the following two equations are more convenient and have small­
er storage requirements: 

d[n] = a2 d[n-2] + a1 d[n-1] + x[n] 
y[n] = b2 d[n-2] + b1 d[n-1] + bO d[n] 

Figure 12-2 shows the memory organization for this two-equation ap­
proach, an implementation of a single biquad on the 'C40. 

Figure 12-2. Data Memory Organization for a Single Biquad 

filter newest delay newest delay 

low 
coefficients node values node values 

address a2 newest delay d(n) d(n -1) 

b2 d(n -1) d(n-2) 

a1 oldest delay d(n-2) d(n) 

b1 

high bO 
address 

As in the case of FIR filters, the address for the start of the values d must 
be a multiple of 4; i.e., the last two bits of the beginning address must be 
zero. The block-size register BK must be initialized to 3. 

Example 12-33. IIR Filter (One Biquad) 

* TITLE IIR filter 
* 
* SUBROUTINE IIRl 
* 
* 
* 
* 
* 
* 
* 

* 
* 

IIRl == IIR FILTER (ONE BIQUAD) 

EQUATIONS:d(n) = a2 * d(n-2) + al * d(n-l) + x(n) 

OR 

y(n) = b2 * d(n-2) + bl * d(n-l) + bO * d(n) 

y(n) = al*y.(n-l) + a2*y(n-2) + bO*x(n) + bl*x(n-l) 
+ b2*x(n-2) 

* TYPICAL CALLING SEQUENCE: 
* 
* 
* 
* 
* 
* 
* 
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load 
LAJU 
load 
load 
load 

R2 
IIRl 
ARO 
ARl 
BK 
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* 
* ARGUMENT ASSIGNMENTS: 
* ARGUMENT I FUNCTION 
* ---------+-------------------------------------------
* R2 I INPUT SAMPLE X (N) 
* ARO I ADDRESS OF FILTER COEFFICIENTS (A2) 
* ARl I ADDRESS OF DELAY MODE VALUES (D(N-2)) 
* BK I BK = 3 

* 
* 
* 
* 
* 

REGISTERS USED AS INPUT: 
REGISTERS MODIFIED: 
REGISTER CONTAINING RESULT: 

R2, ARO, AR1, BK 
RO, Rl, R2, ARO, ARl 

RO 

* CYCLES: SWORDS: S 

* 
* 

* 
IIRl 

* 
II 
* 
II 

* 

* 
II 

* 

* 

. global IIRl 

MPYF3 
MPYF3 

MPYF3 
ADDF3 

MPYF3 
ADDF3 

BUD 

MPYF3 
STF 

ADDF 
ADDF 

*ARO,*AR1,RO 
*++ARO(1),*AR1~-(1)%,Rl 

*++ARO(1),*AR1,RO 
RO,R2,R2 

*++ARO(1),*AR1--(1)%,RO 
RO,R2,R2 

Rll 

*++ARO(1),R2,R2 
R2, *ARl++(l) % 

RO,R2 
Rl,R2,RO 

a2 * d(n-2) -> RO 
b2 * d(n-2) -> Rl 

al * d(n-l) -> RO 
a2*d(n-2)+x(n) -> R2 

bl * d(n-l) -> RO 
; al*d(n-l)+a2*d(n-2) 
; +x(n) -> R2 

; Delayed return 

; bO * d(n) -> R2 
Store d(n) and point to 
d(n-l) 

bl*d(n-l)+bO*d(n) -> R2 
b2*d(n-2)+bl*d(n-l) 
+bO*d(n) -> RO 

* end 

* 
.end 

In the more general case, the IIR filter contains N> 1 biquads. The equations 
for its implementation are given by the following pseudo-C language code: 

} 

y[O,n] = x[n] 
for (i=O; kN; i++){ 

d[i,n] = a2[i] d[i,n-2] + a1[i] d[i,n-1] + y[i-1,n] 
y[i,n] = b2[i] d[i-2] + b1[i] d[i,n-1] + bO[i] d[i,n] 

yEn] = y[N-1,n] 

Figure 12-3 shows the corresponding memory organization, while 
Example 12-34 shows the 'C40 assembly-language cqde. 
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Rgure 12-3. Data Memory Organization for N Biquads 

filter Initial delay 

low coefficients node values 

address 82(0) newest delay d(O, n) 
b2(0) d(O, n-1) 
a1(0) oldest delay d(O, n-2) 

b1(0) empty 

bO(O) • 
• • 
• • 
• d(N -1, n) 

d(N -1, n -1) 
82(N -1) d(N-1, n-2) 
b2(N-1) empty 
a1(N-1) 

b1 (N -1) 

high bO(N -1) 
address 

• 
• 
• 

d(N-1,n-1) 
d(N -1, n -2) 

d(N -1, n) 

empty 

h 
ularqueue leire I 

The block size register BK should be initialized to 3, and the beginning of 
each set of d values (i.e., d[i,n), i = O ... N-1) should be at an address that 
is a multiple of 4 (the last two bits zero), as stated in the case of a single bi- . 
quad. 

Example 12-34. IIR Filters (N) 1 Biquadsj 

* * TITLE IIR FILTERS (N > BIQUADS) 
* 
* 
* 
* 
* 

SUBROUTINE IIR2 

EQUATIONS: y(O,n) = x(n) 

* FOR (i = Oi i < Ni i++) 
* { 
* d(i,n) = a2(i) * d(i,n-2) + al(i) * d(i,n-l) * y(i-l,n) 
* y(i,n) = b2(i) * d(i,n-2) + bl(i) * d(i,n-l) * bO(i) * d(i,n) 
* } 
* yen) = y(N-l,n) 
* * TYPICAL CALLING SEQUENCE: 

* 
* 
* 
* 
* 
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load 
load 
load 
load 

R2 
ARO 
ARl 
IRO 
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* 
* 
* 
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* 
* 
* 
* 
* 

* 
IIR2 

* 

* 
II 

* 

I I 

II 

* 
* 
* 

II 

* 

* 

II 
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LAJU 
load 
load 
load 

IIR2 
IR1 
BK 
RC 

ARGUMENT ASSIGNMENT: 
ARGUMENT I FUNCTION 
----------+----------------------------------------------

R2 I INPUT SAMPLE x(n) 
ARO I ADDRESS OF FILTER COEFFICIENTS (a2(O» 
AR1 I ADDRESS OF DELAY NODE VALUES (d(O,n-2» 
BK I BK = 3 
IRO I IRO = 4 
IR1 I IR1 = 4*N-4 
RC I NUMBER OF BIQUADS (N) -2 

REGISTERS USED AS INPUT; R2, ARO, AR1, IRO, IR1, BK, RC 
REGISTERS MODIFIED; RO, R1, R2, ARO, AR1, RC 
REGISTERS CONTAINING RESULT: RO 

CYCLES: 4 + 6N WORDS: 15 

. global IIR2 

MPYF3 
MPYF3 

RPTBD 

MPYF3 
ADDF 

MPYF3 
ADDF3 

MPYF3 
STF 

*ARO,*AR1,RO 
*AR1++(1),*ARI-(1)%,RI 

LOOP 

*++ARO(1),*AR1,RO 
RO, R2, R2 

*++ARO(1),*AR1-(1)%,RO 
RO,R2,R2 

*++ARO(1),R2,R2 
R2,*ARI-(1)% 

LOOP STARTS HERE 

MPYF3 
ADDF3 

MPYF3 
ADDF3 

MPYF3 

*++ARO(1),*++AR1(IRO),RO 
RO,R2,R2 . 

*++ARO(I),*ARI-(I)%,RI 
RI, R2, R2 

*++ARO(I),*ARI,RO 

a2(O) * d(O,n-2) -> RO 
b2(O) * d(O,n-2) -> RI 

Set loop for 1 <= i < n 

a1(O) * D(O,n-1) -> RO 
First sum term 
of d(O,n). 

b1 (0) * d (0, n-1) -> RO 
Second sum term 
of d(O,n). 
bO(O) * d(O,n) -> R2 
Store d(O,n) Point to 
d(O,n-2) 

a2(i) * d(i,n-2) -> RO 
First sum term 
of y(i-1,n). 
Pipeline hit on previous 
instruction 

b2(i) * D(i,n-2) -> R1 
Second sum term 
of y (i-I, n) . 
aI(i) * d(i,n-I) -> RO 
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II 

* 
II 

* 
LOOP 
II 

* 

ADDF3 

MPYF3 
ADDF3 

MPYF3 
STF 

,-
RO,R2,R2 

*++ARO(1),*AR1-(1)%,RO 
RO,R2,R2 

*++ARO(1),R2,R2 
R2,*AR1-(1)% 

First sum term 
of d(i,n). 

bl(i) * d(i,n-l) -> RO 
Secondsumterm 
of d(i,n). 

; bO(i) * d(i,n) -> R2 
Store d(i,n) 
point to d(i,n-2) 

* FINAL SUMMATION 
* 
* 

II 

* 

SRD 

ADDF 

ADDF3 

LDI 
LDI 

Rll 

RO,R2 

Rl, R2, RO 

*AR1--(IR1),Rl 
*AR1--(1)%,R2 

Delayed return 

; First sum term 
ofy(n-l,n) 

Second sum term of 
y(n-l,n 
Return to first biquad 
Point to d(O,n-l) 

* end 
* 

.end 

12.4.2.3 Adaptive Filters (LMS Algorithm) 
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In some applications in digital signal processing, a filter must be adapted 
over time to keep track of changing conditions. The book Theory and Design 
of Adaptive Filters by Treichler, Johnson, and Larimore (Wiley-Interscience, 
1987) presents the theory of adaptive filters. Although in theory, both FIR 
and IIR structures can be used as adaptive filters, the stability problems and 
the local optimum poin.ts that the II R filters exhibit make them less attractive 
for such an application. Hence, until further research makes IIR filters abet­
ter choice, only the FIR filters are used in adaptive algorithms of practical 
applications. 

In an adaptive FIR filter, the filtering equation takes this form: 

y[nJ = h[n, OJ x[nJ + hEn, 1Jx[n-1J + ... + h[n,N-1Jx[n-(N-1)] 

The filter coefficients are time-dependent. In a least-mean-squares (LMS) 
algorithm, the coefficients are updated by an equation in this form: 

h[n+1,ij = hEn, 1J + b x[n-iJ, i = 0, 1, ... , N-1 
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Applications-Oriented Operations - FIR, IIR, Adaptive Filters 
~'!fn';pcSlf' . fo1"mnr H" ·H.,.~w~rr!lll'·,",~e; f r r r 'iX'f(I" 

b is a constant for the computation. The updating of the filter coefficients 
can be interleaved with the computation of the filter output so that it takes 
3 cycles per filter tap to do both. The updated coefficients are written over 
the old filter coefficients. Example 12-35 shows the implementation of an 
adaptive FIR filter on the 'C40. The memory organization and the position­
ing of the data in memory should follow the same rules as the above FI R filter 
with fixed coefficients. 

Example 12-35. Adaptive FIR Filter (LMS Algorithm) 

* TITLE ADAPTIVE FIR FILTER (LMS ALGORITHM) 
* 
* SUBROUTINE LMS 
* 
* LMS == LMS ADAPTIVE FILTER 
* 
* 
* 
* 
* 
* 

EQUATIONS: 

FOR 

y(n) = h(n,O)*x(n) + h(n,1)*x(n-1) + ... 
+ h(n,N-1)*x(n-(N-1» 

(i = 0; i < N; i++) h(n+1,i) = h(n,i) 
+ tmuerr * x(n-i) 

* TYPICAL CALLING SEQUENCE: 
* 
* 
* 
* 
* 
* 
* 
* 
* 

load 
load 
LAJU 
load 
load 
load 

R4 
ARO 
LMS 
AR1 
RC 
BK 

* ARGUMENT ASSIGNMENTS: 
* ARGUMENT I FUNCTION 
* ---------+---------------------------------
* R4 I SCALE FACTOR (2 * mu * err) 
* ARO I ADDRESS OF h(n,N-1) 
* AR1 I ADDRESS OF x(n-(N-1» 
* RC I LENGTH OF FILTER - 2 (N-2) 
* BK I LENGTH OF FILTER (N) 

* 
* REGISTERS USED AS INPUT: R4, ARO, AR1, RC, BK 
* REGISTERS MODIFIED: RO, R1, R2, ARO, AR1, RC 
* REGISTER CONTAINING RESULT: RO 
* 
* PROGRAM SIZE: 12 words 
* 
* EXECUTION CYCLES: 6 + 3N 
* 
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* 
* 
LMS 
* 
II 
* 
* 

* 

SETUP (i = 0) 

.global LMS 
RPTBD LOOP 

MPYF3 *ARO,*AR1,RO 
SUBF3 R2, R2, R2 

MPYF3 
ADDF3 

*AR1++(1)%,R4,R1 
*ARO++(1),R1,R1 

Setup the delayed repeat block. 
; Initialize RO: 

h(n,N-l) * x(n-(N-l» -> RO 
; Initialize R2 

; Initialize R1: 
x(n-(N-1» * tmuerr -> R1 
h(n,N-1) + x(n-(N-1» * 

;. tmuerr '-> R1 

* FILTER AND UPDATE (1 <- I < N) 
* , Filter: 

MPYF3 *ARO-- (1), *AR1, RO; h (n, N-l-i) * x (n- (N,-l-i» -> RO 
II ADDF.3 RO,R2,R2 Multiply and add operation. 
* 
* 
II 
* 
LOOP 

* 

* 

* 
* 
* 
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MPYF3 
STF 

ADDF3 

BUD 

ADDF3 
STF 

NOP 

end 

.end 

*AR1++(1)%,R4,Rl 
Rl, *ARO++ (1) 

*ARO++(l),Rl,Rl 

Rll 

RO,R2,RO 
R1, *-ARO (1) 

UPDATE: 
; x(n,N-(N-l-i» * tmuerr -> Rl 
; Rl -> h(n+l,N-l-(i-l» 

h(n,N-l-i) + x(n-(N-l-i» 
*tmuerr -> Rl 

; Delayed return 

; Add last product. 
; h (n, 0) + x.(n* tmuerr -> 

h(n+l ,0) 
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12.4.3 Matrix-Vector Multiplication 

In matrix-vector multiplication, a K x N matrix of elements m(i,j), having K 
rows and N columns, is multiplied by an N x 1 vector to produce a K x 1 re­
sult. The multiplier vector has elements v(j), and the product vector has ele­
ments p(i}. Each one of the product-vector elements is computed by the fol­
lowing expression: 

p(i) = m(i,O) v(O) + m(i,1) v(1) + ... + m(i,N-1) v(N-1) i = 0,1, ... ,K-1 

This is essentially a dot product, and the matrix-vector multiplication con­
tains, as a special case, the dot product presented in Example 12-2 on page 
12-10 and Example 12-3 on page 12-12. In pseudo-C format, the computa­
tion of the matrix multiplication is expressed by 

for (i = 0; i < K; i++) ( 
p(i) = 0 
for a = 0; j < N; j++) 

p(i) = p(i) + m(i,j) .. yO) 
} 

Figure 12-4 shows the data memory organization for matrix-vector multipli­
cation, and Example 12-36 shows the 'C40 assembly code to implement 
it. Note that in Example 12-36, K (number of rows) should be greater than 
0, and N (number of columns) should be greater than 1. 

Figure 12-4. Data Memory Organization for Matrix- Vector Multiplication 

Input result 

low 
matrix storage vector storage vector storage 

address I m(O, 0) I I vIOl I I p(O) 

m{Oz 1} v(1 ) p(1) 

• • • 
• • • 
• • • 

m(O N-1) v(N -1) 

m(1 0) p(K -1) 

high m(1, 1) 
address • 

• 
• 
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Example 12-36. Matrix Times a Vector Multiplication 

* * TITLE MATRIX TIMES A VECTOR MULTIPLICATION 
* * SUBROUTINE MAT 
* * MAT == MATRIX TIMES A VECTOR OPERATION 
* * TYPICAL CALLING SEQUENCE: 
* 
* 
* 
* 
* 
* 
* 
* 

load 
load 
load 
load 
load 
CALL 

ARO 
ARI 
AR2 
AR3 
Rl 
MAT 

* ARGUMENT ASSIGNMENTS: 
* * ARGUMENT I FUNCTION 
* ---------+--------------------------------
* ARO I ADDRESS OF M(O,O) 
* ARI I ADDRESS OF V (0) 
* AR2 I ADDRESS OF P (0) 
* AR3 I NUMBER OF ROWS - 1 (K-l) 
* Rli NUMBER OF COLUMNS - 2 (N-2) 
* * REGISTERS USED AS INPUT: ARO, ARl, AR2, AR3, Rl 
* REGISTERS MODIFIED: RO, R2, ARO, AR1, AR2, AR3, IRO, RC 
* 
* * PROGRAM SIZE: 11 
* 
* 
* 
* 

* 
* 
* 
MAT 
* 

EXECUTION CYCLES: 5 + 7K + KN 

.global MAT 

SETUP 

ADDI3 Rl,2,IRO 

5 + «N-l} + 8 ) * K 

; IRO = N 

* FOR (i 

RPTBD 

0; i < K; i++) LOOP OVER THE ROWS. 
* 
ROWS 

* 
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LDI 
LDF 
MPYF3 

Dot 

Rl,RC 
O.O,R2 
*ARO++(l),*ARl++(l),RO 

Setup mulitply a row by a 
column. 
Set loop counter 
Initialize R2 
m(i,O) * v(O) -> RO 
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* 
* 
DOT 
II 

* 

* 
* 

* 
* 

FOR (j 1; j < N; j++) DO DOT PRODUCT OVER COLUMNS 

MPYF3 
ADDF3 

DBD 

*ARO++(1),*AR1++(1),RO; m(i,j) * v(j) -> RO 
RO,R2,R2 m(i,j-1) *v(j-1) + 

R2 -> R2. 

AR3,ROWS counts the number of rows 
left . 

ADDF RO,R2 last accumulate. 
STF R2, *AR2++ (1) result -> p (i) 
NOP *--AR1(IRO) , set AR1 to point to v(O). 
!!! DELAYED BRANCH HAPPENS HERE !!! 

* . RETURN SEQUENCE 
* 

RETS return 
* 
* end 
* 

.end 

12.4.4 Fast Fourier Transforms (FFT) 

Fourier transforms are an important tool often used in digital signal process­
ing systems. The purpose of the transform is to convert information from the 
time domain to the frequency domain. The inverse Fourier transform con­
verts information back to the time domain from the frequency domain. Im­
plementation of Fourier transforms that are computationally efficient are 
known as fast Fourier transforms (FFTs). The theory of FFTs can be found 
in books such as DFTIFFT and Convolution Algorithms by C.S. Burrus and 
T.W. Parks (John Wiley, 1985), and in the book Digital Signal Processing 
Applications with the TMS320 Family. 

Certain 'C40 features that increase efficient implementation of numerically 
intensive algorithms are particularly well-suited for FFTs. The high speed 
of the device (40-ns cycle time) makes the implementation of realtime algo­
rithms easier, while the floating-point capability eliminates the problems as­
sociated with dynamic range. The powerful indexing scheme in indirect ad­
dressing facilitates the access of FFT butterfly legs that have different 
spans. The repeat block implemented by the RPTB or RPTBD instruction 
reduces the looping overhead in algorithms heavily dependent on loops 
(such as the FFTs). This construct gives the efficiency of in-line coding but 
has the form of a loop. Since the output of the FFT is in scrambled (bit-re­
versed) order when the input is in regular order, it must be restored to the 
proper order. This rearrangement does not require extra cycles. The device 
has a special form of indirect addressing (bit-reversed addressing mode) 
that can be used when the FFT output is needed. 
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The 'C40 can implement this mode on either the CPU arOMA. This mode 
permits accessing the FFT output in the proper order. If the DMA transfer 
with bit-reversed addressing mode is used, there is no overhead for data in­
put and output. 

There are several types of FFTs: 

o Radix-2 and radix-4 algorithms depending on the size of the FFT 
butterfly 

o Decimation in time or frequency (DIT or DIF) 

o Complex or real FFTs 

o FFTs of different lengths, etc. 

The examples in this section of FFT implementation are based on programs 
contained in the application report, "An Implementation of FFT, OCT, and 
Other Transforms on the TMS320C30", by Panos Papamichalis in the Digi­
tal Signal Processing Applications with the TMS320 Family, 
volume III. 

Example 12-37 and Example 12-38 show the implementation of acomplex 
radix-2, DIF FFT on the 'C40. Example 12-37 contains the generic code of 
the FFT that can be used with any length number. However, for the complete 
implementation of an FFT, a table of twiddle factors (sines/cosines) is need­
ed, and this table depends on the size of the transform. To retain the generic 
form of Example 12-37, the table with the twiddle factors (containing 1-1/4 
complete cycles of a sine) is presented separately in Example 12-38 forthe 
case of a 64-point FFT. A full cycle of a sine should have a number of points 
equal to the FFT size. In Example 12-38, the FFT length Nand M, which 
is equal to the logarithm of N to base equal to the radix, are defined. M is 
the number of stages of the FFT. For a 64-point FFT, M = 6 when using a 
radix-2 algorithm, or M = 3 when using a radix-4 algorithm. If the table with 
the twiddle factors and the FFT code are kept in separate files, they should 
be connected at link time. 
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Example 12-37. Complex, Radix-2, OIF FFT 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

INP 

* 
FFTSIZ 
LOGFFT 
SINTAB 
INPUT 
OUTPUT 

FFT: 

TITLE COMPLEX, RADIX-2, DIF FFT 

GENERIC PROGRAM FOR A LOOPED-CODE RADIX-2 FFT COMPUTATION 
IN 320C40 

THE PROGRAM IS DERIVED FROM THE BURRUS AND PARKS 
BOOK, "DFT/FFT AND CONVOLUTION ALGORITHMS", PAGE 111. 
THE (COMPLEX) DATA RESIDE IN INTERNAL MEMORY. 
THE COMPUTATION IS DONE IN-PLACE, BUT THE 
RESULT IS MOVED TO ANOTHER MEMORY SECTION TO 
DEMONSTRATE THE BIT-REVERSED ADDRESSING. 

THE TWIDDLE FACTORS ARE SUPPLIED IN A TABLE PUT IN A 
.DATA SECTION. THIS DATA IS INCLUDED IN A SEPARATE 
FILE TO PRESERVE THE GENERIC NATURE OF THE PROGRAM. 
FOR THE SAME PURPOSE, THE SIZE OF THE FFT NAND 
LOG2(N) ARE DEFINED IN A .GLOBL DIRECTIVE AND 
SPECIFIED DURING LINKING. 

.globl 

.globl 

.globl 

.globl 

.usect 

.BSS 

FFT 
N 
M 
SINE 

"IN",1024 
OUTP,1024 

.text 
INITIALIZE 
.word N 
.word M 
.word SINE 
.word INP 
.word OUTP 

LDP 
LDI 
LSH3 
LDI 
LSH3 
LDI 

LDI 
LDI 

FFTSIZ 
@FFTSIZ,R7 
-2,R7,IRl 
@LOGFFT,R9 
l,R7,IRO 
l,R8 

1,ARS 
@INPUT,R10 

Entry point for execution 
FFT size 
LOG2(N) 
Address of sine table 

Memory with input data 
Memory with output data 

Command to load data page pointer 
R7=N2 
IR1=N/4, pointer for SIN/COS table 
R9 holds the remain stage number 
IRO=2*Nl (because of real/imag) 
Initialize repeat counter of first 
loop 
Initialize IE index (ARS=IE) 
R10 points to X(I) 
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* 
LOOP: 

* 

II 
BLKl 
II 
* 

* 

INLOP: 

* 

* 
II 

II 

II 

II 
* 
* 
BLK2 

II 

12-66 

OUTER LOOP 
RPTBD BLKl 
LDI R10,ARO 
ADDI R7,ARO,AR2 
SUBI3 1,R8,RC 

FIRST LOOP 
ADDF *ARO,*AR2,RO 

*AR2++,*ARO++,Rl 
*AR2,*ARO,R2 
*AR2,*ARO,R3 
R2,*ARO-­
R3,*AR2--

SUBF 
ADDF 
SUBF 
STF 
STF 
STF 
STF 
IF THIS 
SUBI 
BZD 

RO, *ARO++ (IRO) 
Rl,*AR2++(IRO) 

IS THE LAST STAGE, 
1,R9 
END 

MAIN 
LDI 

INNER LOOP 

LDI 
ADDI 
ADDI 
ADDI 
RPTBD 
ADDI 
SUBI 

LDF 
SECOND 
SUBF 
SUBF 

MPYF 
ADDF 
MPYF 
STF 
SUBF 
MPYF 
ADDF 
MPYF 
STF 

ADDF 
STF 

STF 

2,ARl 
@SINTAB,AR4 
AR5,AR4 
R10,AR1,ARO 
2,ARl 
BLK2 
R7,ARO,AR2 
1,R8,RC 

*AR4,R6 
LOOP 

*AR2,*ARO,R2 
*+AR2,*+ARO,Rl 

R2,R6,RO 
*+AR2,*+ARO,R3 
Rl,*+AR4(IR1),R3 
R3,*+ARO 
RO,R3,R4 
Rl,R6,RO 
*AR2,*ARO,R3 
R2,*+AR4(IR1),R3 
R3, *ARO++ (IRO) 

RO,R3,R5 
R5, *AR2++ (IRO) 

R4,*+AR2 

Setup for first loop 
ARO points to X(I) 
AR2 points to X(L) 
RC shouldbeonelessthan 
desired eft 

RO X (I) + X (L) 
Rl X (I) - X (L) 
R2 Y ( I ) + Y (L) 
R3 Y ( I ) - Y (L) 
Y (I) R2 and ... 
Y(L) = R3 
X (I) = RO and ... 

; X(L) = Rl and ARO,2 
YOU ARE DONE 

ARO,2 + 2*n 

; 

Init loop counter for inner loop 
Initialize IA index (AR4=IA) 
IA=IA+IE; AR4 points to cosine 
(X(I),Y(I)) pointer 
Increase inner loop counter 
Setup for second loop 
(X(L),Y(L)) pointer 

RC should be one less than 
desired eft 

R6=SIN 

R2=X(I)-X(L) 

Rl Y(I) - Y(L) 
RO R2*SIN and ... 
R3 Y (I) + Y(L) 
R3 Rl * COS and ... 
Y (I) = Y (I) + Y(L) 
R4 Rl*COS - R2*SIN 
RO Rl*SIN and ... 
R3 X (I) + X (L) 
R3 R2 * COS and ... 

X(I) = X(I) + X(L) and ARO=ARO + 
R5 = R2*COS + Rl*SIN 
X(L) = R2*COS + Rl*SIN, incr AR2 
and ... 
Y(L) = Rl*COS - R2*SIN 

2*Nl 
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* 
END: 

* 
I I 
BITRV 
II 

I I 

SELF 

CMPI 
BNEAF 
ADDI 

ADDI 
ADDI 

LSH 

BRD 
LSH 
LDI 
LSH 

STORE 
LDI 
SUBI3 
LDI 
RPTBD 
LDI 
LDI 
LDF 
BIT 
LDF 
STF 
LDF 
STF 

LDF 
STF 
STF 
BR 
.end 
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R7,ARI 
INLOP 
ARS,AR4 

RlO,ARl,ARO 
2,ARI 

1,Ra 

LOOP 
1,ARS 
R7,IRO 
-1,R7 

f sr" oS 

Loop back to the inner loop 
IA = IA + IE; A~in~osine 

(X(I),Y(I)) pointer 
Increase inner loop counter 

Increment loop counter for 
next time 
Next FFT stage (delayed) 
IE 2*IE 
Nl N2 
N2 N2/2 

RESULT OUT USING 
@FFTSIZ,IRO 
2,IRO,RC 

BIT-REVERSED ADDRESSING 
; IRO = size of FFT 
; RC = N - 2 

N 

2,IRI 
BITRV 
@INPUT,ARO 
@OUTPUT,ARI 
*+ARO(l),RO 
REVERSE LOOP 
*ARO++(IRO)B,Rl 
RO,*+ARl(l) 
*+ARO(l),RO 
Rl, *ARl++ (IRl) 

*ARO++(IRO)B,Rl 
RO,*+ARl(l) 
Rl,*ARl++(IRl) 
SELF Branch to itself at the end 
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Example 12-38. Table with Twiddle Factors for a 64-Point FFT 

* 
* TITLE TABLE WITH TWIDDLE FACTORS FOR A 64-POINT FFT 
* 
* FILE TO BE LINKED WITH THE SOURCE CODE FOR A 64-POINT, 
* RADIX-2 FFT. 
* 

.globl SINE 

.globl N 

.globl M 

N .set 64 
M .set 6 

.data 
SINE 

• float 0.000000 
• float 0.098017 
• float 0.195090 
• float 0.290285 
. float 0.382683 
. float 0.471397 
. float 0.555570 
• float 0.634393 
• float 0.707107 
. float 0.773010 
• float 0.831470 
• float 0.881921 
. float 0.923880 
• float 0.956940 
. float 0.980785 
• float 0.995185 

COSINE 
. float 1.000000 
. float 0.995185 
. float 0.980785 
• float 0.956940 
. float 0.923880 
• float 0.881921 
• float 0.831470 
. float 0.773010 
. float 0.707107 
• float 0.634393 
. float 0.555570 
• float 0.471397 
.float 0.382683 
. float 0.290285 
. float 0.195090 
• float 0.098017 
• float 0.000000 
• float -0.098017 
. float -0.195090 
.float -0.290285 
• float -0.382683 
.float -0.471397 
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.float 

. float 

. float 

.float 

. float 

. float 

. float 

. float 

. float 

. float 

. float 

. float 

. float 

. float 
• float 
• float 
. float 
. float 
. float 
. float 
.float 
.float 
. float 
. float 
. float 
. float 

-0.555570 
-0.634393 
-0.707107 
-0.773010 
-0.831470 
-0.881921 
-0.923880 
-0.956940 
-0.980785 
-0.995185 
-1.000000 
-0.995185 
-0.980785 
-0.956940 
-0.923880 
-0.881921 
-0.8314 70 
-0.773010 
-0.707107 
-0.634393 
-0.555570 
-0.471397 
-0.382683 
-0.290285 
-0.195090 
-0.098017 

. float 0.000000 

. float 0.098017 

. float 0.195090 

.float 0.290285 

. float 0.382683 

. float 0.471397 

. float 0.555570 

.float 0.634393 

.float 0.707107 

. float 0.773010 

. float 0.831470 

. float 0.881921 
• float 0.923880 
• float 0.956940 
. float 0.980785 
. float 0.995185 
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The radix-2 algorithm has tutorial value because it is relatively easy to un­
derstand how the FFT algorithm functions. However, radix-4 implementa­
tions can increase the speed of the execution by reducing the overall arith­
metic required. Example 12-39 shows the generic implementation of a 
complex, DIF FFT in radix-4. A companion table, ·like the one in 
Example 12-38, should have a value of M equal to the log N, where the base 
of the logarithm is four. 
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Example 12-39. Complex, Radix-4, OIF FFT 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

INP 

* 
FFTSIZ 
LOGFFT 
SINTAB 
INPUT 
OUTPUT 

FFT: 

LSH3 

LSH 
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TITLE COMPLEX, RADIX-4, D·IF FFT 

GENERIC PROGRAM TO DO A LOOPED-CODE RADIX-4 FFT COMPUTATION IN 
THE TMS320C40. 

THE PROGRAM IS DERIVED FROM THE BURRUS AND PARKS BOOK, 
DFT/FFT AND CONVOLUTION ALGORITHMS, P. 117. THE 
(COMPLEX) DATA RESIDE IN INTERNAL MEMORY, AND THE 
COMPUTATION IS DONE IN-PLACE. 

THE TWIDDLE FACTORS ARE SUPPLIED IN A TABLE PUT IN A 
.DATA SECTION. THIS DATA IS INCLUDED IN A SEPARATE FILE TO 
PRESERVE THE GENERIC NATURE OF THE PROGRAM. FOR THE SAME 
PURPOSE, THE SIZE OF THE FFT NAND LOG4(N) ARE DEFINED IN A 
.GLOBL DIRECTIVE AND SPECIFIED DURING LINKING. 

IN ORDER TO HAVE THE FINAL RESULT IN BIT-REVERSED ORDER, THE 
TWO MIDDLE BRANCHES OF THE RADIX-4 BUTTERFLY ARE INTERCHANGED 
DURING STORAGE. NOTE THIS DIFFERENCE WHEN COMPARING WITH THE 
PROGRAM IN P. 117 OF THE BURRUS AND PARKS BOOK. 

.globl 

.globl 

.globl 

.globl 

.usect 

.bss 

.text 

FFT 
N 
M 
SINE 
"IN", 1024 
OUTP,1024 

INITIALIZE 
.word N 
.word M 
.word SINE 
.word INP 
.word OUTP 

LDP 
LDI 
1,BK,IRO 
LSH3 
LDI 
LDI 

ADDI 
-l,BK 

FFT 
@FFTSIZ,BK 

-2,BK,IR1 
1,AR7 
1,R8 

2,IR1,R9 

Entry point for execution 
FFT size 
LOG4(N) 
Address of sine table 
Memory with input data 
Memory with output data 

FFT size 
LOG4(FFTSIZ) 
Sine/cosine table base 
Area with input data to process 
Area with output data to process 

Command to load data page pointer 

IRO=2*N1 (because of real/imag) 
IR1=N/4, pointer for SIN/COS table 
Initialize IE index 
Initialize repeat counter of first 
loop 
R9 JT = RO/2 + 2 
R7 = N2 
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* 
LOOP: 

* 

II 

II 

II 

" 
" 
BLKl 

" 

OUTER LOOP 
LDI @INPUT,ARO 
ADDI BK,ARO,ARl 
ADDI BK,AR1,AR2 
RPTBD BLKl 
ADDI BK,AR2,AR3 
SUBI3 1,R8,RC 

LDF *+AR1,RO 

FIRST 
ADDF 
ADDF 
ADDF 
SUBF 
LDF 
STF 
SUBF 
ADDF 
ADDF 
STF 
ADDF 
SUBF 
STF 
SUBF 
SUBF 
SUBF 
STF 
SUBF 
ADDF 
STF 
STF 
SUBF 
ADDF 
STF 
STF 
LDF 

LOOP: BLKl 
RO,*+AR3,R3 
*+ARO,*+AR2,Rl 
R3,Rl,R6 
*+AR2,*+ARO,R4 
*AR2,R5 
R6,*+ARO 
R3,Rl 
*AR3,*AR1,R3 
R5,*ARO,Rl 
Rl,*+ARl 
R3,Rl,R6 
R5,*ARO,R4 
R6, *ARO++ (IRO) 
R3,Rl 
*AR3,*AR1,R6 
RO,*+AR3,R3 
Rl, *AR1++ (IRO) 
R6, R4, R5 
R6,R4 
R5,*+AR2 
R2,*+AR3 
R3,R2,R5 
R3,R2 
R2, *AR3++ (IRO) 
R5, *AR2++ (IRO) 
*+AR1,RO 

Applications-Oriented Operations - FFTs 

ARO points to X(I) 
ARl points to X(Il) 
AR2 points to X(I2) 
Setup loop BLKl 
AR3 points to X(I3) 
RC should be one less 
than desired # 
RO = Y (Il) 

R3 Y(Il) + Y(I3) 
Rl Y(I) + Y(I2) 
R6 Rl + R3 
R4 Y(I) - Y(I2) 

; R5 X (12) 
Y(I) = Rl + R3 
Rl = Rl· - R3 
R3 = X(Il) + X(I3) 
Rl = X(I) + X(I2) 
Y (Il ) = Rl - R3 
R6 = Rl + R3 
R4 = X(I) - X(I2) 
X(I) = Rl + R3 
Rl = Rl - R3 
R6 = X(Il) - X(I3) 
-R3 = Y(Il) - Y(I3) 
X (Il) = Rl-R3 
R5 = R4 - R6 

~ R2 = R4 + R6 
Y(I2) = R4 - R6 
Y(I3) = R4 + R6 
R5 = R2 - R3 
R2 = R2 + R3 
X(I3) = R2 + R3 
X(I2) = R2 - R3 
RO = Y (Il) 

* IF THIS IS THE LAST STAGE, YOU ARE DONE 
CMPI IR1,R8 

BZD END 

* MAIN INNER 
LDI 
LDI 
LDI 
ADDI 
ADDI 

LOOP 
1,R10 
2,Rll 
Rll,ARO 
@INPUT,ARO 
2,Rll 

; Init IAl index 
Init loop counter for inner loop 

(X(I),Y(I» pointer 
Increment inner loop counter 
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INLOP: 

* 

II 

II 

II 

II 

II 
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ADD I 
ADD I 
CMPI 
BZD 
ADDI 
ADD I 
SUBI3 

LDI 
ADD I 
ADDI 
SUBI 
RPTBD 
ADD I 
SUBl 
LDF 

SECOND 
ADDF 
ADDF 
ADDF 
SUBF 
SUBF 
ADDF 
ADDF 
MPYF 
STF 
ADDF 
SUBF 
SUBF 
MPYF 
STF 
SUBF 
SUBF 
MPYF 
STF 
MPYF 
ADDF 
ADDF 
SUBF 
SUBF 
SUBF 
ADDF 
MPYF 
STF 
MPYF 
SUBF 
MPYF 
STF 
MPYF 
ADDF 
MPYF 

R10,AR7 
BK,ARO,ARl 
R9,Rll 
SPCL 
BK,AR1,AR2 
BK,AR2,AR3 
1, R8, RC 

R10,AR4 
@SINTAB,AR4 
AR4,R10,ARS 
1,ARS 
BLK2 
lO,AR5,AR6 
l,AR6 
*+AR2,R7 

LOOP: BLK2 
R7,*+ARO,R3 
*+AR3,*+AR1,R5 
R5,R3,R6 
R7,*+ARO,R4 
RS,R3 
*AR2,*ARO,Rl 
*AR3,*AR1,RS 
R3,*+ARS(IR1),R6 
R6,*+ARO 
RS,Rl,RO 
*AR2,*ARO,R2 
RS,Rl 
Rl,*ARS,RO 
RO, *ARO++ (IRO) 
RO,R6 
*+AR3,*+AR1,RS 
Rl,*+ARS(IR1),RO 
R6,*+ARl 
R3,*ARS,R6 
RO,R6 
RS,R2,R1 
RS,R2 
*AR3,*AR1,RS 
RS,R4,R3 
RS,R4 
R3,*+AR4(IR1),R6 
R6, *AR1++ (IRO) 
Rl,*AR4,RO 
RO,R6 
Rl,*+AR4(IR1),R6 
R6,*+AR2 
R3,*AR4,RO 
RO,R6 
R4,*+AR6(IR1),R6 

IA1 = IAl + IE 
(X(Il),Y(Il» pointer 
If LPCNT - JT, go to 
special butterfly 
(X (12) ,Y (12» pointer 
(X(I3),Y(I3» pointer 

; RC should be one less than 
desired :jj: 

Create cosine index AR4 

IA2 = IA1 + IAl - 1 
Setup loop BLK2 

lA3 - lA2 + lAl - 1 
R7 Y(I2) 

R3 = Y(I) + Y(l2) 
RS = Y(Il) ~ Y(I3) 
R6 = R3 + RS 
R4 Y(I) - Y(I2) 
R3 R3 - RS 
Rl X(I) + X(I2) 
RS X(Il) + X(I3) 
R6 R3*C02 
Y(I) = R3 + RS 
RO Rl + RS 
R2 = X(I) - X(I2) 
Rl = Rl - RS 
RO = Rl*SI2 
X(I) = Rl + RS 

; R6 = R3*C02 - Rl*SI2 
RS = Y(Il) - Y(I3) 
RO = Rl*C02 
Y(Il) = R3*C02 - Rl*SI2 
R6 R3*SI2 
R6 Rl*C02 + R3*SI2 
Rl R2 + RS 
R2 R2 - RS 
RS X(Il) - X(I3) 
R3 = R4 - RS 

; R4 R4 + RS 
R6 R3*C01 
X(Il) = Rl*C02 + R3*SI2 
RO = Rl*SIl 

; R6 = R3*COl - Rl*SIl 
R6 = R1*COl 
Y(I2) = R3*C01 - Rl*SI1 

; RO R3*SIl 
; R6 Rl*COl + R3*SIl 
; R6 = R4*C03 
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II 

II 

BLK2 
II 

STF 
MPYF 
SUBF 
MPYF 
STF 
MPYF 
ADDF 
STF 
LDF 
CMPI 
BPD 
LDI 
ADD I 
ADDI 
BRD 
LSH 

LSH 
LDI 

R6, *AR2++ (IRO) 
R2,*AR6,RO 
RO,R6 
R2,*+AR6(IR1),R6 
R6,*+AR3 
R4,*AR6,RO 
RO,R6 
R6, *AR3++ (IRO) 
*+AR2,R7 
Rll,BK 
INLOP 
Rll,ARO 
@INPUT,ARO 
2,Rll 
CONT 
2,R8 

2,AR7 
BK,IRO 

* SPECIAL BUTTERFLY FORW=J 
SPCL RPTBD BLK3 

LSH -1,IR1,AR4 
ADDI @SINTAB,AR4 

LDF 
*SPCL LOOP: BLK3 

ADDF 
AODF 
SUBF 
ADDF 
SUBF 
ADDF 
ADDF 
SUBF 
ADDF 
SUBF 

II STF 
LDF 

II STF 
SUBF 

II STF 
SUBF 
ADDF 
SUBF 
SUBF 
ADDF 
SUBF 
MPYF 

II STF 
ADD 
MPYF 

II STF 
SUBF 

*AR2,R7 

R7,*ARO,Rl 
*+AR2,*+ARO,R3 
*+AR2,*+ARO,R4 
*AR3,*AR1,R5 
Rl,R5,R6 
R5,Rl 
*+AR3,*+AR1,R5 
R5,R3,RO 
R5,R3 
R7,*ARO,R2 
R3,*+ARO 
*AR3,R7 
Rl,*ARO++(IRO) 
R7,*AR1,Rl 
R6,*+ARl 
*+AR3,*+AR1,R3 
R3,R2,R5 
R2,R3,R2 
Rl,R4,R3 
Rl,R4 
R5,R3,Rl 
Rl,*AR4,Rl 
RO, *AR1++ (IRO) 
R5,R3 
R3,*AR4,R3 
Rl,*+AR2 
R4,R2,Rl 
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; X(I2) = Rl*COl + R3*SIl 
; RO = R2*SI3 

R6 = R4*C03 - R2*SI3 
R6 = R2*C03 
Y(I3) = R4*C03 - R2*SI3 
RO - R4*SI3 
R6 = R2*C03 + R4*SI3 

; x(i3) = R2*C03 + R4*SI3 
Load next Y(I2) 

; LOOP BACK TO THE INNER LOOP 

. , (X(I),Y(I» pointer 
Increment inner loop counter 

Increment repeat counter for 
; next time 

IE 4*IE 
Nl ... N2 

; Setup loop BLK3 
; Point to SIN(45) 

Create cosine index AR4 

R7 X (I2) 

; Rl XCI) + X(I2) 
; R3 Y(I) + Y(I2) 
; R4 Y(I) - Y(I2) 

R5 X(Il) + X(I3) 
; R6 R5 - Rl 

Rl Rl + R5 
; R5 Y(Il) + Y(I3) 
; RO R3 - R5 
; R3 R3 + R5 

R2 XCI) - X(I2) 
Y(I) =R3 + R5 

; R7 = X(I3) 
XCI) = Rl + R5 

; Rl = X (Il) - X (I3) 
; Y(Il) = R5 - Rl 
; R3 Y(Il) - Y(I3) 

R5 R2 + R3 
R2 -R2 + R3 
R3 R4 - Rl 
R4 R4 + Rl 

; Rl R3 - R5 
; Rl Rl *C021 

X(Il) = R3 - R5 
; R3 = R3 + R5 

R3 = R3*C021 
; Y(I2) = (R3 - RS)*C021 
; Rl = R2 - R4 

C021 
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r I 

II 
BLK3 
II 

LSH 

CONT 

* 
END: 

* 
II 
BITRV 
II 

II 

SELF 
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MPYF 
STF 
ADDF 
MPYF3 
STF 
LDF 
STF 
CMPI 
BPD 
LDI 
ADD I 
ADDI 
2,R8 

R1,*AR4,R1 
R3, *AR2++ (IRO) 
R4,R2 . 
R2,*AR4,R2 
R1,*+AR3 
*AR2,R 
R2,*AR3++(IRO) 
R11,BK 
INLOP 
R11,ARO 
@INPUT,ARO 
2,Rll 

LSH 2,AR 
LDI BK, IRO 
BRD LOOP 
LSH -2,BK 
LSH3 -1,BK,R9 

R1 = R1*C021 
; X(I2) = (R3 + R5)*C021 

R2 = R2 + R4 
R2 = R2*C021 
Y(I3) = -(R4 - R2)*C021 
Load next X (I2) 
X(I3) = (R4 + R2)*C021 

Loop back to the inner loop 

; (X(I),Y(I» pointer 
Increment inner loop counter 
Increment repeat counter for next 

; time 
IE = 4*IE 
N1 = N2 
Next FFT stage (delayed) 
N2 = N2/4 

ADDI 2, R9 
STORE RESULT OUT USING 

; JT = N2/2 + 2 
BIT-REVERSED ADDRESSING 

LDI @FFTSIZ,IRO 
SUBI3 2,IRO,RC 
LDI 2, IR1 
RPTBD BITRV 
LDI @INPUT,ARO 
LDI @OUTPUT,AR1 
LDF *+ARO(l),RO 
BIT REVERSE LOOP 
LDF *ARO++(IRO)B,R1 
STF RO,*+AR1(1) 
LDF *+ARO(l),RO 
STF R1,*AR1++(IR1) 
LDF *ARO++(IRO)B,R1 
STF RO, *+AR1 (1) 
STF R1,*AR1++(IR1) 
BR SELF 
.end 

; IRO = size of FFT = N 
; RC = N - 2 

; Branch to itself at the end. 

Mostoften, the data to be transformed is a sequence of real numbers. In this 
case, the FFT demonstrates certain symmetries that permit the reduction 
of the computational load even further. Example 12-40 shows the generic 
implementation of a real-valued, radix-2 FFT. For such an FFT, the total 
storage required for a length-N transform is' only N locations; in a complex 
FFT, 2N are necessary. Recovery of the rest of the points is based on the 
symmetry conditions. 
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Example 12-40. Real, Radix-2 FFT 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* 
FFTSIZ 
LOGFFT 
SINTAB 
INPUT 
FFT: 

* 

TITLE REAL, RADIX-2 FFT 

GENERIC PROGRAM TO DO A RADIX-2 REAL FFT COMPUTATION 
IN 320C40. 

THE PROGRAM IS DERIVED FROM THE PAPER BY SORENSEN ET AL., 
JUNE 1987 ISSUE OF THE TRANSACTIONS ON ASSP. 

THE REAL DATA RESIDE IN INTERNAL MEMORY. THE COMPUTATION IS 
DONE IN-PLACE. THE BIT-REVER$AL IS DONE AT THE BEGINNING OF 
THE PROGRAM. 

THE TWIDDLE FACTORS ARE SUPPLIED IN A TABLE PUT IN A .DATA 
SECTION. THIS DATA IS INCLUDED IN A SEPARATE FILE TO PRESERVE 
THE GENERIC NATURE OF THE PROGRAM. FOR THE SAME PURPOSE, THE 
SIZE OF THE FFT NAND LOG2(N) ARE DEFINED IN A .GLOBL 
DIRECTIVE AND SPECIFIED DURING LINKING. THE LENGTH OF 
THE TABLE IS N/4 + N/4 = N/2. 

.globl FFT 

.globl N 

.globl M 

.globl SINE 

.bss INP,1024 

.text 

INITIALIZE 
.word N 
.word M 
. word SINE 
.word INP 
LDP FFTSIZ 

DO THE BIT-REVERSING 
LDI @FFTSIZ,R8 
SUBI 1,R8,RC 

LDI @SINTAB,R9 
RPTBD BITRV 
LSH3 -1,R8,IRO 
LDI @INPUT,ARO 
LDI @INPUT,AR1 

AT 

Entry point for execution 
FFT size 

; LOG2 (N) 
; Address of sine table 

Memory with input data 

; Command to load data page printer 

THE BEGINNING 
; R8 = N 
; RC should be one less 
; than desired # 

; Setup for BITRV loop 
IR1 = half the size of FFT N/2 
ARO points to X(I) 
AR1 points to X(I) 
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* 

II 

BITRV 
II 

* 

* 

II 
BLKl 
II 

* 

* 

II 

II 
BLK2 
II 

* 

LOOP 
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DIGIT 
CMPI 
LDF 
LDF 
LDFLT 
LDFLT 
STF 
STF 

REVERSE COUNTER 
AR1,ARO 
*ARO++(l),Rl 
*AR1++(IRO)B,RO 
*ARO,RO 
*AR1,Rl 
RO,*ARl 
Rl,*ARO 

LENGTH-TWO BUTTERFLIES 
LDI @INPUT,ARO 
RPTBD BLKl 
SUBI3 1,IRO,RC 
LDF *+ARO(1),R2 
LDI 2,IRO 
BLKl LOOP 
ADDF 
SUBF 
STF 
LDF 
STF 

R2,*ARO,RO 
R2,*ARO,Rl 
RO, *ARO++ (1) 
*+ARO(IRO),R2 
Rl, *ARO++ (1) 

FIRST PASS OF THE 00-20 
LDI @INPUT,ARO 
RPTBO BLK2 
LSH3 -2,R8,RC 
SUBI 1,RC 

LDF *+ARO(IRO),R2 

BLK2 LOOP 

LOOP 

ADDF R2,*ARO++(IRO),RO 
SUBF R2,*-ARO(IRO),Rl 
STF RO, *-ARO (IRO) 
NEGF *+ARO,RO 
STF Rl,*ARO++(IRO) 
LDF *+ARO(IRO),R2 
STF RO,*-ARO 

MAIN LOOP (FFT STAGES) 
LSH3 -3,R8,IRO 
LDI 3,Rll 

LDI 2,R4 
LDI 4,R3 
LDI @INPUT,AR5 
LSH3 2, R4, R10 
ADDI3 IRO,R9,ARO 

Exchange locations only 
if ARO<ARl 

ARO points to XCI) 
Setup for BLKl loop 
RC = (N/2) -1 
R2 = XCI + 1) 
IRO = 2 = N2 

RO = XCI) + XCI + 1) 
Rl = XCI) - XCI + 1) 
XCI) = XCI) + XCI + 1) 
Load next XCI) 
XCI + 1) = XCI) - XCI + 1) 

(STAGE K = 2 IN 00-10 LOOP) 
ARO points to XCI) 
Setup for BLK2 loop 
Repeat N/4 times 
RC should be one less 
than desired # 
R2 X (I + 2) 

RO X (I) + XCI + 2) 
Rl X (I) - XCI + 2) 
X (I) = X (I) + XCI + 2) 
RO = -XCI + 3) 
XCI + 2) = XCI) - XCI 
Load next XCI + 2) 
XCI + 3) = -XCI + 3) 

IRO E/2 index for E 
Rll holds the current 
stage number 
R4 = N4 
R3 = N2 
AR5 points to XCI) 
Set loop counter 
ARO points to SIN/COS 
table 

+ 2) 
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* 
INLOP 

II 

II 

* 

* 

II 

II 

II 

II 
BLK3 
II 

END 

INNER LOOP (DO-20 LOOP IN THE 
LDI R4,IRl 
ADDI3 1,AR5,ARl 
ADDI3 R3,AR1,AR3 

SUBI3 2,AR3,AR2 

ADDI R3,AR2,AR4 

LDF *AR5++(IR1),RO 
ADDF *+AR5(IR1),RO,Rl 
SUBF RO,*++AR5(IR1),RO 
STF Rl,*-AR5(IR1) 
NEGF RO 
NEGF *++AR5(IR1),Rl 
STF RO,*AR5 
STF Rl,*AR5 
INNERMOST LOOP 
RPTBD 
LSH3 

SUBI 
LDF 
BLK3 LOOP 
MPYF 
MPYF 
MPYF 
ADDF 
MPYF 
SUBF 
SUBF 
ADDF 
STF 
ADDF 
STF 
SUBF 
STF 
LDF 
STF 
CMPI 
BLTAF 
ADDI 
ADDI 
ADDI3 

ADDI 
CMPI 
BLEAF 
LSH 
LSH 
LSH 
BR 
.end 

BLK3 
-2,R8, 

2,R4, RC 
*AR3,R5 

R5,*+ARO(IR1),RO 
*AR4,*ARO,Rl 
*AR4,*+ARO(IR1),Rl 
RO,Rl,R2 
R5,*ARO++(IRO),RO 
RO,Rl,RO 
*AR2,RO,Rl 
*AR2,RO,Rl 
Rl,*AR3++ 
*AR1,R2,Rl 
Rl,*AR4-­
R2,*AR1,Rl 
Rl,*AR1++ 
*AR3,R5 
Rl,*AR2-­
@FFTSIZ,RlO 
INLOP 
R4,AR5 
RlO,RlO 
IRO,R9,ARO 

1,Rll 
@LOGFFT,Rll 
LOOP 
-l,IRO 
1,R4 
1,R3 
END 

Applications-Oriented Operations - FFTs 
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PROGRAM) 
IRl = N4 or N2/2 
ARl points to X(Il) = X(I + J) 
AR3 points to 
X(I3) = X(I + J + N2) 
AR2 points to 
X(I2) = X(I - J + N2) 
AR4 points to 
X(I4) = X(I - J + Nl) 

; RO = X (I) 
Rl - X(I) + X(I + N2) 
RO == -X(I) + X(I + N2) 
X(I) - X(I) + X(I + N2) 
RO - X(I) - X(I + N2) 
Rl - -X(I + N4 + N2) 
X(I + N2) - X(I) - X(I + N2) 
X(I + N4 + N2) = -X(I + N4 + N2) 

Setup for BLK3 loop 
IR1-separation between 
SIN/COS tbls 
Repeat N4 - 1 times 
R5 .. X(I3) 

RO X(I3)*COS 
; Rl X (I4) *SIN 
; Rl X(I4)*COS 

R2 X(I3)*COS + X(I4)*SIN 
RO X(I3)*SIN 
RO -X(I3)*SIN + X(I4)*COS 
Rl -X(I2) + RO 
Rl X(I2) + RO 
X(I3) - -X(I2) + RO 
Rl = X(Il) + R2 
X(I4) = X(I2) + RO 
Rl == X(Il) - R2 
X(Il) - X(Il) + R2 
Load next X (I3) 
X(I2) - X(Il) - R2 

Loop back inner to theloop 
AR5 - I + Nl 

ARO points to 
SIN/COS table 

E - E/2 
N4 = 2*N4 
N2 - 2*N2 

; Branch to itself at the end. 
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Example 12-37, Example 12-39, and Example 12-40 provide an easy un­
derstanding ofthe FFT algorithm functions. However, they are not optimized 
for fast speed execution of FFT. Exam pie 12-41 shows a faster version of 
a radix-2 DIT FFT algorithm. This program uses a different twiddle factors 
table than the previous examples. The twiddle factors are stored in bit re­
versed order and with a table length of N/2 (N = FFT length). For instance, 
if the FFT length is 32, the twiddle factors table should be: 

Add[111 CQlffi~ilDI 

0 R{WN(O)} = COS(2*PI*0/32) = 1 
1 -I{WN(O)} = SIN(2*PI*0/32) = 0 
2 R{WN(4)} = COS(2*PI*4/32) = 0.707 
3 -L{WN(4)} = SIN(2*PI*4/32) = 0.707 

12 R{WN(3)} = COS(2*PI*3/32) = 0.831 
13 -1{WN(3)} = SIN(2*PI*3/32) = 0.556 
14 R{WN(7)} = COS(2*PI*7/32) = 0.195 
15 -1{WN(7)} = SIN(2*PI*7/32) = 0.981 

Example 12-41. Faster Version Complex, Radix-2 DIT FFT 

* TITLE FASTER VERSION COMPLEX, RADIX-2 DIT FFT 
* * GENERIC PROGRAM FOR A FAST LOOPED-CODE RADIX-2 DIT FFT 
* COMPUTATION IN TMS320C40 
* * THE PROGRAM IS DERIVED FROM THE PAPER BY RAIMUND MEYER AND 
* AND KARL SCHWARZ, VOLUME 3, PROCEEDINGS OF ICASSP 90. 
* THE (COMPLEX) DATA RESIDE IN INTERNAL MEMORY. THE COMPUTATION 
* IS DONE IN-PLACE, BUT THE RESULT IS MOVED TO ANOTHER MEMORY 
* SECTION TO DEMONSTRATE THE BIT-REVERSED ADDRESSING. 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
'* 
* 
* 
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FOR THIS PROGRAM THE MINIMUM FFT LENGTH IS 32 POINTS BECAUSE 
OF THE SEPARATE STAGES. FIRST TWO PASSES ARE REALIZED AS A 
FOUR BUTTERFLY LOOP SINCE THE MULTIPLIES ARE TRIVIAL. THE 
MULTIPLIER IS ONLY USED FOR A LOAD IN PARALLEL WITH AN ADDF 
OR SUBF. 

THE TWIDDLE FACTORS ARE SUPPLIED IN A TABLE PUT IN A .DATA 
SECTION. THIS DATA IS INCLUDED IN A SEPARATE FILE TO PRESERVE 
THE GENERIC NATURE OF THE PROGRAM. FOR THE SAME PURPOSE, TH~ 

SIZE OF THE FFT NAND LOG2(N) ARE DEFINED IN A .GLOBL 
DIRECTIVE AND SPECIFIED DURING LINKING. THE LENGTH OF 
THE TABLE IS N/2. 

Software Applications 



Applications-Oriented Operations - FFTs 
! S Tf~TW~-Xll! S ~ ~ ~ S1 ='"'<:'1 

Example 12-41. Faster Version Complex, Radix-2 DIT FFT (Continued) 

* 
* 

fftsiz 
fg4m2 
fg4m3 
fg8m2 
fg2 
fg2m3 
logfft 
sintab 
sintml 
sintp2 
input 
inputp2 
output 

* 
* 
* 
* 
* 
* 
* 
* 
fft: 

. global fft 

. global n 

. global nhalb 

.global nviert 

. global nachtel 

. global m 

. global sine 

.BSS inp,2048 

.BSS outp,2048 

.text 

.word n 

.word nviert-2 

.word nviert-3 

.word nachtel-2 

.word nhalb 

.word nhalb-3 

.word m 

.word sine 

.word sine-l 

.word sine+2 

.word inp 

.word inp+2 

. word outp 

arO AR + AI 
arl BR + BI 
ar2 CR + CI + CR' 
ar3 DR + DI 
ar4 AR' + AI' 
ar5 BR' + BI' 
ar6 DR' + DI' 

+ CI' 

input vector length = 2n 
(depends of n)n) 
output vector length = 2n 
(depends of n)n) 

ar7 first twiddle factor = 1 

ldp 
ldi 
ldi 
ldi 
addi 
addi 
addi 
ldi 
ldi 
ldi 
ldi 
lsh 

subi 

fftsiz 
@fg2,irO 
@sintab,ar7 
@input,arO 
irO,arO,arl 
irO,arl,ar2 
irO,ar2,ar3 
arO,ar4 
arl,ar5 
ar3,ar6 
2,irl 
-l,irO 

2,irO,rc 

; load page pointer 
; irO = n/2 = offset between inputs 
; ar7 points to twiddle factor 1 
; arO points to AR 
; arl points to BR 

ar2 points to CR 
ar3 points to DR 
ar4 points to AR' 
ar5 points to BR' 
ar6 points to DR' 
address offset 
irO = n/4 = number of 
R4-butterflies 
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Examp/e12-41. Faster Version Complex, Radix-2 DIT FFT (Continued) 

*********************************************************************** 
*-----------------FIRST 2 STAGES AS RADIX-4 BUTTERFLY------------------
*********************************************************************** 
* fill pipeline 

addf *ar2,*arO,r4 r4 AR + CR 
subf *ar2,*arO++,rS rS AR- CR 
addf *arl,*ar3,r6 r6 = DR + BR 
subf *arl++,*ar3++,r7 r7 DR - BR 
addf r6,r4,rO AR' = rO = r4 + r6 
mpyf *ar3++,*ar7,rl rl 01 BR' r3 r4 - r6 

II subf r6,r4,r3 
addf rl,*arl,rO rO BI + 01 AR' rO 

II stf rO,*ar4++ 
subf rl,*arl++,rl rl BI - 01 BR' r3 

II stf r3,*arS++ 
addf rl,rS,r2 ; CR' = r2 = rS + rl 
mpy *+ar2,*ar7,rl . rl = CI DR' = r3 - rS - rl , , 

II subf rl,rS,r3 
rptbd blkl .. Setup for radix-4 butterfly loop , 
add rl,*arO,r2 r2 AI + CI CR' r2 

II stf r2,*ar2++(irl) 
subf rl,*arO++,r6 ; r6 AI - CI DR' r3 

II stf r3,*ar6++ 
addf rO,r2,r4 AI' = r4 = r2 + rO 

* radix-4 butterfly loop 
mpyf *ar2--,*ar7,rO rO CR (BI' r2 r2 - rO) 

II subf rO,r2,r2 
mpyf *arl++,*ar7,rl ; rl BR (CI' r3 r6 + r7) 

II addf r7,r6,r3 
addf rO,*arO,r4 ; r4 AR + CR (AI' r4) 

II stf r4,*ar4++ 
subf rO,*arO++,rS rS = AR - CR (BI' r2) 

II stf r2,*arS++ 
subf r7,r6,r7 (01' = r7 = r6 - r7) 
addf rl,*ar3,r6 r6 DR + BR (01' r7) 

II stf r7,*ar6++ 
subf rl,*ar3++,r7 ; r7 DR - BR (CI' r3) 

II stf r3,*ar2++ 
addf r6,r4,rO AR' = rO = r4 + r6 
mpyf *ar3++,*ar7,rl rl 01 BR' r3 r4 - r6 

II subf r6,r4,r3 
addf rl,*arl,rO rO BI + 01 AR' rO 

II stf rO,*ar4++ 
subf rl,*arl++,rl rl BI - DI BR' r3 

II stf r3,*arS++ 
addf rl,rS,r2 CR' = r2 = rS + rl 
mpyf *+ar2,*ar7,rl ; rl CI DR' r3 = rS - rl 

II subf rl,rS,r3 
addf rl,*arO,r2 ; r2 AI + CI CR' r2 

II stf r2, *ar2++ (iil) 
subf rl,*arO++,r6 r6 AI - CI DR' r3 

II stf r3,*ar6++ 
blkl addf rO,r2,r4 . AI' = r4 = r2 + rO , 
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Example 12-41. Faster Version Complex, Radix-2 DIT FFT (Continued) 

* clear pipeline 
subf rO,r2,r2 BI' r2 r2 - rO 
addf r7,r6,r3 CI' r3 r6 + r7 
st r4,*ar4 ; AI' r4 BI' = r2 

II stf r2,*ar5 
subf r7,r6,r7 ; DI' r7 r6 - r7 
stf r7,*ar6 ; DI' = r7 CI' = r3 

II stf r3.*--ar2 

*********************************************************************** 
*------------ THIRD TO LAST-2 STAGE ----------------------------------* 
*********************************************************************** 

Idi 
subi 
Idi 
Idi 
ldi 
Idi 

stufe ldi 
addi 
Idi 
Ish 
Ish 
Ish 
Ish 

Ish 
addi 

Idf 

II ld ar7, r7 

gruppe 

@fg2,irl 
1,irO,ar5 
1,ar6 
@sintab,ar7 
O,ar4 
@input,arO 
arO,ar2 
irO,arO,ar3 
ar3,arl 
1,ar6 
-2,ar5 
1,ar5 
-l,irO 

-l,irl 
l,irl 

*arl++,r6 

; r7 = COS 

; pointer to twiddle factor 
group counter 
upper real butterfly input 
upper real butterfly output 

; lower real butterfly output 
lower real butterfly input 
double group count 
half butterfly count 

; clear LSB 
half step from upper to 
lower real part 

; step from old imaginary to new 
real value 
dummy load, only for address 
update 

* fill pipeiine 

* 
* 
* 
* 
* 

II 

II 

II 

II 

arO 
arl 
ar2 
ar3 
the 

Idf 
mpyf 
addf 
mpyf 
mpyf 
addf 

upper real butterfly input 
lower real butterfly input 
upper real butterfly output 
lower real butterfly output .. 

imaginary part has to follow 

*++ar7,r6 ; r6 ... SIN 
*arl--,r6,rl ; rl = BI * SIN 
*++ar4,rO,r3 ; dummy addf for 
*arl,r7,rO rO BR * COS 
*arl++,*ar7--,rO r3 = TR = rO + 
rO,rl,r3 

counter 

rl , rO 

rptbd bflyl ; Setup for loop bflyl 
spyf *arl++,r7,rl ; rl BI * COS , r2 AR 
subf r3,*arO,r2 
add *arO++,r3,r5 ; r5 AR + TR , BR' r2 
stf r2,*ar3++ 
Idi ar5,rc 

update 

= BR * SIN 

- TR 
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Example 12-41. Faster Version Complex, Radix-2 DIT FFT (Continued) 

* FIRST BUTTERFLY-TYPE: 
* 
* 
* 
* 
* 
* 
* 
* 
II 

II 

II 

II 

II 
bflyl 
II 
* switch 

II 

II 

II 

* COS 
II 

II 

II 
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TR = BR * cos + B1 * SIN 
TI = BR * SIN - BI * COS 
AR' AR + TR 
AI' = AI - TI 
BR' .. AR - TR 
BI' = AI + TI 
loop bUyl 
rnpy *+arl,r6,r5 
stf r5,*ar2++ 
subf rl,rO,r2 
rnpyf *arl,r7,rO 

addf 
subf 
stf 
addf 
rnpyf 

subf 
rnpyf 
stf 
addf 
stf 
over 
subf 
addf 
stf 
subf 
stf 
nop 
rnpyf 
stf 
rnpyf 
rnpyf 

subf 
rptbd 
rnpyf 

subf 
addf 
stf 
ldi 

to 

r2,*arO,r3 
r2,*arO++,r4 
r3,*ar3++ 
rO,r5,r3 
*arl++,r6,rO 

r3,*arO,r2 
*arl++,r7,rl 
r4,*ar2++ 
*arO++,r3,r5 
r2,*ar3++ 

next group 
rl,rO,r2 
r2,*arO,r3 
r5,*ar2++ 
r2,*arO++(irl),r4 
r3, *ar3++ (irl) 
*arl++(irl) 
*arl--,r7,rl 
r4, *ar2++ (irl) 
*arl,r6,rO 
*arl++,*ar7++,rO 

rO,rl,r3 
bfly2 
*arl++,r6,rl 

r3,*arO,r2 
*arO++,r3,r5 
r2,*ar3++ 
ar5,rc 

r5 = BI * SIN (AR' r5) 

(r2 = TI = rO - rl) 
rO .. BR * COS 
(r3 AI + TI) 

(r4 AI - TI , BI' 

r3 TR rO + r5 
rO BR * SIN '" 
r2 AR - TR 

r3) 

rl BI * COS (AI' .. r4) 

r5 AR + TR , BR' = r2 

r2 
r3 

r4 

TI rO - rl 
AI + TI AR' 

AI - TI BI' 

address update 

r5 

r3 

rl BI * COS AI' r4 

BR * SIN rO 
r3 TR rl - rO , rO 

Setup for loop bfly2 
r1 BI * SIN 
r2 AR - TR 

r5 AR + TR , BR' r2 

BR 
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Example 12-41. Faster Version Complex, Radix-2 DIT FFT (Continued) 

* SECOND BUTTERFLY-TYPE: 
* 
* 
* 
.* 
* 
* 
* 

* 

II 

II 

II 

II 

II 
bfly2 
II 
* clear 

II 

II 

II 

TR = BI * COS - BR * SIN 
TI = BI * SIN + BR * COS 
AR' AR+ TR 
AI' AI - TI 
BR' AR - TR 
BI' AI + TI 

loop bfly2 
mpyf 
stf 
addf 
mpyf 

addf 
sub 
stf 
subf 
mpyf 
subf 
mpyf 
stf 
addf 
stf 

pipeline 
addf 
addf 
stf 
cmpi 
bned 
subf 
stf 
ldf 
stf 
nop 

*+arl,r7,rS 
rS,*ar2++ 
rl,rO,r2 
*arl,r6,rO 

r2,*arO,r3 
r2,*arO++,r4 
r3,*ar3++ 
rO,rS,r3 
*arl++,r7,rO 
r3,*arO,r2 
*arl++,r6,rl 
r4,*ar2++ 
*arO++,r3,rS 
r2,*ar3++ 

rl,rO,r2 
r2,*arO,r3 
rS,*ar2++ 
ar6,ar4 
gruppe 
r2,*arO++(irl),r4 
r3,*ar3++(irl) 
*++ar7,r7 
r4,*ar2++(irl) 
*arl++(irl) 

* end of this 
cmpi 
bnzaf 
ldi 
ldi 
ldi 

butterfly group 
4,irO 
stufe 
@sintab,ar7 
O,ar4 
@input,arO 

; 

rS = BI * COS (AR' 

(r2 = TI = rO + rl) 
rO = BR * SIN 
(r3 AI + TI) 

(r4 AI - TI , BI' 

TR r3 rS - rO 
rO BR * COS r2 

rl BI * SIN (AI' 

rS AR + TR , BR' 

r2 = TI = rO + rl 
r3 = AI + TI 
AR' = rS 

= 

... rS) 

r3) 

AR - TR 

= r4) 

r2 

do following 3 instructions 
r4 AI - TI BI' = r3 

r7 COS 
AI' = r4 
branch here 

jump out after ld(n)-3 stage 

pointer to twiddle factor 
group counter 
upper real butterfly input 

*********************************************************************** 
*------------SECOND LAST STAGE---------------------------------------~* 
*********************************************************************** 

ldi 
ldi 
addi 
ldi 
ldi 
ldi 
ldi 

* fill pipeline 

@input,arO 
arO,ar2 
irO,arO,arl 
arl,ar3 
@sintp2,ar7 
S,irO 
@fg8m2,rc 

upper input 
upper output 
lower input 
lower output 
pointer to twiddle factor 
distance between two groups 
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Example 12-41. Faster Version Complex, Radix-2 DIT FFT (Continued) 

* s. to M. butterfly: 
* loop bf2end 

ld *ar7++,r7 r7 COS ( (AI' = r4» 
II stf r4,*ar2++ 

ldf *ar7++,r6 r6 SIN (BR' = r2) 

" stf r2,*ar3++ 
mpyf *+arl,r6,rS ; rS BI * SIN (AR' r3) 

" stf r3,*ar2++ 
addf rl,rO,r2 ; (r2 = TI = rO + rl) 
mpyf *arl,r7,rO rO = BR * COS , 

(r3 AI + TI) 

" addf r2,*arO,r3 
sub r2,*arO++(irO),r4 (r4 AI - TI , BI' = r3) 

" stf r3,*ar3++(irO) 
addf rO,rS,r3 r3 TR rO + rS 
mpyf *arl++,r6,rO rO BR * SIN r2 - AR - TR 

" subf r3,*arO,r2 
mpyf *arl++,r7,rl rl BI * COS (AI' = r4) 

" stf r4,*ar2++(irO) 
addf *arO++,r3,rS rS AR+ TR , BR' = r2 

" stf r2,*ar3++ 
mpyf *+arl,r6,rS rS BI * SIN (AR' = rS) 

" stf rS,*ar2++ 
subf rl,rO,r2 (r2 = TI = rO - rl) 
mpyf *arl,r7,rO ; rO = BR * COS , 

(r3 = AI + TI) 
II addf r2,*arO,r3 

subf r2,*arO++,r4 (r4 = AI - TI , BI' = r3) 

" stf r3,*ar3++ 
addf rO,rS,r3 r3 TR rO + rS 
mpyf *arl++,r6,rO rO BR * SIN r2 AR - TR 

" subf r3,*arO,r2 
mpyf *arl++(irO),r7,rl rl BI * COS (AI' = r4) 

" stf r4,*ar2++ 
addf *arO++,r3,r3 r3 AR + TR , BR' = r2 

" stf r2,*ar3++ 
mpyf *+arl,r7,rS rS BI * COS (AR' = r3) 

II stf r3,*ar2++ 
subf rl,rO,r2 ; (r2 = TI = rO - rl) 
mpyf *arl,r6,rO rO = BR * SIN 

(r3 At + TI) 

" addf r2,*arO,r3 
sub r2,*arO++(irO),r4 (r4 AI - TI , BI' = r3) 

" stf r3,*ar3++(irO) 
subf rO,rS,r3 r3 TR rS - rO 
mpyf *arl++,r7,rO rO BR * COS r2 AR - TR 

" subf r3,*arO,r2 
mpyf *arl++,r6,rl rl BI * SIN (AI' = r4) 

" stf r4, *ar2++ (irO) 
addf *arO++,r3,rS rS AR+ TR , BR' = r2 

" stf r2,*ar3++ 
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Example 12-41. Faster Version Complex, Radix-2 DIT FFT (Continued) 

mpyf *+ar1,r7,r5 r5 = BI * COS , (AR' ... r5) 
II stf r5,*ar2++ 

addf r1,rO,r2 z(r2 = TI ... rO + r1) 
mpyf *ar1,r6,rO ; rO BR * SIN 

r3 = AI + TI) 
II addf r2,*arO,r3 

subf r2,*arO++,r4 ; (r4 = AI - TI , 
; y (L) ... BI' . r3) 

II stf r3,*ar3++ 
subf rO,r5,r3 r3 = TR r5 - rO 
mpyf *ar1++,r7,rO ; rO = BR * COS 

; r2 AR- TR 
II subf r3,*arO,r2 
bf2end mpyf *ar1++(irO),r6,r1 r1 BI * SIN 

r3 ... AR + TR 
II addf *arO++,r3,r3 

* clear pipeline 
stf r2,*ar3++ BR' = r2 , AI' ... r4 

II atf r4,*ar2++ 
add r1,rO,r2 r2 TI = rO + r1 
add r2,*arO,r3 r3 AI + TI AR' r3 

Ii atf r3,*ar2++ 
subf r2,*arO,r4 ; r4 AI - TI BI' r3 

II stf r3,*ar3 
atf r4,*ar2 ; AI' = r4 

*********************************************************************** 
*------------- LAST STAGE --------------------------------------------* 
*********************************************************************** 

ldi 
ldi 
ldi 
ldi 
ldi 

ldi 
ldi 

* fill pipeline, 
* 1. butterfly: 

addf 
subf 
addf 
subf 

* 2. butterfly: 
addf 
ldf 

II ldf 
rptbd 
subf 
stf 

I I stf 
atf 

@input,arO 
arO,ar2 
@inputp2,ar1 
ar1,ar3 
@sintp2,ar7 

3,irO 
@fg4m2,rc 

w .... O 
*arO,*ar1,r6 
*ar1++,*arO++,r7 
*arO,*ar1,r4 

upper input 
; upper output 

lower input 
lower output 
pointer to twiddle 

; factors 
; group offset 

; AR' r6 AR + BR 
; BR' r7 AR BR 
; AI' r4 AI + BI 

*ar1++(irO),*arO++(irO),r5 

w .... M/4 
*+ar1,*arO,r3 
*-ar7,r1 
*ar1++,rO 
bflend 
*ar1++(irO),*arO++,r2 
r6,*ar2++ 
r7,*ar3++ 
r5,*ar3++(irO) 

; 

; 
; 

; 
; 
; 

BI' r5 AI BI 

AR' r3 AR + BI 
r1 = 0 (for inner loop) 
rO = BR (for inner loop) 
Setup for loop bflend 
BR' = r2 = AR - BI 
(AR' r6) 
(BR' r7) 
(BI' r5) 
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Example 12-41. Faster Version Complex, Radix-2 DIT FFT (Continued) 

* 3. to M. butterfly: 
* loop bflend 

ldf *ar7++,r7 
I I stf r4,*ar2++(irO) 

ldf *ar7++,r6 
I I stf r2,*ar3++ 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 
bflend 

II 

* clear 

II 

II 

II 
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mpyf *+arl,r6,rS 

stf 
addf 
mpyf 

addf 
subf 

stf 
addf 
mpyf 

subf 
mpyf 

r3,*ar2++ 
rl,rO,r2 
*arl,r7,rO 

r2,*arO,r3 
r2,*arO++(irO),r4 

r3, *ar3++ (irO) 
rO,rS,r3 
*arl++,r6,rO 

r3,*arO,r2 
*arl++(irO),r7,rl 

stf r4, *ar2++ (irO) 
addf *arO++,r3,r3 
r2,*ar3++ 
mpyf *+arl,r7,rS 

stf 
subf 
mpyf 

addf 
subf 

stf 
subf 
mpyf 

subf 
mpyf 

addf 

pipeline 
stf 
stf 
addf 
addf 
stf 
subf 
stf 
stf 

r3,*ar2++ 
rl,rO,r2 
*arl,r6,rO 

r2,*arO,r3 
r2,*arO++(irO),r4 

r3, *ar3++ (irO) 
rO,rS,r3 
*arl++,r7,rO 

r3,*arO,r2 
*arl++(irO),r6,rl 

*arO++,r3,r3 

r2,*ar3++ 
r4, *ar2++ (irO) 
rl,rO,r2 
r2,*arO,r3 
r3,*ar2++ 
r2,*arO,r4 
r3,*ar3 
r4,*ar2 

; 

r7 cos ( (AI' ~ r4» 

r6 SIN (BR' = r2) 

rS BI * SIN , 
(AR' = r3) 

(r2 = TI = rO + rl) 
rO = BR * COS, 
(r3 = AI + TI) 

(r4 
BI' 

AI - TI , 
r3) 

r3 = TR = rO + rS 
rO = BR * SIN 
r2 = AR -TR 

rl = BI *,COS 
(AI' = r4) 

r3 AR + IR, BR' r2 

rS BI * COS 
(AR' = r3) 

(r2 = TI rO - rl) 
rO = BR * SIN 
(r3 AI + TI) 

(r4 
BI' 

AI - TI 
r3 

r3 = TR = rO - rS 
rO = BR * CO~ 
r2 AR - IR 

rl 
r3 

BI * SIN 
AR + TR 

BR' = r2 , (AI' =r4) 

r2 TI rO + rl 
r3 AI + TI AR' 

r4 AI - TI BI' 

AI' = r4 

r3 

r3 
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Example 12-41. Faster Version Complex, Radix-2 OIT FFT (Concluded) 

*********************************************************************** 
*------------ END OF FFT ------------------------------------~--------* 
*********************************************************************** 

*********************************************************************** 
*---------~-- BIT REVERSAL ------------------------------------- * 
*********************************************************************** 

II 
bitrv 
II 

II 

end: 

self 

ldi @fftsiz,irO 
ldi 2,irl 
ldi @input,arO 
ldi @output,arl 
ldi @fftsiz,rc 
subi 2,rc 

ldf 
rptb 
ldf 
stf 
ldf 
stf 
ldf 
stf 
stf 

nop 
nop 
nop 
nop 

br self 
.end 

*+arO(l),rO 
bitrv 
*arO++(irO)b,rl 
rO,*+arl(l) 
*+arO(l),rO 
rl, *arl++ (irl) 
*arO++(irO)b,rl 
rO,*+arl(l) 
rl,*arl 

The 'C40 quickly executes FFT lengths up to 1 024 points (complex) or 2048 
(real), covering most applications, because it can do so almost entirely in 
on-chip memory. Table 12-2 summarizes the execution time required for 
FFT lengths between 64 and 1024 points for the four algorithms in 
Example 12-37, Example 12-39, Example 12-40, and Example 12-41. 
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Table 12-2. TMS320C40 FFT Timing Benchmarks 

FFT Timing (In milliseconds) 

Number Complex Complex Complex Real 
of Radlx-2 Radlx-2 Radlx-4 Radlx-2 

Points (Example 12-37) (Example 12-41) (Example 12-39) (Example 12-40) 

64 0.09112 0.0606 0.0694 0.04 

128 0.2066 0.13316 - 0.09156 

256 0.46288 0.3058 0.36756 0.20712 

512 1.02636 0.69208 - 0.45988 

1024 2.25544 1.54516 1.82924 1.01984 

12.4.5 Lattice Filters 
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The lattice form is an alternative way of implementing digital filters; it has 
found applications in speech processing, spectral estimation, and other 
areas. In this discussion, the notation and terminology from speech pro­
cessing applications are used. 

If H(z) is the transfer function of a digital filter that has only poles, A(z) = 
1 IH(z) will be a filter having only zeros, and it will be called the inverse filter. 
The inverse lattice filter is shown in Figure 12-5. These equations describe 
the filter in mathematical terms: 

t(i,n) = f(i-1,n) + k(i) b(i-1,n-1) 
b(i,n) = b(i-1,n-1) + k(i) f(i-1,n) 

Initial conditions: 

f(O,n) = b(O,n) = x(n) 

Final conditions: 

y(n) = f(p,n). 

In the above equation, f(i,n) is the forward error, b(i,n) is the backward error, 
k(i) is the i-h reflection coefficient, x(n) is the input, and y(n) is the output 
signal. The order of the filter (i.e., the number of stages) is p. In the linear 
predictive coding (LPC) method of speech processing, the inverse lattice 
filter is used during analysis, and the (forward) lattice filter is used during 
speech synthesis. 
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Figure 12-5. Structure of the Inverse Lattice Filter 

,(nL r---::){ nL 

b;;B b(1~n) 
EJ
z-' =X :: fW-"~)~EJz_, ,:xf(p,n) · Y.!!') 

b(p-1, n) 

Figure 12-6 shows the data memory organization of the inverse lattice filter 
on the 'C40. 

Figure 12-6. Data Memory Organization for Inverse Lattice Filters 

reflection backward 
coefficients propagation terms 

k(1 ) b(O, n ... 1) 

k(2) b(1, n-1) 
low I 

address ~::::::::::: 

• • 
• • 
• • 

k(p) high I 
address L..-_.....;;....;.-_--' 

b(p-1,n-1) 
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Example 12-42. Inverse Lattice Alter 

* TITLE INVERSE LATTICE FILTER 
* * SUBROUTINE LATINV 
* * LATINV == LATTICE FILTER (LPC INVERSE FILTER - ANALYSIS) 
* * TYPICAL CALLING SEQUENCE: 
* 
* 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* 
* 
* 
* 

* 

load 
LAJU 
load 
load 
load 

R2 
LATINV 
ARO run 
RC 

ARGUMENT ASSIGNMENTS: 
ARGUMENT, FUNCTION 
--------+---------------------------------------------------

R2 ,f (0, n) = x (n) 
ARO 'ADDRESS OF FILTER COEFFICIENTS (k(l» 
ARl ,ADDRESS OF BACKWARD PROPAGATION VALUES (b(O,n-1» 
RC 'RC = P - 2 

REGISTERS USED AS INPUT: R2, ARO, AR1, RC 
REGISTERS MODIFIED: RO, R1, R2, R3, RS, RE, RC, ARO, AR1 
REGISTER CONTAINING RESULT: R2 (f(p,n» 

. PROGRAM SIZE: 11 WORDS 

EXECUTION CYCLES: 5 + 3p 

.global LATINV 

* i = 1 
* 
LATINV RPTBD 

* 
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MPYF3 

tDF 
MPYF3 

LOOP 

*ARO,*AR1;RO 

R2,R3 
*ARO++(1),R2,R1 

Setup the delayed repeat 
block loop 
k(1) * b(O,n-1) -> RO 
Assume f(O,n) -> R2. 
Put b(O,n) = f(O,n) -> R3. 
k(1) * f(O,n) -> R1 
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* 2 <= i <= P (Repeat block loop start here) 
* 
II 

* 

" * 
LOO 
* 
* 
* 

* 

II 

* 
* 
* 

MPYF3 
ADDF3 

ADDF3 
STF 

MPYF3 

I = P + 1 

BUD 
ADDF3 

ADDF3 

STF 
NOP 

end 

.end 

*ARO,*++AR1(1),RO 
R2,RO,R2 

*-AR1(1),Rl,R3 
R3,*-AR1(1) 

*ARO++(1),R2,Rl 

(CLEANUP) 

Rll 
R2, RO, R2 

*AR1,Rl,R3 

R3,*ARl 

; k(i) * b(i-l,n-l) -> RO 
f(i-l-l,n) + k(i-l) *b(i-l-l,n-l) 
= f(i-l,n) -> R2 

b(i-l-l,n-l) + k(i-l)*f(i-l-l,n) 
= b(i-l,n) -> R3 
b(i-l-l,n) -> b(i-l-l,n-l) 

k (i) * f (i-l, n) -> Rl 

Delayed return 
f(p-l,n) + k(p)*b(p-l,n-l) 
= f(p,n) -> R2 

b(p-l,n-l) + k(p)*f(p-l,n) 
= b(p,n) -> R3 
b(p-l,n) -> b(p-l,n-l) 

The structure of the forward lattice filter, shown in Figure 12-7, is similar to 
that of the inverse filter (also shown in the figure). These corresponding 
equations describe the lattice filter: 

f(i-1,n) = f(i,n) - k(i) b(i-1,n-1) 
b(i,n) = b(i-1,n-1) + k(i) f(i-1,n) 

Initial conditions: 

f(p,n) = x(n), b(i,n-1) = 0 for i = 1, .,., P 

Final conditions: 

y(n) = ((O,n). 

The data memory organization is identical to that of the inverse filter, as 
shown in Figure 12-6. Example 12-43 shows the implementation of the lat­
tice filter on the 'C40. 
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Figure 12-7. Structure of the (Forward) Lattice Filter 

x(n) - ~p, n) ~ . f(2. n) f(1. n) ::x ~~~ ~\:x: :::x 
b(p, n) B b(2, n) B b(1, n) 

Example 12-43. Lattice Filter 
* TITLE LATTICE FILTER 
* * SUBROUTINE LATICE 
* 

LAJU LATICE 
LOAD ARO 
LOAD AR1 
LOA RC 

ARGUMENT ASSIGNMENTS: 
ARGUMENT I FUNCTION 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

--------+-----------------------------------~-
R2 I F(P,N) = E(N) = EXCITATION 
ARO I ADDRESS OF FILTER COEFFICIENTS (K(P» 
AR1 I ADDRESS OF BACKWARD PROPAGATION 

I VALUES (B (P-1, N-l) ) 
RC I RC=P-2 . 

* REGISTERS USED AS INPUT: R2, ARO, AR1, RC 
* REGISTERS MODIFIED: RO, R1, R2,R3, RS, RE, RC, ARO, AR1 
* REGISTER CONTAINING RESULT: R2 (f(O,n» 
* * PROGRAM SIZE: 13 WORDS 
* 

Concluded on next page 
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Example 12-43. Lattice Filter (Concluded) 

* 
* 

* 
* 
LATICE 

* 
* 
* 

* 
LOOP 

* 
* 
* 
* 

* 
I I 
* 
* 
* 

EXECUTION CYCLES: 3 + 5P 

.global 

RPTBD 

MPYF3 
SUBF3 
NOP 

LATICE 

LOOP 

*ARO,*ARl,RO 
RO,R2,R2 

Setup the delayed repeat 
block loop 
K(P) * B(P-l,N-l) -> RO 
Assume F(P,N) -> R2 
F(P,N)-K(P)*B(P-l,N-l) 
= F(P-l,N) -> R2 

2 <= I <= P (Repeat block loop start here) 

MPYF3 
MPYF3 

ADDF3 

STF 
SUBF3 

*ARO,R2,Rl K(I) * F(I-l,N) -> Rl 
* - -ARO(l),*-ARl(l),RO K(I-l) * 

B(I-l-l,N-l) -> RO 
*ARl - -(l),Rl,R3 B(I-l,N-l) + K(I)*F(I-l,N) 

= B(I,N) -> R3 
R3,*+ARl(2) B(I,N) -> B(I,N-l) 
RO,R2,R2 F(I-l,N)-K(I-l) 

*B(I-l-l,N-l) 
= F(I-l-l,N) -> R2 

I = 1 (CLEANUP) 

BUD 
MPYF 
ADDF3 

STF 
STF 

end 

end 

Rll 
*ARO,R2,Rl 
*ARl,Rl,R3 

R3,*+ARl(l) 
R2,*ARl 

Delayed return 
K(l) * F(O,N) -> Rl 
B(O,N-l) + K(l)*F(O,N) 
= B(l,N) -> E3 
B(l,N) -> B(l,N-l) 
F(O,N) -> B(O,N-I) 
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12.5 Programming Tips 

Programming style is highly personal and reflects each individual's prefer­
ences and experiences. The purpose of this section is not to impose any 
particular style. Instead, it emphasizes some of the features of the 'C40 that 
can help in producing faster and/or shorter programs. The tips cover both 
C compiler and assembly language programming. 

12.5.1 C-Callable Routines 
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The 'C40 was designed with a large register file, software stack, and large 
memory space in order to implement a high-level language (HLL) compiler 
easily. The first such implementation supplied is a C compiler. Use of the C 
compiler increases the transportability of applications that have been tested 
on large, general-purpose computers and decreases their porting time. 

To use the compiler efficiently, complete the following steps: 

1) Write the application in the high-level language. 

2) Debug the program. 

3) Estimate if it runs in realtime. 

4) If it doesn't, identify places where most of the execution time is spent. 

5) Optimize these areas by writing assembly language routines that imple-
ment the functions. 

6) Call the routines from the C program as C functions. 

When writing a C program, you can increase the execution speed by maxi­
mizing the use of register variables. For more information, refer to the 
TMS320 Floating-Point DSP Optimizing C Compiler User's Guide (litera­
ture number SPRU034, due for release 3Q, 1991). 

Certain conventions must be observed in writing a C-callable routine. These 
conventions are outlined in the Runtime Environment chapter of the 
TMS320 Floating-Point DSP Optimizing C Compiler User's Guide. Certain 
registers are saved by the calling function, and others need to be saved by 
the called function. The C compiler manual helps achieve a clean interface. 
The end result is the readability and natural flow of a high-level language 
combined with the efficiency and special-feature use of assembly language. 
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12.5.2 Hints for Optimizing Assembly Code 

Each program has particular requirements. Not all possible optimizations 
will make sense in every case. The suggestions presented in this section 
can be used as a checklist of available software tools. 

o Use delayed branches. Delayed branches execute in a single cycle; 
regular branches execute in four. The three instructions that follow the 
delayed branch are executed whether the branch is taken or not. If few­
er than three instructions are used, use the delayed branch and append 
NOPs. Machine cycles (time) are still being saved. 

o Use delayed subroutine call and return. Regular subroutine CALL 
and RETS execute in four cycles. The delayed subroutine call can be 
achieved by using link and jump (LAJ) and delayed branches with R11 
register mode (BUD R 11) instructions. Both LAJ and BUD instructions 
execute in a single cycle. The rule for using LAJ instruction is the same 
as for delayed branches. 

o Apply the repeat single/block construct. In this way, loops are 
achieved with no overhead. Nesting such constructs will not normally 
increase efficiency, so try to use the feature on the most often per­
formed loop. The RPTBD is a single-cycle instruction, and the RPTS 
and RPTB are four-cycle instructions. The usage of RPTBD is similar 
to that of the delayed branches. Note that RPTS is not interruptible, and 
the executed instruction is not refetched for execution. This frees the 
buses for operands. 

o Use parallel instructions. It is possible to have a multiply in parallel 
with an add (or subtract) and to have stores in parallel with any multiply 
or ALU operation. This increases the number of operations executed in 
a single cycle. For maximum efficiency, observe the addressing modes 
used in parallel instructions and arrange the data appropriately. You can 
have loads in parallel with any multiply or add (or subtract). Since the 
result of a multiply by one or an add of zero is the same as a load, parallel 
instructions with a data load can be implemented by substituting the 
load instruction with a multiply or an add instruction with one extra 
register containing a one or zero. 
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Q Maximize the use of registers. The registers are an efficient way to 
access scratch-pad memory. Extensive use of the register file facilitates 
the use of parallel instructions and helps avoid pipeline conflicts when 
you use register addressing (register addressing is described in 
subsection 5.1.1 on page 5-3). 

Q Use the cache. Use cache especially in conjunction with slow external 
memory. The cache is transparent to the user, so make sure that it is 
enabled. 

Q Use Internal memory instead of external memory. The internal 
memory (2K x 32 bits RAM and 4K x 32 bits ROM) is considerably faster 
to access. In a single cycle, two operands can be brought from internal 
memory. You can maximize performance if you use the DMA in parallel 
with the CPU to transfer data to internal memory before you operate on 
them. 

Q Avoid pipeline conflicts. If there is no problem with program speed, 
ignore this suggestion. For time-critical operations, make sure that 
cycles are not missed because of conflicts. To identify conflicts, run the 
trace function on the development tools (simulator, emulators) with the 
program tracing option enabled. The tracing immediately identifies the 
pipeline conflicts. Consult the appropriate section of this user's guide 
for an explanation of the reason for the conflict. You can then take steps 
to correct the problem. 

The above checklist is not exhaustive, and it does not address some fea­
tures outlined in more detail in the different sections of this manual. To learn 
how to exploit the full power of the 'C40, carefully study its architecture, 
hardware configuration, and instruction set described in this user's guide. 
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12.6 Peripherals 

TMS320C40 peripheral modules include one analysis module, two timers, 
six direct memory access (DMA) controllers, and six high speed bi-direc­
tional communication ports. They are designed to improve system perform­
ance and decrease system cost without reducing the computational 
throughput of the CPU. These peripheral modules are controlled through 
memory-mapped registers located on the dedicated peripheral bus. The ex­
amples that show how to program the timer, communication port, and DMA 
operations are presented in the following subsections. 

12.6.1 Timers 

There are two general-purpose, 32:-bit timers on the 'C40 device. Both tim­
ers are identical to and independent from each other (detailed information 
on the timers is in Section 9.10 on page 9-45). The timers are controlled by 
three registers: timer global control register, timer counter register, and tim­
er period register. Pins TClKO and TClK1 of 'C40 are dedicated for timers. 
These pins can be configured as either general-purpose data I/O or timer. 

If bit 0 and bit 9 of the timer global control register are set to 0, the TClKx 
pin is configured as a general-purpose data I/O pin. Timer counter and peri­
od registers have no effect on this configuration. Bit 1 of the timer global con­
trol register is used to configure TClKx as an input or output pin. If TClKx 
is configured as an output pin (bit 1 = 1), the data value in bit 2 of the timer 
global control register is shown on TClKx. If TClKx is configured as an in­
put pin (bit 1 = 0), the signal on TClKx is shown in bit 3 of the timer global 
control register. 

If bit 0 of the timer global control register is set to 1, pin TClKx is configured 
as a timer pin. The frequency of the timer signaling is specified by the timer 
period register. However, this assumes that the timer counter register 
equals 0 ( writing 1 to bit 6 of the timer global control register will reset the 
counter register, too). If the timer counter register has a nonzero value in it, 
the first period will be different than the others. When the counter register 
is set to a value greater than the period register, the counter will count, roll 
over to 0, and continue counting to period register. Therefore, it is important 
to have correct values in the timer period and counter registers before start­
ing the timer (writing a 1 to bit 7 of the timer global control register starts the 
timer). 
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The frequency of the timer signaling is determined by the frequency of the 
timer input clock and the period register. The following equations are valid 
with either an internal or an external timer clock: 

f(pulse mode) = f(timer clock) / period register 
f(clock mode) = f(timer clock) / (2 x period register) 

When the period and counter register are zero, the operation of the timer 
is dependent upon the cip mode selected. In pulse mode (Cip = 0), TSTAT 
is set and remains set. In the other words, the frequency is equal to infinite. 
In clock mode (CiP = 1), the width of the cycle is 2/f(H1), and the external 
clock is ignored. Therefore, the maximum frequency of timer clock gener­
ated by internal clock is f(H1)/2. Example 12-44 shows how to set up the 
'C40 timer to generate the maximum frequency clock through the TCLKx 
pin. 

Example 12-44. Maximum Frequency Timer Clock Setup 
* TITLE MAXIMUM FREQUENCY TIMER CLOCK SETUP 
* * THIS EXAMPLE SHOWS HOW TO SET UP TIMER TO GENERATE MAXIMUM 
* FREQUENCY TIMER CLOCK USING INTERNAL CLOCK. WHERE 
* "TIMER REGISTER" SECTION IS LOCATED FROM 808020H. 
* 
TIMO CTL REG 
TIMO-CNT-REG 

.usect 

.usect 

.usect 

"TIMER REGISTER", 4 
"TIMER-REGISTER", 4 
"TIMER=REGISTER",8 TIMO=PRD=REG 

.text 

LDI O,RO 
STI RO,@TIMO PRD REG 
LDI 3C1H,RO -
STI RO,@TIMO_CTL_REG 

.end 

12.6.2 Communication Ports 
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In order to provide direct processor-to-processor communication, 'C40 has 
six parallel bidirection communication ports (see Chapter 8). Since these 
ports have port arbitration units to handle the ownership of the communica­
tion port data bus between the processors, the programmer needs to con­
centrate only on the internal operation of the communication ports. For soft­
ware, these communication ports can be treated as 32-bit on-chip data I/O 
FIFO buffers. Processor read/write data from/to communication is simple: 
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Read data from comm. port 0 

or 

STI RO, @commyortO_output ; Write data to comm. port 1 

If the CPU or DMA reads from or writes to the communication port I/O FI FO 
and the I/O FIFO is either empty (on a read) orfull (on a write), the read/write 
execution will be extended until the data is available in the input FIFO for 
a read, or the space is available in the output FIFO for a write. Sometimes, 
this can be used to synchronize the devices. However, this will slow down 
thi:l processing speed and even hang up the processor. Avoid such situa­
tions. 

Each 'C40 communication port provides four flags to indicate the status of 
the port: 

ICRDY (input channel ready) 
= 0, the input channel is empty and not ready to be read. 
= 1, the input channel contains data and is ready to read. 

ICFULL (input channel full) 
= 0, the input channel is not full. 
= 1, the input channel is full. 

OCRDY (output channel ready) 
= 0, the output channel is full and not ready to be written. 
= 1, the output channel is not full and ready to be written. 

OCEMPTY (output channel empty) 
= 0, the output channel is not empty. 
= 1, the output channel is empty. 

These flags can be used to synchronize the CPU/DMA access to the com­
munication port. Example 12-45 shows reading data from the communica­
tion port eight data at a time using the CPU ICFULL interrupt. 
Example 12-46 shows writing data to a communication port one datum at 
a time using the polling method. The example shows DMA reads/writes of 
data from/to the communication port (DMA is discussed in the next subsec­
tion, subsection 12.6.3). 

12-99 



Peripherals - Communication Ports 

Example 12-45. Read Data from Communication Port With CPU ICFULL Interrupt 

* 
* 
* 
* 
* 
* 
* 
* 

ICFULLO 

READ 

I I 
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TITLE READ DATA FROM COMMUNICATION PORT WITH CPU 
ICFULL INTERRUPT 

THIS EXAMPLE ASSUMES THE ICFULL 0 INTERRUPT VECTOR IS SET IN THE 
CPU INTERRUPT VECTOR TABLE. THE EIGHT DATA ARE READ IN 
WHENEVER THE DATA IS FULL IN COMM PORT 0 INPUT FIFO. 

LDA 

LDA 

LDA 
AND3 

STI 
OR 
OR 

PUSH 
PUSH 
PUSH 
PUSH 
RPTBD 
LDI 
LDI 

NOP 

LDI 

STI 

STI 
POP 
POP 
POP 
POP 
RETI 

i 
@COMM_PORTO_INPUT,AROi 

@INTERNAL RAM,AR1 
OF7H,*AR2~R9 

Load comm port 0 
control reg address 
Load comm port 0 
input FIFO address 
Load internal RAM address 
Unhalt comm port 0 

i input channel 
R9, *AR2 
04H,IIE 
02000H,ST 

ST 
RS 
RE 
RC 
READ 
6, RC 
*ARO,R1O 

*ARO,R1O 

R1O,*AR1++(1) 

R10, *AR1++ (1) 
RC 
RE 
RS 
ST 

Enable ICRDY 0 interrupt 
Enable CPU global interrupt 

Setup for loop READ 
Set repeat counter 
Read data from comm port 0 
input 

Read data from comm port 0 
input 
Store data into internal RAM 

Store data into internal RAM 
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Example 12-46. Write Data to Communication Port With Polling Method 

* 
* 
* 
* 
* 
* 
* 
* 

WAIT: 

WRITE COMM 

TITLE WRITE DATA TO COMMUNICATION PORT WITH POLLING METHOD 

THE BIT 8 OF COMMUNICATION PORT 0 CONTROL REGISTER WILL BE 
SET ONLY WHEN THE OUTPUT FIFO IS FULL. THIS EXAMPLE CHECKS 
THIS BIT TO MAKE SURE THERE IS SPACE AVAILABLE IN 
OUTPUT FIFO. 

LDA @COMM_PORTO_CTL,AR2 Load comm port 0 control reg 
address 

LDA @COMM_PORTO_OUTPUT,AROj Load comm port 0 output 
FIFO address 

LDA @INTERNAL RAM,ARI Load internal RAM address 
AND3 OEFH,*AR2-;R9 Unhalt comm port 0 output 

channel 
STI R9,*AR2 
LDI OlOOH,R9 Load mask for bit 8 
TSTB *AR2,R9 ; Check if output FIFO is full 
BZD WAIT If yes, check again 
LDI *ARI++(I), RIO Read data from internal RAM 
STI RIO,*ARO Store data into comm port 

o output 

12.6.3 Direct Memory Access 

The 'C40 direct memory access (DMA) coprocessor supports six DMA 
channels (detailed information on DMA is in Chapter 9). These channels 
perform transfers to and from anywhere in the processor memory map. The 
DMA coprocessor is a self-programming device that allows data transfers 
to occur without any intervention from the CPU. It also provides a special 
split-mode to support 12 DMA channels for communication port memory 
transfer. This section contains examples of DMA programs from a very sim­
ple single-block memory-to-memory transfer to a sophisticated memory 
transfer with autoinitialization. 
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Example 12-47 shows one way for setting up DMA channel 2 to initialize 
an array to zero. This DMA transfer is set up to have higher priority over a 
CPU operation and to generate an interrupt flag, DMA INT2, after the trans­
fer is completed. The DMA control register is set to 03040007H (refer to 
DMA control register bit functions in Table 9-1 on page 9-8 for further infor­
mation on this setup). 

Example 12-47. Array initialization With DMA 

* 
* 
* 
* 
* 
* 
* 
* 
DMA2 
CONTROL 
SOURCE 
SRC IDX 
COUNT 
DESTIN 
DES IDX 
ZERO 

START 
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TITLE ARRAY INITIALIZATION WITH DMA 

THIS EXAMPLE INITIALIZES A 128 ELEMENTS ARRAY TO ZERO. THE DMA 
TRANSFER IS SET UP TO HAVE HIGHER PRIORITY OVER CPU OPERATION. 
THE DMA INT2 INTERRUPT FLAG IS SET TO 1 AFTER THE TRANSFER IS 
COMPLETED. 

.data 

.word 001000COH 

.word 00C40007H 

.word ZERO 

.word 0 

.word 128 

.word ARRAY 

.word 1 

.word 0.0 

.bss ARRAY, 128 

.text 
LOP @DMA2 
LOA @DMA2,ARO 
LDI @SOURCE,RO 
STI RO, *+ARO (1) 
LDI @SRC_IDX,RO 

STI RO, *+ARO (2) 
LDI @COUNT,RO 
STI RO, *+ARO (3) 
LDI @DESTIN,RO 

STI RO,*+ARO(4) 
LDI @DES_IDX,RO 

STI RO,*+ARO(5) 
LDI @CONTROL,RO 
STI RO,*ARO 
.end 

DMA channel 2 map address 
DMA register initialization data 

Array initialization value 0.0 

Load data page pointer 
Point to DMA channel 2 registers 
Initialize DMA source register 

Initialize DMA source index 
register 

Initialize DMA count register 

Initialize DMA destination 
register 

Initialize DMA destination 
index register 

Start DMA channel 2 transfer 
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The DMA transfer can be synchronized with external interrupts, communi­
cation port ICRDY/OCRDY signals, and timer interrupts. In order to enable 
this feature, the SYNCH MODE field, bits 6-7, of the DMA control register 
must be configured to a proper value (Table 9-1 on page 9-8), and the 
corresponding bits of the DMA interrupt enable (DIE) register must be set. 
Example 12-48 sets up DMA channel 4 read synchronization with the com­
munication port ICRDY signal. The DMA is set up to continuously transfer 
data from the communication port input register until the START field, bits 
22-23 of the DMA control register, is changed by the CPU. 

Example 12-48. DMA Transfer With Communication Port ICRDY Synchronization 

* 
* 
* 
* 

TITLE DMA TRANSFER WITH COMMUNICATION PORT ICRDY 
SYNCHRONIZATION 

* THIS EXAMPLE SETS UP DMA CHANNEL 4 TO TRANSFER DATA FROM 
* COMMUNICATION PORT INPUT REGISTER TO INTERNAL RAM WITH ICRDY 
* SIGNAL READ SYNCHRONIZATION. THE TRANSFER MODE OF THE DMA IS 
* SET TO 00. THEREFORE THE TRANSFER WON'T STOP UNTIL THE START 
* BITS OF THE DMA CONTROL REGISTER IS CHANGED. 
* 
DMA4 
CONTROL 
SOURCE 
SRC IDX 
COUNT 
* 
DESTIN 
DES IDX 

START 

.data 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.text 
LDP 
LDA 
LDI 
STI 
LDI 
STI 
LDI 
STI 
LDI 
STI 
LDI 

STI 
LDI 
STI 

LDHI 
.end 

OOlOOOEOH 
00COO040H 
00100081H 
0 
0 

002FF800H 
1 

@DMA4 
@DMA4,ARO 
@SOURCE,RO 
RO, *+ARO (1) 
@SRC IDX,RO 
RO,*+ARO(2) 
@COUNT,RO 
RO,*+ARO(3) 
@DESTIN,RO 
RO,*+ARO(4) 
@DES_IDX,RO 

RO, *+ARO (5) 
@CONTROL,RO 
RO,*ARO 

OlOH,DIE 

DMA channel 4 map address 
DMA register initialization data 

Transfer counter is set to 
largest value 

Load data page pointer 
Point to DAM channel 4 registers 
Initialize DMA source register 

Initialize DMA source index register 

Initialize DMA count register 

Initialize DMA destination register 

Initialize DMA destination index 
register 

Start DMA channel 4 transfer 

Enable ICRDY 4 read sync. 

If external interrupt signals are used for DMA transfer synchronization, then 
pins 1I0FO-3 must be configured as interrupt pins also. 
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The 'C40 DMA split mode is another way besides memory map address to 
transfer data fromlto the communication port. When the split-mode bit of the 
DMA control register is set, the DMA is separated into primary and auxiliary 
channels. The primary channel transfers data from memory to the commu­
nication port output register, and the auxiliary channel transfers data from 
the communication port to memory. The communication port number is se­
lected in bits15 - 17 of the DMA control register. 

Example 12-49 shows how to set up DMA channel 1 into split mode. The 
DMA primary channel transfers data from internal RAM to communication 
port 3 using external interrupt INT2 synchronization and bit-reversed ad­
dressing. The DMA auxiliary channel transfers data from communication 
port 3 to internal RAM using external interrupt INT3 synchronization and lin­
ear addressing. 

Example 12-49. DMA Split-Mode Transfer With Extemallnterrupt Synchronization 

* 
* TITLE DMA SPLIT-MODE TRANSFER WITH EXTERNAL INTERRUPT 

SYNCHRONIZATION 
* 
* THIS EXAMPLE SETS UP OMA CHANNEL 1 TO SPLIT-MODE. THE PRIMARY 
* CHANNEL TRANSFERS DATA FROM INTERNAL RAM TO COMM PORT 3 OUTPUT 
* REGISTER WITH EXTERNAL INTERRUPT INT2 SYNCHRONIZATION AND BIT-
* REVERSED ADDRESSING. THE AUXILIARY CHANNEL TRANSFERS DATA FROM 
* COMMUNICATION PORT 3 INPUT REGISTER TO INTERNAL RAM WITH 
* EXT~RNAL INTERRUPT INT3 SYHCHRONIZATION AND LINEAR ADDRESSING. 
* 
DMAl 
CONTROL 
SOURCE 
SRC IDX 
COUNT 
DESTIN 
DES lOX 
AUX-CNT 

STAR 
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. data 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.text 
LOP 
LOA 
LDI 
STI 
LDI 
STI 
LOI 
STI 
LOI 

OOlOOOBOH 
03CDDOD4H 
002FFCOOH 
oaH 
a 
002FFaOOH 
1 
a 

@OMAl 
@DMA1,ARO 
@SOURCE,RO 
RO,*+ARO(l) 
@SRC IOX,RO 
RO, *+ARO (2) 
@COUNT,RO 
RO, *+ARO (3) 
@OESTIN,RO 

DMA channel 1 map address 
DMA register initializati'on data 

The same value as IRO for bit-reversed 

Load data page pointer 
Point to DAM channel 1 registers 
Initialize DMA primary source register 

nitialize OMA primary source index reg 

Initialize OMA primary count register 

Initialize OMA aux destination 
; register 
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STI 
LOI 

STI 
LOI 

STI 
LOI 
STI 

LOI 

LOI 
.end 

RO,*+ARO(4) 
@OES_IOX,RO 

RO,*+ARO(5) 
@AUC_CNT,RO 

RO, *+ARO (7) 
@CONTROL,RO 
RO,*ARO 

OllOOH,IIF 

OAOH,OIE 
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Initialize OMA aux destination 
index register 

Initialize OMA auxiliary count 
register 

Start OMA channel 1 transfer 

; Configure INT2 and INT3 as 
interrupt pins 
Enable INT2 read and INT3 write sync. 

An advantage of the 'C40 DMA is the autoinitialization feature. This allows 
you to set up the DMA transfer in advance and makes the DMA operation 
100 percent independentfrom the CPU. When the DMA is operating in auto­
initialization mode, the link pointer and auxiliary link pointer are used to ini­
tialize the registers that control the DMA operation. The link pointer may be 
incremented (AUTOINIT STATIC == 0 - shown in Table 9-1 on page 9-8) 
during autoinitialization or held constant (AUTOINIT STATIC = 1) during au­
toinitialization. This option allows autoinitialization values to be stored in se­
quential memory locations or in stream-oriented devices such as the 
on-chip communication ports or external FIFOs. When DMA SYNC MODE 
is enabled. The DMA autoinitialization operation can be configured to syn­
chronize with the same signal too. Example 12-50 sets up DMA channel 0 
to wait for the communication port to input the initialization value. After DMA 
autoinitialization is complete. the DMA channel starts transferring data from 
the communication port input register to internal RAM. 
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Example 12-50. OMA Autoinitialization With Communication Port ICROY 

* 
* TITLE OMA AUTOINITIALIZATION WITH COMMUNICATION PORT ICROY 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
DMAO 
OMA INIT 
LINK 

THIS EXAMPLE SETS UP DMA CHANNEL 0 TO WAIT FOR COMMUNICATION 
PORT TO INPUT THE INITIALIZATION VALUE. THE DMA AUTOINITIAL­
IZATION AND TRANSFER ARE BOTH DRIVEN BY ICRDY 0 FLAG. AFTER 
DMA AUTOINIT IS COMPLETED, THE DMA CHANNEL STARTS TRANSFERRING 
DATA FROM COMM PORT INPUT REGISTER TO INTERNAL RAM WITH ICRDY 
o READ SYNCHRONIZATION. THE VALUES IN COMM PORT 0 INPUT FIFO 
SHOULD BE: 

SEQUENCE VALUE 
----------+------------------------------------------------

1 I OOC40047H (STOP AFTER TRANSFER COMPLETED) 
I OR OOC4054BH (REPEAT AFTER TRANSFER COMPLETED) 

2 I OOl00041H 
3 I OH 
4 I 20H 
5 I 002FF800H 
6 I lH 
7 I OOl00041H 

.data 

.word OOlOOOAOH DMA channel 0 map address 

.word 0OO4054BH DMA initialization control word 

.word OOlOOO41H Comm port input register address 
OMA START .word OOC4054BH DMA start control word 

START 
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.text 
LOP @OMAO Load data page pointer 
LOA @OMAO,ARO Point to OMA channel 0 registers 
LDI @DMA_INIT,RO Initialize DMA control regiester 
STI RO,*ARO 
LDI @LINK,RO Initialize DMA link'pointer 
STI RO, *+ARO (6) 
LDI @DMA_START,RO Start DMA channel 0 transfer 
STI RO,*ARO 
LDI OlH,DIE Enable ICRDY 0 read sync . 
. end 

The DMA autoinitialization and transfer will continue executing if 
the DMA autoinitialization is still enabled. Therefore, a DMA setup like the 
one in Example 12-50 can make it possible for the DMA operation to be 
controlled by an external device through the communication port. 
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With the autoinitialization feature, the 'C40 DMA can support a variety of 
DMA operations without slowing down CPU computation. A good example 
is a DMA transfer triggered by one interrupt signal. Usually, this is achieved 
by starting a DMA activity with a CPU interrupt service routine, but this uti­
lizes CPU time. However, with the autoinitialization feature, 'C40 DMA can 
achieve this kind of setup without CPU interruption, as shown in 
Example 12-51. One method is to set up a single interrupt-driven dummy 
DMA transfer with autoinitialization. When the interrupt signal is set. the 
DMA will complete the dummy DMA transfer and start the autoinitialization 
for the desired DMA transfer. 

Example 12-51. Single-interrupt-Driven DMA Transfer 

* 
* TITLE SINGLE INTERRUPT-DRIVEN DMA TRANSFER 
* 
* 
* 
* 
* 
* 
* 
DMA5 
DMA INIT 
LINK 

THIS EXAMPLE SETS UP A DUMMY DMA TRANSFER FROM INTERNAL RAM 
TO THE SAME MEMORY WITH EXTERNAL INT 0 SYNCHRONIZATION AND 
AUTOINITIALIZATION FOR TRANSFERRING 64 DATA FROM LOCAL MEMORY 
TO INTERNAL RAM. AFTER THE SECOND TRANSFER IS COMPLETED, THE 
DMA IS RE-INITIALIZED TO FIRST DMA RANSFER SETUP. 

; DMA channel 5 map address 
; DMA initialization control word 
; 1st DMA link list address 

DMA START 
DMAI 

.data 

. word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.worq 

.word 

.word 

. word 

.word 

.word 

.text 
LDP 
LDA 
LDI 
STI 
LDI 
STI 
LDI 
STI 
LDI 
LDHI 

001000FOH 
0000004BH 
DMA1 
OOC0004BH 
OOC0004BH 
002FF800H 
OOOOOOOOH 
0000000lH 
002FF800H 
OOOOOOOOH 
DMA2 
OOC4000BH 
00400000H 
0000000lH 
00000040H 
002FF800H 
0000000lH 
DMA1 

DMA start control word 
1st dummy DMA transfer link list 

DMA2 

START 

.end 

@DMA5 
@DMAS,ARO 
@DMA INIT,RO 
RO,*ARO 
@LINK,RO 
RO,*+ARO(6) 
@DMA START,RO 
RO, *ARO 
01H,IIF 
0800H,DIE 

; The desired DMA transfer link 
list 

; Load data page pointer 
; Point to DMA channel 5 registers 
; Initialize DMA control register 

Initialize DMA link pointer 

Start DMA channel 5 transfer 

; Configure INTO as interrupt pins 
; Enable INT 0 read sync. for 

DMA channel 5 
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The TMS320C40's advanced interface design can be used to implement a 
wide variety of system configurations. Its two external buses and DMA ca­
pability provide a flexible parallel 32-bit interface to byte- or word-wide de­
vices; the communication ports provide a glueless interface to other 'C40s; 
and the interrupt interface, communication ports, and general-purpose digi­
tal 110 provide communication with a multitude of peripherals. 

This chapter describes how to use the 'C40's interfaces to connect to vari­
ous external devices. Specific discussions include implementation of paral­
lel interface to devices with and without wait states, parallel processing 
through the communication ports and port control logic, and system control 
function circuit design. 

Major topics discussed in this chapter are as follows: 

Section Page 

13.1 System Configuration Options Overview ................ 13-3 

• Categories of Interfaces on the TMS320C40 ......... 13-3 

13.2 Boot Loader Description and External ROM Interfacing ... 13-5 

• TMS320C40 Boot Loader Description ............... 13-5 

• Examples of External Memory Loads ............... 13-8 

• 'Communication Port Loading ...................... 13-8 

• External ROM Interfacing to the TMS320C40 ........ 13-9 

• External Memory Loading ......................... 13-14 

• TMS320C40 Boot Loader Source Program .......... 13-14 

13.3 Global and Local Bus Interface " . . . . . . . . . . . . . . . . . . . . . .. 13-20 

• Zero Wait-State Interface to RAMs .................. 13-20 
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• DRing of the Ready Signals {SWW = 10} ............ 13-28 
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13.1 System Configuration Options Overview 
The 'C40 interfaces connect to a wide variety of device types. Each of these 
interfaces is tailored to a particular family of devices. 

13.1.1 Categories of Interfaces on the TMS320C40 

The interface types on the 'C40 fall into several different categories, de­
pending on the devices to which they are .intended to be connected. Each 
interface comprises one or more signal lines, which transfer information and 
control its operation. Shown in Figure 13-1 are the signal line groupings for 
each of these interfaces. 

Figure 13-1. External Interfaces to the TMS320C40 
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Note: n = 0 for Communication Port 0, n = 1 for Communication Port 1, etc. 

Each interface is independent of the others, and different operations may 
be performed simultaneously on each interface. These pins are defined in 
more detail in Table 14-2 on page 14-5. 
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The global and local buses implement the primary memory-mapped 
interfaces to the device. These interfaces allow external devices such as 
DMA controllers and other microprocessors to share resources with one or 
more 'C40's through a common bus. 

The devices that can be interfaced to the 'C40 include memory, DMA de­
vices, and numerous parallel and serial peripherals and I/O devices. In ad­
dition, 'C40's can interface directly with each other, without external logic, 
through their communipation ports or their external flag pins 1I0F(Q-3). 
Figure 13-2 illustrates a typical configuration of a 'C40 system with different 
types of external devices and the interfaces to which they are connected. 

Figure 13-2. Possible System Configurations 
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The above block diagram in Figure 13-2 constitutes a more or less fully ex­
panded system. In an actual design, any subset or superset ofthe illustrated 
configuration may be used. 
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13.2 Boot Loader Description and External ROM Interfacing 
13.2.1 TMS320C40 Boot Loader Description/Operation 

The boot loader provided in the on-chip ROM of the 'C40 can load and ex­
ecute source programs that are received from a host processor, 
inexpensive ROM, or other standard memory devices. The 'C40 boot 
loader functions primarily as either a memory boot loader or a 
communication port boot loader. 
(J The memory boot loader supports user-definable byte, half-word, and 

full-word data formats, which allow the flexibility to load a source pro­
gram from memories having widths of a byte, 16 bits, and 32 bits. The 
source programs to be loaded reside in one of six predefined memory 
locations: Ox0030 0000, Ox4000 0000, Ox6000 0000, Ox8000 0000, 
OxAOOO 0000, and OxCOOO 0000 as listed in Table 13-1. 

(J The communication port boot loader waits for the first data input from 
one of the six communication port channels and uses that channel to 
perform the boot load. Format of the incoming data stream is similar to 
that for a memory data stream except that the source memory width is 
excluded (format is described in Table 13-2, page 13-7). 

Table 13-1 lists the pin values on IIOF(3-1 ), that select from which location 
the source program will be loaded. 

Table 13-1. Boot Loader Mode Selection Using Pins 1I0F(3--1) 

External Pin 

nOF3 nOF2 nOF1 Source Program Location 

1 1 0 Load source program from address 0030 OOOOh 

1 0 1 Load source program from address 4000 OOOOh 

1 0 0 Load source program from address 6000 OOOOh 

0 1 1 Load source program from address 8000 OOOOh 

0 1 0 Load source program from address AOOO OOOOh 

0 0 1 Load source program from address COOO OOOOh 

0 0 0 Reserved 

1 1 1 Load source program from communication port 
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13.2.2 Boot Load Sequence 

13-6 

A general sequence of events in boot loading a source program is as 
follows: 

1} Select the boot loader mode by resetting the processor while driving 
the on-chip ROM enable pin (ROMEN) high. The status of external pins 
1I0F(3-1} indicates where to find the source program to be loaded 
(memory or communication port). These options are listed in 
Table 13-1. (Pins 1I0F(3-1) are read as the 1I0F flags in the CPU 
IIF register (described in Table 3-6 on page 3-13).} 

2} The boot loader takes the following steps to determine the source pro­
gram's location: 

a) If an IIF(3-1} value of 1102 to 0012 (6 to 1) is found, the source 
program is loaded from the corresponding memory address shown 
in the top six lines of Table 13-1. 

b) If an IIF(3-1} value of 0002 (0) is found, the boot program is exited. 

c} If none of the combinations 0002 - 1102 are found, the boot loader 
program assumes loading will be via a communication port, and it 
starts checking communication port input channels (in the order 
port 0 through port 5). If no input is found from a communication 
port, the program returns to checking the status of the 1I0F(3-1) 
pins again. 

3) When the source program's data stream is found, the program is loaded 
at the address found in the fifth word of the data stream (format shown 
in Table 13-2) using the bus width specified in the first word (8, 16, or 
32 bits wide).The first five words of the source program specify its 
loading and execution criteria. Remaining words are the source 
program(s) and vector table pointers as shown in Table 13-2: 

4) An lACK instruction is exectued. The lACK indicates the completion of 
the boot load sequence. 

5} The source program is then executed (entry point is the first word of the 
first loaded program). 

The data stream with its source program(s) should be in the format shown 
in Table 13-2. The contents of words 4 through n vary for the different 
source programs loaded throughout the entire data stream.The first three 
words and the last three words are nonvariables that affect each of the 
source-program blocks. The eight least significant bits of the first word 
specify 
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Table 13-2. Structure of Source Program Data Stream 

Word 

1 

2 

3 

11+1 

11+2 

11+3 

Contents 

Memory width where source program resides (8,16, or 32 bits wide) 

Value to set In the global memory interface control register (shown In Figure 7-2, 
page 7-7, and Table 7-3). 

Value to set in the local memory interface control register (shown in Figure 7-2, 
page 7-7, and Table 7-3). 

~~~~~:-m:-'I':'"' 

Word of all zeroes. (Note that if several source-program blocks were sent, word 
nabove would bathe last word ofthe lastsource-program block. Each source-pro­
gram block would have the format shown in words 4 through n (shaded above). 
Then this word of all zeroes follows the last source program block). 

IVTP value (interrupt vector table pointer, see Section 3.2 on page 3-15). 

TVTP value (trap vector table pointer, see Section 3.2 on page 3-15). 

Memory location for lACK instruction (see lACK instruction in Chapter 11). 

the memory width. If byte or half-word wide is selected, the loading se­
quence is from LSBs to MSBs. 

Each source program in a multiple block program transfer can be loaded 
to different specified destinations. Each program block specifies its own 
block size and destination address at the beginning of the block. End the en­
tire block program loader function by appending an aU-zero word 
(OxOOOO OOOOh) to the last block (only). 

The second and third last words of the source memory define the interrupt 
vector table pointer (IVTP) and the trap vector table pointer (TVTP). The last 
word of the source memory defines the memory location for the lACK in­
struction. Since the lACK instruction brings down the lACK signal as data 
is read, the memory location specified in the lACK instruction has to be in 
external memory that is available in the system in order to bring the lACK 
signal low. Then the processor begins execution of the first code block. 
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13.2.3 Examples of External Memory Loads 

Example 13-1, Example 13-2, and Example 13-3 respectively show 
memory images for memory configured as byte wide, 16-bit wide, and 32-bit 
wide. These examples assume that: 
a The status of the IIOF(3-1) pins is 1102 after reset is deasserted 

(memory load from Ox030 OOOOh - see Table 13-1 on page 13-5). 
a The source program resides at memory location Ox030 OOOOh and 

defines the following: 
• Memory width for boot loader: 8, 16, or 32 bits 
• Global bus memory that requires one software wait state, external 

ROY (SWW = 11), page size = 64K for both STRBO and STRB1, 
and active address range = 1 G for both STRBO and STRB 1. 

• Local memory bus that requires two software wait states (SWW = 
01), page size = 32K, and active address range = 1 G for both 
STRBO and STRB1. 

• First block program with 294 words in length and destination ad­
dress at Ox002F F840h. 

• Second block program with 64 words in length and destination ad­
dress at Ox002F F800h. 

• IVTP and TVTP, which are overlapped and point to the beginning 
of the on-chip RAM. 

• Memory location of Ox30 OOOOh for lACK instruction. 

13.2.4 Communication Port Loading 

13-8 

A value of all ones on IIOF(3-1) signals that the source program is being 
transmitted via a communication port. Bringing all three of the IIOF(3-1) 
pins high also allows the pins to be used as interrupt lines without any exter­
nal decode logic. With pins IIOF(3-1) all high at reset, the 'C40 determines 
which channel contains the program by polling the input level of each port. 
The input data sequence of the communication boot loader is the same as 
that of the memory boot loader except for the source memory width defini­
tion (because the memory width is fixed on the communication port boot 
loader). 

Hardware Applications 
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13.2.5 External ROM Interfacing to the TMS320C40 

When the 'C40's ROMEN input pin is high and RESETLOC(1 ,0)=002 during 
reset, the memory boot loader can load programs stored in off-chip ROM 
to any valid external or internal memory in the 'C40's memory map. 

Regardless of what width ROM is used (byte-wide, 16-, or 32.,bit wide), the 
8 LSBs of the first word read of the data stream specify the memory width. 
As shown in the three data stream examples starting with Example 13-1 on 
page 13-10, the first byte for each memory width is: 
Q 8-bit memories: 08h 
Q 16-bit memories: 0010h 
Q 32-bit memories: 00000020h 

If 8- or 16-bit ROMs are used, the loading sequence is from LSBs to MSBs. 
The boot loader reads the contents of 16-bit wide memories (least signifi­
cant half word first) and packs each pair of 16-bit half words to make a 32-
bit word before loading each word to memory. Accordingly, the boot loader 
reads the contents of byte-wide memories (least significant byte first) and 
packs each group of four bytes into a 32-bit word before loading each word 
to memory. Since the boot loader does byte packing before loading, no ex­
ternal hardware is needed to pack the loaded bytes into a 32-bit word. For 
32-bit wide ROMs, no byte packing is necessary, because the ROM data 
width matches that of the 'C40, 

For 16-bit ROMs, the data read is expected to be in bit positions zero 
through fifteen. Thus, the half-word ROM's data lines should be interfaced 
to 'C40 data lines (L) D 15-0. For byte-wide ROMs, the data read is expected 
to be in bit pOSitions zero through seven. Hence, the byte-wide ROM's data 
lines should be interfaced to 'C40 data lines (L) D7-o. Even though the 'C40 
does not require that unused data lines be pulled up to Vee, it is recom­
mended that each unused data line be pulled up through separate 22-kilohm 
resistors to 5 volts for minimum power dissipation. 
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Example 13-1. Byte-Wide Configured Memory 

Word Address Value Comments 
0300000h 08h Memory width = 8 bits 

1 0300001h OOh 

0300002h OOh 

0300003h OOh 

0300004h FOh Global memory bus control word = 1 D7BC9FOh 

2 0300005h C9h (Described in Figure 7-2 on page 7-7.) 

0300006h 7Bh 

0300007h 1Dh 

0300008h 50h Local memory bus control word = 1 D739250h 

3 0300009h 92h (Described in Figure 7-2 on page 7-7.) 

030000Ah 73h 

030000Bh 1Dh 

.... ":,". '" 
::!,';'!]; -'ill ;;ii, 

, 'ii. i ... ,isourcep~b~~~hh)l, 
Note: Shaded area identifies source program block. 

Example concluded on next page 
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Example 13-1. Byte-Wide Configured Memory (Concluded) 

Address Value Comments 

03005B4h OOh Value 0 to terminate the program block load 

366 03005B5h OOh 

03005B6h OOh 

03005B7h OOh 

03005B8h OOh IVTP = 002FF800h 

367 03005B9h F8h 

03005BAh 2Fh 

03005BBh OOh 

03005BCh OOh TVTP = 002FF800h 

368 03005BDh F8h 

03005BEh 2Fh 

03005BFh OOh 

03005COh OOh Memory location for lACK instruction = 30 OOOOh 

369 03005C1h OOh 

03005C2h 30h 

03005C3h OOh (This is the final word in the data stream.) 

Note: Shaded area identifies source program block. 
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Example 13-2. 16-Bits-Wide Configured Memory 

Word Address Value Comments 
1 0300000h 0010h Memory width = 16 bits 

0300001h OOOOh 

2 0300002h C9FOh Global memory bus control word = 1 D7BC9FOh 

0300003h 1D7Bh 

3 0300004h 9250h Local memory bus control word .. 1 D739250h 

0300005h 1D73h 
'I, 'I, 'I, " 'I, "~I ", -"', '1, 'Ii ", 'I, ",. ", "I, 'I 

367 03002DCh F800h IVTP = 002FF80Oh 

03002DDh 002Fh 

368 03002DEh F800h TVTP = 002FF800h 

03002DFh 002Fh 

369 03002EOh OOOOh Memory location for lACK instruction = 30 OOOOh 

03002E1h 0030h (This is the final word in the data stream.) 

Note: Shaded areas identify source program blocks. 
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Example 13-3. 32-Bits-Wide Configured Memory 

Word Address Value Comments 

1 0300000h 00000020h Memory width = 32 bits 

2 0300001 h 1 D7BC9FOh Global. memory bus control word = 01 D7BC9FOh 

<::""':::"'~"<>"':::' ,,::>,Q~PQQO~h::"",:::."':::1,,(;r~3.~~5:Q~:·"':: "·"~~~I'r:n~mqrY"ijtJ~,,qorttol"WOrd'.~'·d1'QZ3~~5Qtl:",,,:::"<::"",: 
,:""',,>"4"">"":"" ,:""',,:03GOO'03t1"',,:"', ,,>O'OOQO,1'26h""'" ',:'1,st,:progra:m'·block,siz'e' .. "1,26h> .... " 

III I, I, I, II. I, 'I " '" '1,_ -I .. "_ ", 'I, 'I '" " ',. ';, " . 'I,. "" ',. ": .... "" ';, 'L, ';" ",. '" '., ';, 0,,_ '" "" 'I " 

.:2n<;l,·program·.blo¢k starts ··here •• (first'wc)f(;1l:, .. ,"'::,i'::>:,:,,'<>":::" 
"'/":::':'/"'::::'.' •. '""".",:" •.•. ":,:",>,, .. ,.'.:: ......... : .•••.• ' .•...•......... , ............. , ... ': •• "i: .. ,: ..... :.:::: ..... ,.:: ..... ::.:.',: ... '.::.:,: ... :,:,:,.:,:::::::::: 

/'. ' ... "." ......• ' .. '.' ..•. ,',' •. : •.. ,', •. , .... ," :'.,.'..' 
:: ... / . ... ,,' ,..-. ,/ .t'··· 

:::::::::::::::'.,:::,::,:,:,.::,:::::::,:~:,::::::::::':::,::::::',:::::::::':.' " ..... :: .. ,:::. ', ..... ,./: .:,',:, ........ ', ... ".:::::.:::: .... ,/., .... , 
. , .. "?rid::ptogri,iffi"919c~"~nd$ ·here·.(lastW9r~>,::,/' 

366 030016Dh Value 0 to terminate the program block load 

367 030016Eh 002FF800h IVTP = 002FF800h 

368 030016Fh 002FF800h TVTP = 002FF800h 

369 0300170h 00300000h Address location for lACK instruction = 00300000h 

Note: Shaded areas identify source program blocks. 
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13.2.6 1I0F(3-1) Pin Loading 

The load options are based upon the status of 1I0F(3-l) as general-pur­
pose input pins. Therefore, in order to select the correct boot loader mode, 
pins 1I0F(3-1) must be kept at a constant valid status valueforacertaintime 
period (values listed in Table 13-1 on page 13-5). See the 'C40 boot load­
er program for detailed information - Figure 13-4 starting on page 13-14. 

After the boot load is complete, the lACK signal is brought down for one 
cycle. Figure 13-3 shows an example circuit that generates the 1I0F(3-1) 
signals for boot load selection and also allows incoming external interrupts 
during normal mode of operation. In this example, after reset, the 1I0F pins 
stay low until the lACK signal is received. 

Figure 13-3. Circuit for Generation of a Low 110F signal for Boot Loader Selection 
+5V 

22K 

External 
74S174 Interrupt=D-

D Q---.J 
1I0Fn 
(n = 1, 2, or 3) 

(from 'C40) lACK TMS320C40 

13.2.7 TMS320C40 Boot Loader Source Program 

Figure 13-4. Boot Loader Source Program 

************************************************************ 
* 
* C40BOOT - TMS320C40 BOOT LOADER PROGRAM 
* (C) COPYRIGHT TEXAS INSTRUMENTS INC., 1990 
* 
*NOTE: 1. AFTER DEVICE RESET, THE PROGRAM IS CHECKING 
* THE INPUT STATUS OF IIOFl-3 PINS AND COMMUNI-
* CATION PORT INPUT FLAGS TO CONFIGURE ITSELF 
* WHEN ON CHIP ROM IS ENABLED (ROMEN=l). THE IIOFO 
* PIN IS ASSUMED TO BE PULLED HIGH. 
* 
* 2. THE FUNCTION SELECTION OF IIOFl-3 IS LISTED AS: 

* IJ:OF3 IJ:OF2 IIOFl FUNCTION 

* 1 1 0 Memory boot loader from 00300000H 

* 1 0 1 Memory boot loader from 40000000H 

* 1 0 0 Memory boot loader from 60000000H 
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Figure 13-4. Boot Loader Source Program (Continued) 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

0 1 1 Memory boot loader from 80000000H 

0 1 0 Memory boot loader from AOOOOOOOH 

0 0 1 Memory boot loader from COOOOOOOH 

0 0 0 Reserved 

1 1 1 Communication Port boot loader 

THE PROGRAM ASSUMES THE COMMUNICATION PORT BOOT 
LOADER IS THE DEFAULT FUNCTION. IF NO OTHER 
FUNCTION IS SELECTED,THE PROGRAM STARTS CHECKING 
THE COMMUNICATION PORT INPUT CHANNELS. IF THERE IS 
NO INPUT FROM A COMMUNICATION PORT, THE PROGRAM 
RECHECKS THE IIOF(3-1) STATUS AGAIN. 

3. MEMORY BOOT LOADER LOADS WORD, HALF-WORD, OR BYTE 
WIDE PROGRAM TO DIFFERENT SPECIFIED LOCATIONS. THE 8 
LSBs OF THE FIRST MEMORY SPECIFIES THE MEMORY WIDTH. 
IF THE HALF-WORD OR BYTE WIDE PROGRAM IS SELECTED, 
THE LSBs ARE LOADED FIRST AND THEN THE MSBs. THE NEXT 
2 WORDS CONTAIN THE CONTROL WORD FOR THE GLOBAL AND 
LOCAL MEMORY INTERFACE CONTROL REGISTERS. NEXT COME 
THE PROGRAM BLOCKS. THE FIRST TWO WORDS OF EACH 
PROGRAM BLOCK CONTAIN THE BLOCK SIZE AND DESTINATION 
ADDRESS WHERE THE PROGRAM IS TO BE LOADED. WHEN THE 
ZERO BLOCK SIZE IS READ, THE PROGRAM BLOCK LOADING 
IS TERMINATED. THE NEXT TWO WORDS ARE THE 
INITIAL VALUES FOR THE IVTP AND TVTP REGISTERS. 
AFTER THE BOOT LOADING IS COMPLETED, THE lACK SIG-
NAL WILL BE SENT OUT ACCORDING TO THE LAST WORD OF THE 
SOURCE MEMORY, AND THE PROGRAM COUNTER WILL 
BRANCH TO THE STARTING ADDRESS OF THE FIRST 
PROGRAM BLOCK. 

4.IF THE IIOF(3-1) ARE SETUP FOR COMMUNICATION PORT 
BOOT LOADER , THE PROCESSOR WILL WAIT FOR THE FIRST 
INPUT FROM AN INPUT COMMUNICATION CHANNEL AND USE 
THAT CHANNEL TO PERFORM THE DOWNLOAD. THE BEGIN­
NING TWO WORDS SHOULD CONTAIN THE GLOBAL AND LOCAL 
BUS CONTROL WORDS. SIMILAR TO THE MEMORY LOADER, 
PROGRAM CAN BE LOADED INTO DIFFERENT MEMORY 
BLOCKS. FIRST TWO WORD OF EACH PROGRAM BLOCK CON­
TAIN BLOCK SIZE AND MEMORY ADDRESS TO BE LOADED 
INTO. WHEN THE ZERO BLOCK SIZE IS READ, THE PRO­
GRAM BLOCK LOADING IS TERMINATED. IN OTHER WORDS, 
IN ORDER TO TERMINATE THE PROGRAM BLOCK LOADING, A 
ZERO HAS TO BE ADDED AT THE END OF PROGRAM BLOCK. 
THE FOLLOWING TWO WORDS ARE THE INITIAL VALUES FOR 
THE IVTP AND TVTP REGISTERS. AFTER THE BOOT LOAD­
ING IS COMPLETED, THE lACK SIGNAL WILL BE SENT OUT 
ACCORDING TO THE LAST WORD OF THE SOURCE MEMORY, 
AND THE PROGRAM COUNTER WILL BRANCH TO THE START­
ING ADDRESS OF THE FIRST PROGRAM BLOCK. 
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Figure 13-4. Boot Loader Source Program (Continued) 

13-16 

.page 
************************************************************ 
* RESET VECTOR * 
************************************************************ 

.sect "vectors" 
RESET . word START ; On hardware RESET go to START 

************************************************************ 
* TMS320C40 PROCESSOR BOOT LOADER * 
************************************************************ 

.text 
START: CMPI 

BEQ 
LDHI 

* 

LDHI 
OR 
LDI 
LDI 

04440H,IIF 
LIFETEST 
OOlOH,ARO 

002FH,SP 
OFFFOH,SP 
O,RO 
COM_LOAD,R10 

Test IIOFO pin conditiom 
If low, execute life test 

Load peripheral memo map start 
addr 100000H 

Initialize stack pointer SP to 
internal RAM address 2FFFFOH 

Set start address flag off 
Comm. port load subroutine 

address -> R10 

* CHECK THE IIOFl-3 FOR THE BOOT LOADER 
* 
CHECK: LDHI 0030H,ARl Load memory address = 00300000H 

CMPI 04404H,IIF Test function 110 condition 
BEQ MEMORY If true, execute memory boot 

* loader 
LDHI 04000H,ARl Load memory address = 40000000H 
CMPI 04044H, IIF Test function 101 condition 
BEQ MEMORY If true, execute memory boot 

* loader 
LDHI 06000H,ARl Load memory address = 60000000H 
CMPI 04004H,IIF Test function 100 condition 
BEQ MEMORY If true, execute memory boot 

* loader 
LDHI 08000H,ARl Load memory address = 80000000H 
CMPI 00444H,IIF Test function 011 condition 
BEQ MEMORY If true, execute memory boot 

* loader 
LDHI OAOOOH,ARl Load memory address = AOOOOOOOH 
CMPI 00404H, IIF Test function 010 condition 
BEQ MEMORY If true, execute memory boot 

* loader 
LDHI OCOOOH,ARl Load memory address = COOOOOOOH 
CMPI 00044H, IIF Test function 001 condition 
BEQ MEMORY If true, execute memory boot 

* loader 
CMPI 00004H, IIF Test function 000 condition 
BEQ RESERVED If true, branch to reserve 
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Figure 13-4. Boot Loader Source Program (Continued) 

*-----------------------------------------------------------
* COMMUNICATION PORT BOOT LOADER 
*-----------------------------------------------------------
* 
* CHECK COMMUNICATION PORT INPUT CHANNEL 
* 

ADDI 040H,ARO,AR3 
* 

LDI 5, AR1 
* 
CHECK CH: LSH3 -9,*AR3,R1 

BNZ LOAD 1 
* 

ADDI 010H,AR3 
* 

DBU AR1,CHECK_CH 
* 

B CHECK 

Point to comm. port 0 
control register addr 

Set loop counter for 
CHECK CH loop 

Check camm port input 
If input exist, start comm 

port loader 
Point to next comm. port 

channel addr 
Check next comm. port 

channel input 
Recheck the input flags 

*-----------------------------------------------------------
* MEMORY BOOT LOADER 
*-----------------------------------------------------------
* 
* TEST MEMORY WORD WIDTH 
* 
MEMORY: LDI *AR1++(1),R1 

LDI W_WIDE,R10 
* 

LSH 26,R1 
BN LOAD 0 

* 

NOP *AR1++(1) 
* 

LDI H_WIDE,R10 
* 

LSH 1,R1 
BN LOADO 

* 

LDI B_WIDE,R10 
* 

ADD I 2,AR1 
* 
* 
* START PROGRAM LOADING 
* 
LOADO: CALLU R10 
* 

STI AR2,*ARO 
* 

CALLU R10 
* 

STI AR2,*+ARO(4) 
* 

Load the memory word width 
Full-word size subroutine 

address -> R10 
Test bitS of memo width word 
If '1' start PGM loading 

(32 bits width) 

Jump last half word from 
memo word 

Half-word size subroutine 
address -> R10 

Test bit4 of memo width word 
If '1' start PGM loading 

(16 bits width) 

Byte size subroutine address 
-> R10 

Jump last 2 bytes from 
memo word 

Load new word according to 
memo width 

Set global bus control 
register 

Load new word according to 
memo width 

Set local bus control 
register 
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Figure 13-4. 
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Boot Loader Source Program (Continued) 

LOAD2: 
* 

* 

* 

* 

* 

* 

* 

* 
* 

CALLU 

SUBI3 

CMPI 
BEQ 

CALLU 

LDI 
LDI 

LDIZ 

LDI 

SUBI 

CALLU 

LDI 
ADDI 
B 

R10 

1,AR2, RC 

-l,RC 
IVTP LOAD 

R10 

AR2,ARO 
RO,RO 

AR2,R9 

-l,RO 

1,R10 

R10 

1,RO 
1,R10 
LOAD 2 

; 

Load new word according to 
memo width 

Set block size for 
repeat loop 

If 0 block size start PGM 

Load new word according to 
memo width 

; Set destination address 
Test start address loaded 

flag 
Load start address if flag 

off 
Set start & dest. address 

flag on 
Sub address with loop 

Load block words according 
to memo width 

Set dest. address flag off 
Sub address without loop 
Jump to load a new block 

when loop completed 

* INITIALIZE IVTP AND TVTP REGISTERS 
* 
IVTP LOAD:CALLU R10 ; Load new word according to -* memo width 

LDPE AR2,IVTP Load the IVTP pointer 
TVTP LOAD:CALLU R10 Load new word according to 
* memo width 

LDPE AR2,TVTP Load the TVTP pointer 
CALLU R10 Load new word according to 

* memo width 
lACK *AR2 Send out lACK signal out 

BU R9 ; Branch to start of program 
************************************************************ 
* BYTE-WIDE MEMORY BOOT LOADER SUBROUTINE * 
************************************************************ 
LOOP B: 
B WIDE: 

* 

LOAD B: 
* 
BEND: 

RPTB 
LWLO 
NOP 
LWL1 
NOP 
LWL2 
NOP 
LWL3 

LDI 
BNN 
STI 

RETSU 

LOAD B 
*AR1++ (1) , AR2 ; 

*AR1++ (1) ,AR2; 

*AR1++ (1) , AR2 ; 

*AR1++ (1) ,AR2; 

RO,RO 
BEND 
AR2, *ARO++ (1) 

PGM load loop 
Load byte 0 (LSB) 

Join byte 1 with byte 0 

Join byte 2 with byte 0 & 1 

Join byte 3 with byte 0, 1, 
& 2 

Test load address flag 

Store new word to dest. 
address 

Return from subroutine 
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Figure 13-4. Boot Loader Source Program (Concluded) 

************************************************************ 
* HALF-WORD WIDE MEMORY BOOT LOADER SUBROUTINE * 
************************************************************ 
LOOP H: 
H WIDE: 

* 

LOAD H 
* 
H END 

RPTB 
LWLO 
NOP 
LWL2 

LDI 
BNN 

LOAD H PGM load loop 
*ARl~+(1),AR2; Load LSB half-word 

*ARl++(1),AR2; Join MSB half-word with 
LSB half-word 

RO,RO Test load address flag 
H END 

STI AR2, *ARO++ (1) Store new word to dest. 
address 

RETSU Return from subroutine 

************************************************************ 
* FULL-WORD WIDE MEMORY BOOT LOADER SUBROUTINE * 
************************************************************ 
LOOP W RPTB LOAD W PGM load loop 
W WIDE LDI *ARl++ (1) ,AR2; Read a new 32 bits word 

LDI RO,RO Test load address flag 
BNN WEND 

LOAD W STI AR2, *ARO++ (1) Store new word to dest. 
* address 
WEND RETSU Return from subroutine 

************************************************************ 
* COMMUNICATION PORT BOOT LOADER SUBROUTINE * 
************************************************************ 
LOOP C 
COM LOAD 

LOAD C 
* 
C END 

RESERVED: 

RPTB 
LSH3 
BZ 
LDI 
LDI 
BNN 
STI 

RETSU 

.end 

LOAD C 
-9,*AR3,Rl 
COM LOAD 
*+AR3(1),AR2 
RO,RO 
C END 
AR2, *ARO++ (1) 

PGM load loop 
Check comm port input 
Wait for comm port input 
Read a new 32 bits word 
Test load address flag 

Store new word to dest. 
address 

Return from subroutine 
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13.3 Global and Local Bus Interface 
The 'C40 uses the global and local buses to access the majority of its 
memory-mapped locations. Since these two memory interfaces are identi­
cal in every way, except for their positions in the memory map, each exam­
ple in this memory interface section focuses on only one of the two inter­
faces. However, all of the examples are applicable to either the local or glob­
al bus. Additionally, each ofthe buses features two Identical, mutually exclu­
sive sets of control signals: 

Global Local 
Bus Bus 

STRBO 
STRB1 
CEO 
CE1 
RDVO 
RDV1 

LSTRBO 
LSTRB1 
LCEO 
[CE1 
LRDVO 
LRDV1 

Also, AE and DE put the global bus in high impedance, and LAE and LDE 
put the local bus in high impedance. 

Although both the global and the local buses can interface to a wide variety 
of devices, the devices most commonly interfaced are memories. There­
fore, memory interface examples are used in this section. 

13.3.1 Zero Wait-State Interface to RAMs 

13-20 

For a full-speed, zero wait-state interface to any device, a 50-MHz 'C40 
(40-ns instruction cycle time) requires a read access time of 21-ns from 
address stable to data valid. For most memories, the access time from chip 
enable is the same as access time from address; thus, it is possible to, use 
20-ns memories at full speed with a 50-MHz 'C40. However, to properly use 
20-ns memories, there can be no long delays between the processor and 
the memories. Avoiding these delays is not always possible in practice, 
because of interconnection delays and the fact that gating is sometimes 
required for chip enable generation. In addition, if a memory device with an 
output enable is chosen, output enable must become active soon enough 
to ensure that the memory can meet the data valid timing requirements of 
the 'C40. For memories with 20-ns access times, the output enable active 
to data valid timing parameter is typically less than 10 ns. 

Currently available RAMs without output enable (OE) control lines include, 
the 1-bit wide organized RAMs and most of the 4-bit wide RAMs. Those with 
OE controls include the byte-wide and a few of the 4-bit wide RAMs. Many 
of the fastest RAMs do not provide OE control; they use chip-enable (CE) 
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controlled write cycles to ensure that data outputs do not turn on for write 
operations. In CE-controlled write cycles, the write control line (WE) goes 
low before CE goes low, and internal logic holds the outputs disabled until 
the cycle is completed. Using CE-controlled write cycles is an efficient way 
to interface fast RAMs without OE controls to the 'C40 at full speed. 

13.3.1.1 RAM Interface - Using One Local Strobe 

Figure 13-5 shows the 'C40's local bus interfaced to the Integrated Device 
TechnologyTM IDT71258 20-ns 64K x 4-bit CMOS static RAMs with zero wait 
states using chip enable-controlled write cycles. These RAMs are arranged 
to implement 64K, 32-bit words located at addresses OOOOOh thru OFFFFh 
(internal ROM is assumed to be disabled), which are the first 64K words in 
external memory. If these 64K words of SRAM are the only memory con­
trolled by LSTRBO, the LSTRB ACTIVE field of the local memory interface 
control register (LMICR) should be set to its minimum value 011112, allow­
ing LSTRBO to be active only for the first 64K words of the 'C40's memory 
space. (The memory interface control register and its various fields are 
shown in Figure 7-2 on page 7-7). In addition, because this memory is the 
only memory interfaced to LSTRBO, LSTRBO requires only one page. The 
PAGESIZE field of the LMICR should be set to 011112. Also note that in 
Figure 13-5, the LRDVO input is tied low, selecting zero wait states for all 
LSTRBO accesses on the local bus. With all of the zero-wait-state memory 
controlled by LSTRBO, LSTRB1 can be used to control accesses to slower 
read-only memory devices or other types of memory. 
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Figure 13-5. TMS320C40 Interface to Zero-Wait-State SRAM 
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In this circuit implementation, no external logic is necessary to interface the 
'C40 to the memory device. This glueless interface is possible because 
changes in LRIW are always framed by LSTRB. For typical memory de­
vices, it is necessary to hold the device inactive (CS inactive) during 
changes in WE; this avoids undesired memory accesses while the address 
changes. The 'C40 ensures this by having LSTRB always frame changes 
in LRIW. (See Section 7.5 on page 7-17 for more information.) 

13.3.1.2 Consecutive Reads Followed by a Write Interface Timing 

Figure 13-6 shows the timing of consecutive reads followed by a write. For 
consecutive reads, LSTRBO stays active (low), and LRIW stays high as long 
as read cycles continue. The critical timing that must be met for 
back-to-back reads is the address-valid to data-valid time. The 'C40 re­
quires zero-wait-state memories to have an address-valid to data-valid time 
of less than 21-ns. This can be explained in more detail as: 

one H 1 cycle time - [(H 1 low to address-valid time) + (data setup time before H 1 low)) 

For most memory devices, this time is the same as the memory access time, 
which is t1 = 20 ns. Thus, memories with access times of 25 ns or more 
cannot meet this timing. 

Memory device timing is not as critical for zero-wait-state as for nonzero­
wait-state write cycles, because ofthe two H 1 cycle writes of the 'C40. The 
extra cycle gives LSTRBO enough time to frame LRIW, preventing 
memories that go into high impedance slowly at the end of a read cycle from 
driving the bus during the subsequent write cycle. For the memory device 
used in this design (Figure 13-6), the delta lines are guaranteed to be three 
stated (t2 = 10 ns) after CS goes inactive, which gives more than 23 ns of 
margin before the 'C40 starts driving the bus with write data. Also, the extra 
cycle with LSTRBO inactive prevents writes to random locations in memory 
while the address is changing between consecutive writes. 

For the write cycles shown in Figure 13-6 and Figure 13-7, the RAM 
requires 15 ns of write data setup before CS goes high, and this design 
provides at least 24 ns (t3)' A data hold time of 0 ns (t4) is required by the 
RAM, and this design provides greater than 13 ns. Finally, the RAM's setup 
and hold times for address (with respect to CS high) of 20 and 0 ns, 
respectively, are also met with a clear margin. 
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Figure 13-6. Consecutive Reads Followed by a Write 
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\ / ------4'( I 
-+t t1 1+--+1 t2 !4---< g~~! m g~~ ») ... 1 -------t( Valid Write Data )>---
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LA(3Q-O) Valid Read Addr Write Address 

Figure 13-7. Consecutive Writes Followed by a Read 

HI 

LRIWO ----------------------~/ 
\'----

LD(31-Q) Valid Write Data Valid Write Data Valid Data 

LA(3Q-O) Valid Write Address Valid Write Address Read Address 
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13.3.1.3 

13.3.1.4 

Global and Local Bus Interface 

Consecutive Writes Followed by a Read Interface Timing 

Figure 13-7 shows the timing of consecutive writes followed by a read. No­
tice that between consecutive writes, LRIW stays low, but STRBO goes inac­
tive to frame the write cycles. Although 'C40 zero-wait-state writes take two 
H1 cycles, internally (from the perspective of the CPU and DMA) writes ap­
pear to take one cycle if no accesses to that interface is already in progress. 

In the read cycle following the writes in Figure 13-7, the 'C40 requires 
zero-wait-state memories to have a LSTRB active to data-valid time of less 
than21 ns {one H1 cycle time minus (H110wto LSTRB active time plus data 
setup time before H1 low)). For most memory devices, this time is the same 
as the memory access time, which is t 1 = 20 ns in this design. Thus, a margin 
of only 1 ns exists, leaving little time for STRB gating if desired. 

RAM Interface Using Both Local Strobes 

Figure 13-8 shows the 'C40's local bus interfaced to IDT71258 RAMS -
20-ns 64K x 4-bit CMOS static RAMs with zero wait states using CS con­
trolled write cycles. These RAMs are arranged to allow 128K 32-bit words 
of local memory, which is implemented as two 64K x 32-bit banks. One bank 
is controlled by each of the two sets of control signals on the local bus. To 
map these memory devices properly in the 'C40's memory space, you must 
use the local memory interface control register (LMICR) to define which part 
of the local bus's memory space is mapped to each of the two strobes. In 
this implementation with internal ROM disabled, LSTRBO is mapped to the 
first 64K words of the local space - addresses Oh through OFFFFh, and 
LSTRB1 is mapped to the rest of the local space - addresses 10000h 
through 7FFF FFFFh. For this memory configuration, the LSTRB ACTIVE 
field of the local memory interface control register (LMICR) should be set 
to 011112. Also, each LSTRB requires only one page. The PAGESIZE field 
of the LMICR should be set to 011112. Also, note that in Figure 13-8, the 
LRDY inputs are tied low, selecting zero wait states for all accesses on the 
local bus. 

Hence, through the use of the 'C40's four strobes (two each on the local and 
global buses), four different banks of memory can be decoded. In addition, 
the address decoding can be changed under program control by changing 
the LSTRB active field (bits 24-28) of the LMICR orthe global memory inter­
face control register (GMICR). If more than four banks of memory must be 
decoded or if the chosen memory device cannot meet the read cycle timing 
requirements for the 'C40 at zero wait states, page switching (discussed in 
subsection 13.4.6 on page 13-32) should be used to add an extra cycle to 
read accesses outside the current bank boundary. 
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Figure 13-8. TMS320C40 Interface to Zero-Wail-State SRAMs, Two Strobes 
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13.4 Wait States and Ready Generation 

The use of wait states can greatly increase system flexibility and reduce 
hardware requirements over systems without wait-state capability. The 
'C40 has the capability of generating wait states on either the global bus or 
the local bus, and both buses have independent sets of ready control logic. 
The buses' wait-state configuration is determined by the SWW and WTCNT 
fields of the local and global bus interface control registers (see Section 7.4, 
page 7-15, for a detailed description of the wait-state options). 

This section discusses ready generation from the perspective of the global 
bus interface; however, wait-state operation on the local bus is the same as 
on the global bus, so this discussion pertains equally well to both (local and 
global). Also, the local and global buses each have two sets of control sig­
nals - RIWO, STRBO, ROYO, and RIW1, STRB1, ROY1 - with each set 
of control signals having its own ready signal, providing for more flexibility 
in support of external devices with different speeds. Since both strobes' 
ready signals share the same electrical characteristics, the following discus­
sion focuses on one of the global bus's set of control signals. 

Wait states are generated on the basis of: 

o the internal wait-state generator, 

o the external ready inputs (ROYO or ROY1), or 

o the logical ANO or OR ofthe two (discussed in Section 7.4, page 7 -15). 

When enabled, internally generated wait states affect all external cycles, 
regardless of the address accessed. If different numbers of wait states are 
required for various external devices, the external ROY input may be used 
to customize wait-state generation to specific system requirements. 

If either the logical OR or electrical ANO (since the signals are true low) of 
the external and wait-count ready signals is selected, the earlier of the two 
signals will generate a ready condition and allow the cycle to be completed. 
It is not required that both signals be present. 

Note: STRBx SWW Field Values 

The STRBx SWW fields of the memory-interface control register are shown 
in Figure 7-2 (page 7-7) and explained in Table 7-7 (page 7-16). 
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13.4.1 ORing of the Ready Signals (STRBx SWW = 10) 

The OR of the two ready signals can be used to implement wait states for 
devices that require a greater number of wait states than are implemented 
with internal logic (up to seven). This feature is useful, for example, if a sys­
tem contains some fast and some slow devices. In this case: 
Q Fast devices can generate ready externally with a minimum of logic. 

When fast devices are accessed, the external hardware responds 
promptly with ready, which terminates the cycle. 

Q Slow devices can use the internal wait counter for larger numbers of 
wait states. When slow devices are accessed, the external hardware 
does not respond, and the cycle is appropriately terminated after the in­
ternal wait count. 

The OR of the two ready signals may also be used if conditions occur that 
require termination of bus cycles before the number of wait states implem­
ented with external logic. In this case, a shorter wait count is specified inter­
nally than the number of wait states implemented with the external ready 
logic, and the bus cycle isterminated after the wait count. This feature may 
also be used as a safeguard against inadvertent accesses to nonexistent 
memory that would never respond .with ready and would therefore lock up 
the 'C40. 

If the OR of the two ready signals is used, however, and the internal wait­
state count is less than the number of wait states implemented externally, 
the external ready generation logic must have. the ability to reset its 
sequencing to allow a new cycle to begin immediately following the end of 
the internal wait count. This requires that, under these conditions: 
Q consecutive cycles must be from independently decoded areas of 

memory (or from different pages in memory), and 
Q the external ready generation logiC must be capable of restarting its 

sequence as soon as a new cycle begins. 

Otherwise, the external ready generation logic may lose synchronization 
with bus cycles and therefore generate improperly timed wait states. 

13.4.2 ANDing of the Ready Signals (STRBx SWW = 11) 
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Ifthe logical AND (electrical OR) ofthe wait count and external ready signals 
is selected, the later of the two signals will control the internal ready signal, 
but both Signals must occur. Accordingly, external ready control must be im­
plemented for each wait-state device, and the wait count ready signal must 
be enabled. 

This feature is useful if there are devices in a system that are equipped to 
provide a ready signal but cannot respond quickly enough to meet the 
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'C40's timing requirements. In particular, if these devices normally indicate 
a ready condition and, when accessed, respond with a wait until they be­
come ready, the logical AND of the two ready signals can be used to save 
hardware in the system. In this case, the internal wait counter can provide 
wait states initially, and then the external ready can provide wait states after 
the external device has had time to send a not-ready indication. The internal 
wait counter then remains ready until the external device also becomes 
ready, which terminates the cycle. 

Additionally, the AND of the two ready signals may be used for extending 
the number of wait states for devices that already have external ready logiC 
implemented but require additional wait states under certain unique circum­
stances. 

13.4.3 External Ready Generation 

In the implementation of external ready generation hardware, the particular 
technique employed depends heavily on the specific characteristics of the 
system. The optimum approach to ready generation varies, depending on 
the relative number of wait-state and nonwait-state devices in the system 
and on the maximum number of wait states required for anyone device. The 
approaches discussed here are intended to be general enough for most 
applications and are easily modifiable to comprehend many different 
system configurations. 

In general, ready generation involves the following three functions: 
1) Segmentation of the address space in some fashion to distinguish fast 

and slow devices. 
2) Generation of properly timed r:eady indications. 
3) Logical ORing of all the separate ready timing signals together to 

connect to the physical ready input. 

. Segmentation ofthe address space is required to obtain a unique indication 
of each particular area within the address space that requires wait states. 
This segmentation is commonly implemented in a system in the form of 
chip-select generation. Chip-select Signals may be used to initiate wait 
states in many cases; however, occasionally, chip-select decoding 
considerations may provide signals that will not allow ready input timing 
requirements to be metln this case, coarse address space segmentation 
may be made on the basis of a small number of address lines, where simpler 
gating allows signals to be generated more quickly. In either case, the signal 
indicating that a particular area of memory is being addressed is normally 
used to initiate the ready or wait-state signal. 

Once the region of address space being accessed has been established, 
a timing circuit of some sort is normally used to provide a ready indication 
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to the processor at the appropriate point in the cycle to satisfy each device's 
unique requirements. 

Finally, since indications of ready status from multiple devices are typically 
present, the signals are logically ORed by using a single gate to drive the 
ROY· input. 

13.4.4 Ready Control Logic 

13-30 

One of two basic approaches may be taken in the implementation of ready 
control logic, depending upon the state of the ready input between ac­
cesses. If ROY is low between accesses, the processor is always ready un­
less a wait state is required; if ROY is high between accesses, the processor 
will always enter a wait state unless a ready indication is generated. 

If ROY is low between accesses, control of devices that are zero-wait­
state at full speed is straightforward; no action is necessary, because ready 
is always active unless otherwise required. Devices requiring wait states, 
however, must drive ready high fast enough to meet the input timing require­
ments. Then, after an appropriate delay, a ready indication must be gener­
ated. This can be quite difficult in many circumstances because wait-state 
devices are inherently slow and often require complex select decoding. 

If ROY is high between accesses, zero-wait-state devices, which tend to 
be inherently fast, can usually respond immediately with a ready indication. 
Wait-state devices may simply delay their select signals appropriately to 
generate a ready. Typically, this approach results in the most efficient imple­
mentation of ready control logic. Figure 13-9 shows a circuit of this type, 
which can be used to generate 0, 1, or 2 wait states for multiple devices in 
a system. 
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Figure 13-9. Logic for Generation of 0, 1, or 2 Wait States for Multiple Devices 
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13.4.5 Example Circuit 

Figure 13-9 shows how a single, 7-ns 16R4 programmable logic device 
(PLO) can be used to generate 0, 1, and 2 wait states for multiple devices 
that are interfaced to a TMS320C40. In this example, distinct address bits 
are used to select the different wait-state devices. Here, each of the three 
address lines input to the 16R4 corresponds to a different speed device. 
For a single 16R4 implementation, up to ten different address bits can be 
used to select different speed devices. 

The single output, 4Q, of the PLO is connected directly to the ROYO input 
of the TMS320C40 to signal the completion of a bus access when external 
wait-state generation is desired (see Section 7.4 on page 7-15 for more in­
formation on TMS320C40 wait-state options). Since, ROYO is sampled on 
the falling of H 1 , the H3 output Clock is used as the PLO clock input. 

Figure 13-10 shows the state machine and equation for programming the 
16R4 PLO ready logic. The PLO language shown in this figure is ABEL. 
STRBO is an input into the PLO that indicates that a valid TMS320C40 bus 
cycle is occurring. RESET can also be used to bring the state machine back 
to the idle state. 

Notice that the ROYO output of the PLO is not registered. An asynchronous 
ROYO signal is necessary to generate a ready signal for zero-wait-state de­
vices. When a zero-wait-state device is selected (ahi1 high in Figure 13-10 
and STRBO is low, the PLO asserts ROYO low within 7 ns. Hence, ROYO 

13-31 



Wait States and Ready Generation 

goes active fast enough to satisfy the 20-ns setup time of RDVO low before 
H110w. 

For generation of RDVO for one and two wait states, the device select ad­
dress bits and STRBO are delayed one and two cycles, respectively, by the 
PLD before a RDVO is brought active low. The one H3-cycle delay required 
for one-wait-state device ready generation corresponds to state wai tone 
in Figure 13-10 and the two H3-cycle delay required for two-wait-state de­
vices corresponds to state wait_twoa and wait_twob. 

This 16R4 PLD-based design can be used to implement different numbers 
of wait states for multiple devices. More devices can be selected with 
TMS320C40 address lines, and a higher number of wait states can be pro­
duced with a PLD logic. Furthermore, this approach can be used in conjunc­
tion with the TMS320C40's internal wait-state generator. 

13.4.6 Page Switching Techniques 
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The 'C40's programmable page switching feature can greatly ease system 
design when large amounts of memory or slow external peripheral devices 
are required. This feature can provide a time period for disabling all device 
selects that would not normally be present otherwise (refer to subsection 
7.3.2 on page 7-13 for further information regarding page switching). During 
this interval, slow devices are allowed time to turn off before other devices 
have the opportunity to drive the data bus, thus avoiding bus contention. 

When page switching is enabled, any time a portion of the high-order ad­
dress lines changes, as defined by the contents of the STRBO and STRB1 
PAGESIZE fields (in the global and local memory interface control regis­
ters), the corresponding STRB and PAGE go high for one full H1 cycle. Pro­
vided that STRB is included in chip-select decodes, this causes all devices 
selected by thatSTRB to be disabled during this period. The next page of 
devices is not enabled until STRB and PAGE go low again. 

If the high-order address lines remain constant during a read cycle, the 
memory access is the same as that of a memory access without page 
switching. In addition, page switching is not required during writes, because 
these cycles exhibit an inherent one-half H 1 cycle setup of address informa­
tion before STRB goes low. Thus, when you use page switching for read! 
write devices, a minimum of halfof one H1 cycle of address setup is pro­
vided for all accesses outside a page boundary. Therefore, large amounts 
of memory can be implemented without wait states or extra hardware re­
quired for isolation between pages. Also, note that access time for cycles 
during page switching is the same as that of cycles without page switching, 
and, accordingly, full-speed accesses may still be accomplished within each 
page. 
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The circuit shown in Figure 13-10 illustrates the use of page switching with 
the Cypress Semiconductor™ CY7B 185 15-ns 8K x 8 BICMOS static RAM. 
This circuit implements 32K 32-bit words of memory with full-speed zero 
wait-state accesses within each page. 

Figure 13-10. State Machine and Equation for the 16R4 PLD 

0001 module ready_generation 
0002 title' ready generation logic for 0, 1 and 2 

wait state devices interfaced to 
0003 TMS320C40' 
0004 
0005 c40u5 device 'P16R4'; 
0006 
0007 "inputs 
0008 h3 Pin 1; 
0009 
0010 
0011 "The following are TMS320C40 address bits used to 
0012 "select the different speed devices. More can be used if 
0013 "necessary. In this example, a zero wait state, a one wait 
0014 "state, and a two wait state device are decoded with these 

"three address bits . 

ahil 
ahi2 
ahi3 
strbO 
reset-

"output 
rdyO_ 

Pin 2; "when high selects zero wait state device 
Pin 3; "when high selects one wait state device 
Pin 4; "when high selects two wait state device 
Pin 5; "indicates valid TMS320C40 bus cycle 
Pin 6; "reset signal from TMS320C40 

Pin 12; "ready signal te TMS320C40 

0015 
0016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
two 
0028 
0029 
0030 
0031 
0032 
0033 
0034 
0035 
0036 
0037 
0038 
0039 

one wait Pin 14; "internal flip-flop signal for 1 wait state 
"device ready signal generation 

two waita Pin 15; "internal flip-flop signal for first of the 

"wait states for 2 wait state devices 
two_waitb Pin 16; "internal flip-flop signal for second 

"of the two wait states for 2 wait 
state devices 

"name substitutions for test vectors 
c,H,L,X = .C.,l,O, .X.; 

"state bits 
outstate = [one_wait, two_waita, two_waitb]; 
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Figure 13-10. State Machine and Equation for the 16R4 PLD (Concluded) 

0040 I idle - "bIll; 
0041 I wait one "bOll; 
0042 I wait-twoa "bIOI; 
0043 I wait-twob - "bllO; 
0044 I 
0045 I 
0046 I state_diagram outstate 
0047 I 
0048 I state idle: 
0049 I if (reset_ & ahi2 & !strbO -) then wait one 
0050 I else if (reset_ & ahi3 & !strbO - ) then wait_twoa 
0051 I else idle; 
0052 I 
0053 I 
0054 I state wait one: 
0055 I GOTO idle; 
0056 
0057 state wait twoa: 
0058 if (reset ) then wait_twob 
0059 else id'ie; 
0060 
0061 state wait twob: 
0062 GOTO idle; 
0063 
0064 equations 
0065 !rdyO_ reset & ( (ahil & !strbO ) * lone_wait * - -
0066 

!two_waitb) 

0067 @page 
0068 "Test 1st level global arbitration logic 
0069 test vectors 
0070 ([h3;ahil,ahi2,ahi3,strbO_, reset ] -> [outstate, rdyO_] ) -0071 [ c, X, X, X, X, L ] -> [idle, H ] ; 
0072 [ c, L, H, L, L, H ] -> [wait one, L ] ; 
0073 [ c, X, X, X, X, L ] -> [idle; H ] ; 
0074 [ c, L, L, H, L, H ] -> [wait_twoa, H ] ; 
0075 [ c, X, X, X, X, L ] -> [idle, H ] ; 
0076 [ c, L, L, H, L, H ] -> [wait twoa, H ] ; 
0077 [ c, L, L, H, L, H ] -> [wait=twob, L ] ; 
0078 [ c, X, X, X, X, L ] -> [idle, H ] ; 
0079 [ L, H, L, L, L, H ] -> [idle, L ] ; 
0080 [ c, H, L, L, L, H ] -> [idle, L ] ; 
0081 [ L, L, L, L, L, H ] -> [idle, H ] ; 
0082 [ c, L, H, L, L, H ] -> [wait one, L ] ; 
0083 [ c, X, X, X, X, H ] -> [idle; H ] ; 
0084 [ c, L, L, H, L, H ] -> [wait twoa, H ] ; 
0085 [ c, L, L, H, L, H ] -> [wait=twob, L ] ; 
0086 [ c, H, L, L, L, H ] -> [idle, L ] ; 
0087 [ c, X, X, X, H, H ] -> [idle, H ] ; 
0088 [ c, X, X, X, H, H 1 -> [idle, H ] ; 
0089 end ready_generation 
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Rgure 13-11. Page Switching for the Cypress SemiconductorM CY7C185 

TMS320C40 
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'P16L8 
10 

1/0 
1/0 
I/O 
1/0 

~----------------------

Bank 1 

Bank 2 

Bank 3 

A 5-ns, '16L8 PLD decodes lines A 15 - A 13. These lines along with STRBO 
select each of the four pages in this circuit. With the PAGESIZE field of 
STRBO of the global memory interface control. register set to OCh, the pages 
are selected on even 8K-word boundaries, starting at location zero in 
external memory space. 

This circuit cannot be implemented without page switching, because data 
output's turn-on and turn-off delays cause bus conflicts, and full-speed 
accesses do not allow enough time for chip-select decoding for the four 
pages. Here, the propagation delay ofthe 16L8 is involved only during page 
switches, where there is sufficienttime between cycles to allow new chip-se­
lects to be decoded. 

The timing of this circuit for read operations using page switching is shown 
in Figure 13-12. When a page switch occurs, the page address on address 
lines A30 - A 13 is updated during the extra H1 cycle while STRBO is high. 
Then, after chip-select decodes have stabilized and the previously selected 
page has disabled its outputs, STRB goes low for the next read cycle. 
Further accesses occur at full speed with the normal bus timings, as long 
as another page switch is not necessary. Write cycles do not require page 
switching, because of the inherent address setup provided in their timings~ 

This timing is summarized in Table 13-3. 
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Figure 13-12. Timing for Read Operations Using Bank Switching 
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Table 13-3. Page Switching Interface Timing 

Time 
Event Time Period Interval 

t1 H1 falling to addresS/STRB valid 7ns 

t2 STRB to select delay 5 ns 

t3 Memory disable from select 8 ns 

4 H1 falling to STRB 7 ns 

t5 STRB to select delay . 5 ns 

ts Memory output enable delay 3 ns 
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13.5 Parallel Processing Interfaces 

The 'C40 communication ports and support for shared memory are the keys 
to parallel processing design flexibility. Almost any number of processors 
can be linked together in a wide variety of configurations. In this section, 
Figure 13-14 (in three parts) illustrates 'C40 parallel processing 
configurations that are used to fulfill many signal processing system needs. 

13.5.1 Message Broadcasting From One TMS320C40 to Many 
TMS320C40's 

Message broadcasting from one 'C40 to many 'C40s requires a simple inter­
face. The block diagram of one is shown in Figure 13-13. To simplify the 
interface, no token transferring is done. In this design, one 'C40 is the dedi­
cated transmitter, and three 'C40s are dedicated receivers. No reset circuit­
ry is needed because of the transmitter is communication port 0 and the re­
ceivers are communication ports 3, 4, and 5. At reset, 'C40 communication 
ports. 0, 1, and 2 are output ports, and communication ports 3,4, and 5, are 
input ports. Due to this fixed communications configuration, no token trans­
fer is needed, allowing the CREQ and CACK pins of all processors to be indi­
vidually pulled up to 5 volts through 22-1<0 resistors. Also, the STRB pins 
of the communicating processors can be tied together along with the data 
lines CD7-Q. However, if more than 5 receivers must be driven by a single 
transmitter at the 'C40s rated speed, the STRB and CD7-Q lines need to be 
buffered. Since the 'C40 communication ports protocol is asynchronous, 
if the speed of broadcast is not critical, buffers are not needed as long as 
the number of receivers is less than 30. The CRDY signal input by the trans­
mitter communication port is generated by ORing the RDY outputs of all of 
the receiver communication ports. The transmitter should not receive a RDY 
signal until the receiver has received all data. 

In addition, to ensure that the dedicated receiver 'C40s do nottry to arbitrate 
for the communication port bus, you should halt the output ports of the re­
ceiver 'C40s by setting bit four of their communication port control registers 
to one. 
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Figure 13-13. Message Broadcasting by One 'C40 to Many 'C40s 
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13.5.2 Shared Global Memory Interface With Fair Bus Arbitration 
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One of the most common multiprocessing system configurations is memory 
shared by each processor in a system. Shared memory is typically 
implemented by tying the processors' data and address lines together. 
However, the shared memory interface must guarantee that no more than 
one processor is driving the shared bus at anyone time; it must also allow 
all processors sharing the bus to have a chance to access shared 
resources. 

The 'C40 supports shared memory multiprocessing with its identical global 
and local port interfaces. Both interfaces have four status output signals, 
(L)STAT3-0, which identify what type of access is attempting to begin on 
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the bus. These signals identify whether the 'C40 port is idle, a DMA read is 
occurring, a STRB1 write is occuring, a LOCKed access to memory is 
pending, etc. (as listed in Table 7-2, page 7-5). These signals can be 
interpreted to issue single access or locked access bus requests to a shared 
bus arbiter. 

To support shared address control and data lines, the 'C40 provides the 
(L)CE, (L)AE, and (L)DE input signals. When disabled (made high), these 
signals three-state the control signals, address lines, and data lines, respec­
tively, of the port. These bus enable lines are asynchronous inputs to the 
'C40, which can quickly tum off bus drivers when another processor is 
accessing a shared resource. However, these signals asynchronously tum 
off the 'C40's local and global buses, without memory accesses being 
suspended. To ensure that data written is seen externally and data read is 
valid, the external (L)RDY should be be used for wait-state generation in 
shared memory designs. An (L)RDY signal should not be sentto the 'C40 
until the processor has regained access to the bus (CE, AE, DE enabled) 
and has had enough time to complete its access. Hence with bus enable 
and status signals, the flexible bus interfaces of the 'C40 allow high-speed 
shared bus configurations to be implemented. 
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Figure 13-14. TMS320C40 Parallel DSP System Architectures 
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Figure 13-14. TMS320C40 Parallel DSP System Architectures (Continued) 

3·0 GRID 
For hierarchical processing such as 

image understanding and finite 
element analysis. 

'C40 

Communication 
Port Connection 

HEXAGONAL GRID 
6 nearest neighbor connection. 
Useful in numerical analysis and 

image processing. 

Communication 
Port Connection 

4-0 HYPERCUBE 
A more general-purpose structure. 

Figure concluded on next page 
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Figure 13-14. TMS320C40 Parallel DSP System Architectures (Concluded) 

Memory interfaces support shared global 
memory and private local memory. 

Architectures utilizing shared memory 
and communication ports are possible. 

Global 
Memory 

Memory interfaces also support shared 
global memory on the global bus and the 

local bus. 
A truly limitless variety of 
configurations are possi­

ble. 
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In this section, a 'C40 shared memory example is shown. Four 'C40s share 
SRAM with their global buses tied together. A bus arbitrator implemented 
as a programmable logic device provides a fair scheme for processor ac­
cess to the shared bus. The design shown here uses high speed parts but 
employs a fully asynchronous handshake protocol, which is still general, al­
lowing varying speed 'C40s and processors other than 'C40s to be added 
to this bus configuration. 

13.5.3 Shared Bus Interface Overview 
Figure 13-15 and Figure 13-16 are examples of shared memory configura­
tions. In these figures: 
Q Four 'C40s (each as shown in Figure 13-15) have their global buses 

tied together, 
Q Each shares 128K x 32 of one-wait-state SRAM, 
Q 64K of the memory is controlled by RlWO; STRBO and the other 64K are 

controlled by RlW1 and STRB1. 

The memory devices are organized as 64K x 4, 35-ns SRAMs. Due to the 
'C40's bus enable signals- AE, DE and CE - all four 'C40s' data, address, 
and control lines can be tied together for a shared memory configuration. 
However, since 128K words of shared memory are being implemented on 
the global bus (shown in Figure 13-15 and Figure 13-16), the common ad­
dress lines are buffered to provide adequate drive to the 16 required 
memory devices. Also, the memories' chip-enable lines are pulled up to 5 
volts through 22-kQ resistors to ensure that the memory devices are dis­
abled when no 'C40 is accessing them. 
The required shared global bus interface logic consists of two levels of bus 
arbitration logic implemented as programmable logic devices (PLD). Each 
of the 'C40s has an identical first level of logic that interfaces to the shared 
second level arbiter. The first level of logic for each of the four 'C40s consists 
of one 7-ns 16R6 PLD and one 7-ns 16R4 PLD (center of Figure 13-15). 
Each first level 16R6 PLD receives status and control signals from the corre­
sponding 'C40, determines what kind of global bus transfer the associated 
'C40 requires, and issues a global bus request signal to the global bus con­
troller (GBC, bottom of Figure 13-16), which, with the bus-grant time-out 
counter, implements the second level of arbitration logic. The GBC is im­
plemented with a 7-ns 16R8 PLD, and the timeout counter is implemented 
with a 7 -ns 16R4 PLD. In addition to the two GBC PLDs, a 16L8 PLD is used 
to issue write enable signals to the shared memory. 
Since typical high-speed PLDs do not have many registered I/O pins or mul­
tiple clock sources, each first-level 16R6 PLD uses a 16R4 PLD to synchro­
nize some of the input and output signals, and the 16R8 GBC PLD uses ex­
ternal flip-flops to synchronize input signals. 
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If a 'C40 requires uninterrupted, multicycle global bus transfers, the first-le­
vel PLD keeps its bus-request signal active until the uninterruptable cycles 
are tomplete. The bus controller performs arbitration between the 'C40s re­
questing the shared global bus. If a 'C40 is given access to the bus, the bus 
controller sends its first-level PLDs a bus grant signal. The first-level PLD 
then sends a bus enable signal to the 'C40, which brings its bus control, ad­
dress, and data signals out of high impedance. The first-level PLD also 
sends a BUSRDYQ signal to the 'C40 to end each read or write cycle. 

Figure 13-15. TMS320C40 Shared Memory Interface 

RNlO ~ 
STRBo 

~ ROYO 
0 ~o 

GWE ~ ~ ~1 ~ STRBO 
ROY1 A(15-0) :E 

I- RNl1 - 0(31-0) 
STRB1 STRB1 

A(3O-Q) - BUSROYQ 

0(31-0) - CTFNABLI= 
AE 
DE J BOSGRANTQn 

J STAT(3-0) 4 0(1-4) Q - Q 
BUS ENABLE lOCK 0 Q 0 Q I--

IIOF1 PRIOMA 0 '-- 0 Q 
..... 0 Q BUSROY 0 

- 0 Q 
0 PlO PlO 

RESET 0 
'P16R6 'P16R4 

H1 ClK 
I ~ ClK 

H3 BUSGRANTn.,.(from GBC) 
~ 

RESET- .. 
BUSREQn (to GBC) 

Notes: 1} This figure represents one of four 'C40s and its interface (the 3 other 'C40s in the system have the 
same configuration). 

2} The shared memory (shared by the four 'C40s) and global bus controller are shown 
in Figure 13-16 on the next page. 

. 3} The fixed/rotating priority is a programmable option at the global bus controller (GBC). 
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Figure 13-16. TMS320C40 Shared Memory and Bus Controller Interface 
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For full-speed operation, the 'C40s run from separate, 50-MHz crystal-oscil­
lator clock sources. For synchronization of shared bus control signals, the 
H3 output clock of each 'C40 serves as the 16R4 PlD synchronizer clock 
for first-level input and output signals. Also, the H 1 output clock of each 'C40 
serves as the state machine clock for each of the first-level, 16R6 PlDs. In 
addition, for high-speed bus controller synchronization, a 50-MHz crystal 
oscillator is used as the input clock for the 16R8 GBC PlD, the 16R4 time­
out generator PlD, and the GBC input Signal synchronizers. (Note: for fast­
est bus arbitration, the 'C40s sharing the bus can be synchronized by having 
common RESET and ClKIN inputs. If the 'C40s are synchronized in this 
way, the 50-MHz input to the second-level, global control PlDs can be the 
common ClKIN.) The AS17 4 D flip-flops are used as GBC input signal syn­
chronizers. 

Due to these arbitration synchronizer delays and the 35-ns SRAMs, access 
to the shared memory requires wait states. After an arbitration win, the first 
shared memory access requires three H 1 cycles, and arbitration requires 
at least two H1 cycles from BUS REQUEST active to BUS ENABLE active. 
Figure 13-17 is a timing diagram of the arbitration contest. A bus master's 
first access after an arbitration win takes at least three H1 cycles; however, 
subsequent read or write accesses require only two H1 cycles. The three­
cycles required for the first access provide enough time for the old bus mas­
ter to stop driving the bus after an arbitration loss and enough time for new 
bus master control signals to go active and inactive to complete 35-ns 
memory accesses. Also, three-cycle memory accesses allow enough time 
for signal buffering (buffer delays are less than 15 ns with commercially 
available parts) between the processor bus and memory. 

The subsection that follows covers the global bus configuration for use with 
this shared memory configuration. 

13.5.3.1 Global Memory Interface Control Register (GMICR) Configuration 

13-46 

For use in this shared memory configuration, the global bus should be confi­
gured as such at the GMICR: 

SWW = 00 (RDYint = RDYext) 
STRB ACTIVE = 011112 
PAGESIZE = 011112 
STRB SWITCH = 0 

In addition, 1I0F1 should be configured as a general-purpose output pin. 
1I0F1 high signals that a high-priority DMA request is active. 
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Figure 13-17. Successful TMS320C40 Arbitration and Data Read From Shared Bus Memory Followed 
by an Unsuccessful Arbitration Contest 
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13.6 Bus Arbitration 
13.6.1 Arbitration Implementation 
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Arbitration on the bus is implemented with two levels of logic. The first level 
consists of four identically programmed 7 -:-ns, 16R6 PLDs, and four identi­
cally programmed 16R4 PLDs, with one16R4 and 16R6 associated with 
each 'C40. The signals needed for arbitration from the 'C40 are STAT(3-Q), 
STRBO, STRB1, LOCK, and IIOF1 (PAGE can be used in designs where 
page switching is necessary). IIOF1 should be configured as an output pin 
and should be used to indicate that a high-priority DMA transfer is active. 
Applications software should set IIOF1 low before priority DMA cycles are 
started. Figure 13-18 illustrates graphically the state machine for each of 
the first-level 16R6 PLDs. Each first-level PLD sends an active low BUS­
REO signal to the global bus controller, the second level of arbitration logic. 
The global bus controller sends a BUSGRANT signal to the requesting 
'C40's first level logic when it has been granted control of the global bus. If 
an interlocked or high-priority DMA bus request has been granted, the first­
level logic will keep its BUSREO asserted low as long as interlocked or prior­
ity DMA cycles are required. The bus controller will see BUSREO remain 
active and will give the current 'C40 bus master access to the bus until the 
interlocked or priority DMA operations are complete. 

After a high-priority DMA bus cycle is complete, the 'C40 applications soft­
ware should clear (set IIOF1 to logic level 1 ). Accordingly, interlocked ac­
cess to memory should always end in a SIGI, STII, or STFI operation to bring 
LOCK inactive.· If priority accesses are completed by making IIOF1 or 
'[(5C'K inactive, the first-level PLD will always have an opportunity to bring 
its BUSREO inactive, preventing shared bus deadlock. 

When the 'C40 associated with a first-level PLD is not the global bus master 
(Le., cannot access the global bus), the first-level PLD sends a logiC level 
one BUSREADY signal to that 'C40, extending any pending bus cycle until 
after the 'C40 becomes bus master and has completed an aGcess. In addi­
tion, each first-level of logic sends both a BUSENABLE and CTLENABLE 
signal to the corresponding C40. The BUS ENABLE signal is connected to 
the DE and AE pins and CTLENABLE is connected to the CE pin of the cor­
responding 'C40. These two signals cause the following to be in high-impe­
dance when another 'C40 in the system is accessing the shared bus: bus 
chip enable and the address and data lines. 
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Figure 13-18. Shared Bus Interface PLD State Machine 

(lock # priDMA # bus grant) & idle 

Notes: 1) In this state diagram, the output signals are all shown as active high for diagram clarity. 
2) A" ! " in front of a signal indicates that it is not active (deasserted) .. 

3) & = logical AND of signals; # = logical OR of signals. 
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For proper system reset operation, a RESET signal clears bus requests to 
the global bus controller and sends a logic level one BUSRDY and 
BUSENABLE signal to each 'C40 to extend upcoming bus cycles and three­
state the bus until that 'C40 has been granted access to the bus. 

Figure 13-19 shows equations for programming the 1SRS PLD used forthe 
first-level logic. The PLD language shown in this figure is ABEL. ABEL's PLD 
language is used to describe the state machine illustrated in Figure 13-18. 

Note: Active-Low Indicators 

In listings (e.g., Figure 13-19), an underscorefollowingasignal name (e.g., 
bus reCL) indicates the signal is active low. (in regular text, such signals are 
overbarred (e.g., BUSREQ). 

The three PLD outputs - busreq_, busenable_, and busrdy_ - are 
used for three of the output state bits. The park_state and 
start _state bits (used to indicate the park state and start state) are the 
fourth and fifth output state bits. Also included in the ABEL description are 
test vectors for the state machine. 

The PLDs described in Figure 13-19 and Figure 13-20 work together to 
interface to the GBC. Figure 13-20 (page 13-S0) shows equations for 
programming the 1SR4 PLD used for synchornizing the first-level input and 
output signals. 
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Figure 13-19. PLO Equations for Programming the 16R4 PLO (First-Level Logic) 
0001 I module 
0002 I title' 
0003 I DWG NAME 

I 
0004 I 
0005 IDWG =It 

0006 I 
0007 
0008 

I COMPANY 
I 

Local control (of shared bus arbitration 
(logic) 

TEXAS INSTRUMENTS INCROPORATED' 

Pin 1; 
Pin 2; 

Pin 3; 

Pin 4; 
Pin 5; 
Pin 6; 
Pin 7; 
Pin 8; 

Pin 9; 
Pin 12; 
Pin 19; 

Pin 18; 

Pin 17; 
Pin 16; 
Pin 15; 

Bus Arbitration 

0026 
0027 
0028 
0029 

busre'L 
busenab1e_ 
busrdy_ 
park_state Pin 14; "low if the output state is the 

park state 
0030 
0031 gwe_ Pin 13; "write enable signal for shared 

memory 
0032 
0033 "define machine state bits 
0034 "[start,park,busre'L,busenable_,busrdy_l; 
0035 
0036 
0037 
0038 
0039 

idle 
req_cycle 
strt_cycl 
do....;cycle 

Abll111; "31 
AbllOll; "27 
Ab01001; "09 
Abl1001 ; "25 
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Figure 13-19. PLD Equations for Programming the 16R4 PLD (First-Level Logic) (Continued) 
1040 
0041 
0042 

fin_cycle 
park 

AbllOOO; "24 
Abl0001; "17 

0043 "convert to positive logic to make the test vectors easier to 
understand 

0044 
0045 
0046 
0047 
0048 

0049 
0050 
b051 

0052 
0053 
0054 
0055 

lock 
bg 
priDMA 
idle stat 

"outstate 
ost 

c,H,L,X 
@page 

!lock_; 
!bg_; 
!priDMA_; 
(stat2 & statl & statO); 
when all are hi 

"the bus is idle 

[start state,park state,busreq , 
busenable_,busrdy=l; -

.C.,l,O, .X.; 

0056 state_diagram ost 
0057 
0058 
0059 
0060 
0061 
0062 
0063 

state idle: 
case (!reset_ # idle_stat) 

( reset_ & !idle stat 
endcasei 

:idlei 
:req_cyclei 

0064 state req_cycle: 
0065 
0066 
0067 
0068 
0069 
0070 
0071 
0072 
0073 
0074 
0075 
0076 
0077 
0078 
0079 
0080 
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case (!reset_ # idle_stat) :idle; 
( reset_ & bg_ & !idle_stat ) :req_cyclei 
( reset_ & !bg_ & !idle stat) :strt_cycli 

endcasei 

state strt_cycl: 
case ( ! reset 

( reset_) 
endcasei 

state do_cycle: 
case (! reset_ 

reset_) 

:idlei 
:do_cyclei 

:idlei 
:fin_cyclei 
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Figure 13-19. PLD Equations for Programming the 16R4 PLD (First-Level Logic) (Continued) 
0081 
0082 
0083 
0084 
0085 
0086 
0087 
0088 
0089 
0090 
0091 
0092 

endcase; 

state fin_cycle: 
case 

(I reset_> 
( reset_> 

endcase; 

:idle; 
:park; 

0093 state park: 
0094 
0095 

0096 

0097 
0098 
0099 
0100 
0101 
0102 
0103 
0104 
0105 
0106 

0107 
0108 
0109 
0110 
0111 

0112 
0113 
0114 
0115 
0116 
0117 
0118 
0119 

0120 

case (lreset_ # (bg_ & lock_ & priDMA_ » :idle; 
(reset & idle_stat & (lbg_ # llock_ # IpriDMA_>> 
:park; -

(reset & lidle stat & «lstat3 & strbO ) # 
(stat3 & strb1_») -

(lbg_ # llock_ # IpriDMA_» : do_cycle; 
(reset & «!stat3 & IstrbO_) # (stat3 & !strb1_» 
& (!bg_ # !lock_ # !priDMA_» : fin_cycle; 

endcase; 

equations 
!gwe_ := reset & stat2 & !idle stat & ( (I bus -req_ & !bg_) # !busenable ) ; -

@page 

"Test 1st level global arbitration logic 
test vectors 
([h1,stat3,stat2,stat1,statO,lock_,priDMA,strbO_,bg,strb1_, 

reset_]->[ost,gwe_]) 
[ c, X, H, H, H, X, X, X, X, H, L] -> [ idle,H]; 
[ c, X, H, L, H, H, L, X, L, H, H] -> [re<Lcycle,H]; 

I [ c, X, H, H, H, X, X, X, X, H, L] -> [ idle,H]; 

I 
I [ c, X, X, X, L, X, X, X, L, H, H] -> [req_cycle,H]; 
I [ c, X, H H, X, L, X, X, X, H, H] -> [strt_cycl, L] ; 
I [ c, X, H, H, H, X, X, X, X, H, L] -> [ idle, H] ; 
I "vector 7 

I [ c , X, X, X, L, X, X, X, L, H, H] -> [re<Lcycle,H]; 
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Figure 13-19. PLD Equations for Programming the 16R4 PLD (First-Level Logic) (Continued) 
0121 
0122 
0123 
0124 
0125 
0126 
0127 
0128 
0129 
0130 
0131 
0132 
0133 
0134 
0135 
0136 
0137 
0138 
0139 

0140 
0141 
0142 
0143 
0144 

0145 
0146 
0147 
0148 
0149 
0150 
0151 
0152 
0153 
0154 

0155 
0156 

I [ 
I [ 
I [ 

c, X, H, X, L, X, X, 
c, X, H, X, L, X, X, 
c, X, H, H, H, X, X, 

X, H, H, HJ 
x, H, H, HJ 
x, x, H, L] 

-> [strt_cycl, LJ; 
-> [do_cycle, LJ; 
-> [ idle, H] ; 

c, X, H, L, H, H, L, X, L, H, HJ -> [re~cycle, H] ; 

c, X, H, X, L, X, X, X, H, H, H] -> [strt_cycl, LJ ; 
c, X, H, X, L, X, X, X, H, H, HJ -> 
c, X, H, X, L, X, X, H, H, H, HJ -> 
c, X, H, H, H, X, X, X, X, H, LJ -> 

[do_cycle,L]; 
[fin_cycle,LJ; 
[ idle,H]; 

"vector 16 
c, X, X, X, L, X, X, 
c, X, H, X, L, X, X, 

c, X, H, X, L, X, X, 
c, X, H, X, L, X, X, 
c, L, H, X, L, X, X, 

c, X, H, H, H, X, X, 

X, L, H, HJ 
X, H, H, H] 

X, H, H, HJ 
H, H, H, HJ 
H, H, H, HJ 
X, X, H, L] 

c, X, X, X, 

c, X, H, X, 

c, X, H, X, 

c, X, H, X, 

c, L, H, X, 

L, X, X, X, L, H, H] 

L, X, X, X, H, H, H] 

L, X, X, X, H, H, H] 

L, X, X, H, H, H, H] 
L, X, X, H, H, H, H] 

"vector 09 
c, X, H, X, X, H, L, 

H, X, X, c, X, H, H, 
H, c, 

c, 
c, 
c, 
c, 
c, 

X, L, 
X, L, 

X, L, H, 
L, H, 

L, 
X, 
X, H, 
L, L, H, 

L, H, L, 
H, L, X, 
L, X, X, 

L, X, X, 
L, H, L, 

L, H, L, 
c, X, X, X, X, H, L, 

X, L,' H, H] 

X, X, H, H] 

X, L, H, H] 

X, H, L, H] 
H, H, H, H] 

H, L, H, H] 
H, L, H, H] 

H, L, H, H] 

H, L, H, H] 

-> 
-> 
-> 
-> 
-> 
-> 

[re~cycleiH); 

[strt_cycl, L) ; 
[do_cycle,L); 
[fin_cycle,L); 
[park,L); 

[ idle,H); 

-> [re~cycle,H); 

-> [strt_cycl, L); 
-> (do_cycle,L]; 

-> [fin_cycle, L); 
-> [park, L) ; 

-> [ idle,L); 

-> [ idle, H); 

-> [re~cycle,H]; 

-> [req_cycle,H]; 
-> [strt_cycl, H]; 
-> [do_cycle,H]; 
-> [fin_cycle,H); 

-> [park, H) ; 
-> [idle, H] ; 

0157 I "vector 18 
0158 
0159 
0160 

0161 
0162 

0163 
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I [ 
I [ 
I [ 
I [ 
I [ 
I [ 

c, X, H, H, H, L, X, H, L, H, H] 
c, H, L, X, H, L, X, H, L, H, H] 
c, H, L, X, H, L, X, H, L, H, H] 
c, H, L, X, H, X, X, H, H, H, H] 

c, H, L, X, H, L, X, H, H, L, H] 
c, H, L, X, H, H, L, H, L, L, H] 

-> [idle,H); 

-> [re~cycle]; 

-> [re~cycle,H); 

-> [strt_cycl, H); 
-> [do_cycle,H); 

-> [fin_cycle, H) ; 
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Figure 13-19. PLD Equations for Programming the 16R4 PLD (First-Level Logic) (Continued) 
0164 
0165 
0166 
0167 
0168 
0169 
0170 
0171 
0172 
0173 
0174 
0175 
0176 
0177 
0178 
0179 
0180 
0181 
0182 
0183 
0184 
0185 

0186 
0187 

0188 
0189 
0190 
0191 
0192 
0193 
0194 
0195 
0196 

I [ c, H, L, X, H, H, L, 
I [ L, H, L, X, H, H, L, 
I [ c, H, L, X, H, H, H, 
I [ c, H, L, X, H, H, H, 
I [ L, X, L, X, H, H, H, 
I [ c, L, L, L, H, L, X, 

[ c, L, L, L, H, H, L, 
c, 
c, 

L, 
H, 

H, L, L, L, H, 
H, H, H, H, H, 

H, H, H, 
X, H, 

c, H, H, H, 
c, X, x, X, 

"vector 37 
L, 

c, X, H, H, H, L, X, 
c, X, L, L, L, L, X, 
c, X, L, L, 

c, X, L, L, 
c, X, L, L, 
c, X, L, L, 

c, 
L, 
c, 

H, 
H, 
H, 

L, 
L, 
L, 

I [ c, H, L, 

L, 
L, 
L, 

L, L, X, 

L, X, X, 
L, L, X, 
L, H, L, 

L, H, 

L, H, 
L, 

L, 
L, 
H, L, 

L, L, H, 

H, X, L, H) 

H, x, H, H) 
H, L, L, H) 

H, X, L, H) 

H, x, H, H) 
H, H, H, H) 
H, L, H, H) 

H, x, L, H) 

H, x, H, H) 

H, x, H, H) 
H, L, H, H) 

H, L, H, H) 
H, L, H, H) 

H, L, H, H) 
H, H, H, H) 
H, H, H, H) 
H, L, H, H) 
H, X, 

H, X, 
H, L, 

H, X, 

H, 
H, 

H) 
H] 

L, H] 

L, H) 
I [ L, X, L, 

L, 
L, 

I [ c, H, L, L, 

I [ c, H, L, 

L, L, H, H, X, H, H) 
L, L, H, H, H, H, H] 

L, L, L, H, H, L, L, H) 
H] 

H) 
I [ c, H, L, 
I [ L, H, L, 
I [ c, H, H, 

L, 
L, 
H, 

L, H, 

L, H, 
L, 
L, 

H, 
H, 

L, H, 
I [ c, H, H, H, 

I [ c, L, L, X, X, 

L, H, 

H, L, 
I [ c, L, L, X, X, H, L, 
I [ c, X, X, X, X, H, L, 
I "vector 62 

H, X, L, 
H, X, H, 
H, X, H, H) 
H, x, H, H) 
L, H, 
H, X, 

H, H] 

H, H) 

H, L, H, H) 

-> 
-> 
-> 
-> 
-> 
-> 
-> 
-> 
-> 
-> 
-> 

-> 
-> 
-> 
-> 
-> 
-> 
-> 
-> 
-> 
-> 
-> 
-> 
-> 
-> 
-> 
-> 
-> 
-> 
-> 
-> 

[park, H] ; 
[park, H) ; 

[fin_cycle,H]; 
[park,H] ; 
[park, H] ; 
[do_cycle,H]; 
[fin_cycle,H] ; 
[park, H] ; 
[park,H] ; 

[park, H] ; 
[idle,H]; 

[idle, H] ; 
[re'Lcycle, H] ; 
[req_cycle,H]; 

[strt_cycl, H] ; 
[do_cycle,H]; 
[fin_cycle,H]; 
[park,H]; 
[park, H] ; 
[fin_cycle,H]; 
[park,H]; 
[park, H] ; 
[do_cycle,H]; 

[fin_cycle,H]; 
[park, H] ; 
[par, Hl; 
[park, H) ; 
[park,H]; 
[fin_cycle,H); 
[park, H] ; 
[idle,H); 

0197 [[ c, X, H, H, H, L, X, H, L, H, H) -> [idle,H]; 
0198 
0199 
0200 
0201 

0202 
0203 
0204 

0205 

0206 

I [ 
I [ 
I [ 
I [ 
I [ 
I [ 
I [ 
I [ 
I [ 

c, X, 

c, X, 

c, X, 

c, H, 

c, H, 

L, H, 

c, H, 

c, H, 

L, H, 

L, X, H, L, X, 

L, X, H, X, X, 

L, X, H, L, X, 

L, X, H, H, L, 

L, X, H, H, L, 
L, X, H, H, L, 

L, X, H, H, H, 

L, X, H, H, H, 

L, X, H, H, H, 

H, L, 

H, H, 

H, H, 

H, L, 

H, X, 

H, X, 

H, L, 

H, X, 

H, X, 

H, H] 

H, H] 

L, H] 

L, H] 

L, H) 

H, H] 

L, H] 

L, H] 

H, H] 

-> 
-> 
-> 
-> 
-> 
-> 
-> 
-> 
-> 

[req_cycle,H]: 
[strt_cycl, H]; 
[do_cycle,H]; 
[fin_cycle,H]; 
[park, H] ; 
[park, H] ; 

[fin_cycle,H) ; 
[park,H]; 

[park, H]: 
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.. ~~~ 

Figure 13-19. PLD Equations for Programming the 16R4 PLD (First-Level Logie) (Concluded) 
0207 I [ c, H, H, L, H, L, X, H, H, H, H] -> [do_cycle,L]; 
0208 I [ c, H, H, L, H, H, L, H, L, H, H] -> [fin_cycle,L]; 
0209 I [ c, H, H, L. H, H, L, H, X, H, H] -> [park,L]; 
0210 I [ c, X, L, L, L, L, H, H, H, H, H] -> [do_cycle,H]; 
0211 I [ c, H, L, L, L, L, H, H, L, L, H] -> [fin_cycle,H]; 
0212 I [ c, H, L, L, L, H, L, H, X, L, H] -> [park,H]; 
0213 I [ L, H, L, L, L, H, L, H, X, H, H] -> [park,H] ; 
0214 I [ c, X, L, X, X, H, L, L, H, H, H] -> [fin_cycle,H]; 
0215 I [ c, L, L, X, X, H, L, H, X, H, H] -> [park,H]; 
0216 I [ c, H, H, H, H, X, X, H, H, H, H] -> [park,H]; 
0217 I [ c, H, H, H, H, H, H, H, H, H, H] -> [park, H]; 
0218 I [ c, X, X, X, X, H, L, H, L, H, H] -> [idle,H]; 
0219 I@page 
0220 I [ c, X, H, X, L, X, X, X, L, H, H] -> [re<L.cycle,H]; 
0221 I [ c, X, H, X, L, X, X, X, H, H, ~] -> [strt_cycl,L] ; 
0222 I [ c, X, H, X, L, X, X, X, H, H, H) -> [do_cycle,L]; 
0223 I [ c, X, H, X, L, X, X, H, H, H, H] -> [fin_cycle,L); 
0224 I [ c, L, H, X, L, X, X, H, H, H, H) -> [park, L); 
0225 I [ c, X, H, X, X, H, L, X, L, H, H) -> [ idle,L]; 
0226 I [ c, X, H, L, L, X, X, X, L, H, H) -> [re<L.cycle,H]; 
0227 1"([h1,stat3,stat2,stat1,statO,lock_,priDMA,strbO_,bg,strb1, 

Ireset]->[outst,gwe_)) 
0228 I 
0229 I 
0230 lend c40_local_glob_bus_interf 
0231 I 
0232 I 
0233 I 
0234 I 
0235 I 
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The six PLD states are idle, request _cycle, start _cycle, 
do_cycle, finish_cycle, and park. 

1) After reset, the first-level PLD's state machine starts in the idle state 
and transcends to the request_cycle state when a global bus 
transfer is required. 

2) The transition to request cycle occurs when any of the 'C40 status 
lines (STAT2-Q) are low (when the status lines are all high, the bus is 
idle). In this state, the BUSREQ signal becomes active and is sent to the 
GBC PLD. 

3) When the PLD receives a BUSGRANT signal, the state machine transi­
tions to the start cycle state. For the start cycle, do cycle, 
finish_cycle and park states, BUSREQUEST and BUSENABLE 
are active. 

4) From the start_cycle state, the state machine transitions to the 
do_cycle state during the next H1 cycle. 

5) From the do_cycle state, the state machine transitions to the fin­
ish_cycle state inthe next H1 cycle. Inthis state, the BUSRDY signal 
is active. BUSRDY indicates to the 'C40 that the memory access has 
been completed and that another access can be started. 

6) From the finish_cycle state, the state machine transitions to the 
park state during the next H1 cycle. BUSRDY goes inactive in anticipa­
tion of another bus cycle starting. 

Bus parking is implemented for this bus arbitration protocol to allow the cur­
rent bus master to retain control of the bus and continue making accesses 
to global memory as long as consecutive interlocked or priority DMA cycles 
are required or if no other processor is requesting use of the bus. Bus park­
ing reduces memory access latency when only one 'G40 desires access to 
the global bus during any duration. 

Notice that when the state machine leaves the park state, allowing the cur­
rent bus master to perform another shared memory access, the state ma­
chine can transition to either the finish cycle or do cycle states, de­
pending on the level of STRBO or STRB1~The STRB signal remaining low 
between accesses indicates back-to-back read cycles, which require only 
two H1 cycles to complete for 35-ns memories. Hence, the state machine 
transitions from the park state directly to finish_cycle. If the STRB sig­
nal goes high one H1 cycle and then back low between accesses, the state 
machi ne transitions from the park state to do cy c 1 e, allowi ng the one cycle 
for the STRB high and two for the subsequent access. 

The global bus controller (second-level logic) is implemented as a 16R8 
PLD. This PLD takes as inputs the outputs of each of the four first-level 
PLDs. Hence, the GBG has four BUSREQUEST signals as inputs - one 
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13-58 

from each of the four, first-level logic PLDs associated with each of the 
'C40s. The GBC asserts four outputs, the BUSGRANT signals associated 
with each 'C40's first-level arbitration logic. 

Figure 13-21 illustrates graphically the state machine for the global bus 
controller. The GBC asserts low the BUSGRANT signal associated with the 
'C40 that wins an arbitration contest. This BUSGRANT signal remains ac­
tive until another processor desires access to the shared bus and a time-out 
signal has been received. The new contestant is not granted access to the 
shared bus until after the current bus master deasserts (brings high) its 
BUSREQ signal, indicating it has finished its priority accesses or single 
nonpriority memory access. The system RESET signal should also be an 
input to the GBC PLD. The system RESETsignal should clear (deassert 
high) all BUSGRANT Signals to any of the 'C40s and return the GBC state 
machine to an idle state. 

The time-out signal is also a necessary input for the GBC because of the 
high speed of bus arbitration. Before taking a BUSGRANT signal away, the 
GBC must guarantee that a bus arbitration winner has had a chance to see 
the BUSGRANT and start using the bus. The timeout signal is generated 
by a counter implemented with a 16R4 PLD. The counter starts counting 
when a processor first receives a BUSGRANT signal. It counts four cycles 
and then issues a time-out signal to the GBC indicating that the GBC can 
take away the current master's BUSGRANT if necessary. Hence, the time­
out counter provides at least four cycles for a 'C40's first level of logic to see 
a BUSGRANT and start using the bus before the GBC can take the 
BUSGRANT away. Figure 13-23 contains the ABEL PLD equations for the 
time-out counter. 

The type of arbitration implemented in this GBC example is a rotating prior­
ity scheme. This rotating priority scheme provides fair arbitration among the 
four 'C40s sharing the global bus. In a rotating priority scheme, the last bus 
master becomes the lowest (last serviced) priority processor. The proces­
sors sequentially rotate throughout the priority list with the least recently 
serviced processor having the highest priority in subsequent arbitration con­
tests. The priority rotates every time the bus request of the current bus mas­
ter goes inactive and another processor desires access to shared memory. 
At system reset, the priorities are 1, 2, 3, or 4, with 1 being the highest or 
first serviced priority. . 

Figure 13-22 shows PLD equations for programming the 16R8 PLD used 
to implement the rotating priority global bus controller. ABEL's PLD lan­
guage is used to describe the state machine shown in Figure 13-21. 
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Note: Active-Low Indicators 

In listings (e.g., Figure 13-22), an underscore following asignal name (e.g., 
busreqJ indicates that the signal is active low. (in regular text, such sig­
nals are overbarred (e.g., BUSREQ). 

The PLD's four outputs are the four busgrant lines, with each line giving 
a different 'C40 access to the shared bus. These four bits are also used as 
half of the output state bits. The other four state bits are used to indicate the 
ready state corresponding to each busgrant state. At reset, the GBC state 
machine goes to the idle state. All busgrant _ signals are inactive. In the 
idle state, br _ signals can be received from any of the four first-level PLDs. 
After arbitration, the state machine makes a transition to one of the grx 
states (where x = 1, 2, 3, or 4). The corresponding busgrantx_ output 
signal goes active. The GBC stays in that state until a busrequest_ and 
a time-out signal is received from another processors' first-level PLD. Once 
another bus request_ is received, the state machine transcends to the 
corresponding bryx state. In this state, the busgrantx signal goes 
inactive. However, the GBC state machine stays in this state until the 
corresponding bus request (brx ) input goes inactive high, indicating that 
the current bus master has relinquished control of the shared bus. When 
brx _ goes inactive, the state machine changes to the highest priority 
processor's gry state (where y = 1, 2, 3, or 4) that had its br _ signal active. 
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Figure 13-20. PLD Equations for Programming the 16R4 PLD 
0001 I module 
0002 Ititle' 
0003 I 
0004 IOWG 
0005 DWG * 
0006 
0007 COMPANY TEXAS INSTRUMENTS INCROPORATEO' 
0008 
0009 c40u1 device 'P16R4'; 
0010 
0011 
0012 
0013 
0014 
0015 

"inputs 
h3 
bg_ 
busrdy_ 
busenable_ 

"outputs 
ctrl enable - -
rdy_ 
sync_ae_ 
bg_sync_ 

I "name substitutions 
CE 
bry_ 

Pin 1; 
Pin 7; 
Pin 8; 
Pin 9; 

Pin 18; 
Pin 17; 
Pin 15; 
Pin 14; 

"busrdy from global interface PAL 
"busenable from global interface 
PAL 

"enable signal for control lines 
"rdy signal for shared SRAM 
"synchronized busenable signal 

ctrl_enable_; 
rdy_; 

0016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
0028 
0029 

I "substitutions for test vectors 
c,H,L,X, 

0030 
0031 I equations 
0032 I sync_ae_: 
0033 I ! ctrl enable 
0034 I rdy_: 
0035 I bg_sync_: 
0036 I 
0037 I@page 
0038 I 
0039 I 
0040 I 
0041 I 

.C.1,0, .X.; 

busenable ., .. J 
!sync_ae_ & !busenable_; 
busrdy_; 
bg_; 

0042 I "Test 1st level global arbitration logic 
0043 Itest_vectors 
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Figure 13-20. PLD Equations for Programming the 16R4 PLD (Concluded) 
0044 ([h3,busenable_,busrdy_,bg_]->[CE_,bry_,bg_sync_]) 
0045 [ c, H, H, H] -> [ H, H, H]; 

0046 

0047 

0048 
0049 
0050 
0051 
0052 

0053 
0054 
0055 
0056 
0057 
0058 
0059 
0060 

c, L, H, H] -> 
c, L, H, L] -> 
L, L, L, H] -> 
c, L, L, H] -> 
c, H, H, H] -> 
c, H, H, HJ -> 
c, H, H, HJ -> 
c, H, H, HJ -> 
L, L, H, LJ -> 
c, L, H, H] -> 
c, L, H, HJ -> 
c, L, L, H] -> 
c, L, H, LJ -> 
c, L, L, L] -> 
L, H, H, H] -> 

0061 c, H, H, HJ -> 
0062 I [ c, H, H, HJ -> 
0063 [ c, H, H, L] -> 

0064 
0065 
0066 
0067 
0068 
0069 
0070 
0071 
0072 
0073 

0074 

0075 
0076 
0077 
0078 

0079 

0080 
0081 
0082 

0083 

@page 
[ c, H, H, L] -> 

c, H, H, L] -> 
c, H, H, L) -> 
c, H, H, L) -> 
c, L, H, H] -> 
c, L, H, H) -> 
L, L, L, H) -> 
c, L, L, H] -> 

c, H, H, HJ -> 
c, H, H, HJ -> 
c, H, H, H) -> 
c, H, H, H) -> 
L, L, H, H) -> 
c, L, H, HJ -> 
c, L, H, H] -> 
c, L, L, HJ -> 
c, L, H, H) -> 
c, L, L, HJ -> 

0084 end 

L, H, HJ; 

L, H, LJ: 

L, H, L): 

L, L, H]: 

H, H, H): 

H, H, H): 

H, H, HJ: 

H, H, HJ: 

H, H, HJ; 

L, H, HJ: 

L, H, HJ: 

L, L, H]: 

L, H, LJ; 

L, L, L]: 

H, L, L): 

H, H, HJ: 

H, H, HJ: 

H, H, LJ; 

H, H, LJ; 

H, H, LJ: 

H, H, LJ: 

H, H, LJ: 

L, H, HJ: 

L, H, H]: 

L, H, HJ: 

L, L, H]: 

H, H, HJ: 

H, H, HJ: 

H, H, HJ: 

H, H, HJ; 

H, H, HJ; 

L, H, H]; 

L, H, HJ; 

L, L, HJ; 

L, H, HJ; 

L, L, HJ; 

Bus Arbitration 
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Figure 13-21. G/oba/Bus Control/or PLD (Rotating Priority Mode Only) 

br4 

(!br2 & !br3 & !br4) # Itimeout 

.,.. ... 
£! 
cIS 

~ 

.,.. ... 

.0 

timeout & 
br2#br3#br4 

br4 & !br3 

(!br1 & !br2 & Ibr3) # !timeout 
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br1 

br3 

(!br3 & !br4 & !br1) # Itimeout 

br2 & Ibr1 

timeout & 
br4#br1 #br2 

br2 

(!br4 & !br1 & !br2) # Itimeout 
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Figure 13-22. PLD Equations for Programming the 16R8 PLD 

Imodule global bus cntrl 
I title' --
I 
IDWG NAME Shared bus interface 
IDWG * 
I 
ICOMPANY TEXAS INSTRUMENTS INCORPORATED' 
I 
I 
I 
I 

xub5 

h50 
br1 
br2-
br3-
br4-

device 'P16R8'; 

"50 MHz clock 
"bus request 1 
"bus request 2 
"bus request 3 
"bus request 4 
"reset 

Bus Arbitration 

0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
0010 
0011 
0012 
0013 
0014 
0015 
0016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
0028 
0029 
0030 
0031 
0032 
0033 
0034 
0035 
0036 
0037 
0038 
0039 
0040 
0041 
U042 
0043 
0044 
0045 
0046 
0047 
0048 
0049 
0050 
0051 
0052 
0053 
0054 
0055 

reset 
fix rot 
oe 
timeout 

Pin 
Pin 
Pin 
Pin 
Pin 
Pin 
Pin 
Pin 
Pin 
Pin 

1; 
2; 
3; 
4; 
5; 
6; 
7; 
11; 
8 
10; 

"fix/rot_ not used here but can be added 

I 
I 
I 
I 
I 

vss 

bg1 
bg2-
bg3-
bg4-
s3 -
s2 
sl 
sO 
vcc 

c,H,L,X 

Pin 19; 
Pin 18; 
Pin 17; 
Pin 16; 
Pin 15; 
Pin 14; 
Pin 13; 
Pin 12; 
Pin 20; 

"grant 1 
"grant 2 
"grant 3 
"grant 4 
"state 3 
"state 2 
"state 1 
"state 0 

.C.,l,O, .X.; 

"define state machine bits 
bus_state [s3,s2,sl,sO,bg4_,bg3_,bg2_,bgl_1 

"states 
bry1 
bry2 
bry3 
bry4 
idle 

gr1 
gr2 
gr3 
gr4 

"convert 
br1 
br2 
br3 
br4 

"bOllllll1; 
"b10llllll; 
"bllOllll1; 
·"bll10llll ; 
"bllllllll; 

"blllllll0; 
"bllllll01; 
"blllll0ll; 
"bllllOll1; 

"ready 1 
"ready 2 
"ready 3 
"ready 4 
"idle state 

"grant 1 
"grant 2 
"grant 3 
"grant 4 

inputs to positive 
!br1 ; 

logic 

!br2-; 
!br3-; 
!br4-; 

I reset !reset 
I@page 
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Figure 13-22. PLD Equations for Programming the 16RB PLD (Continued) 

0056 
0057 
0058 
0059 
0060 
0061 
0062 
0063 
0064 
0065 
0066 
0067 
0068 
0069 
0070 
0071 
0072 
0073 
0074 
0075 
()076 
0077 
0078 
0079 
0080 
b081 
0082 
0083 
0084 
0085 
0086 
0087 
0088 
0089 
0090 
0091 
0092 
0093 
0094 
0095 
0096 
0097 
0098 
0099 
0100 
0101 
0102 
0103 
0104 
0105 
0106 
0107 
0108 

13-64 

I . 
I state diagram bus state 
I state idle: 
I if ( reset ) then idle 
I else if ( !reset & !brl & !br2 & br3 & br4)then gr4 
I else if ( !reset & !brl & !br2 & br3 ) then gr3 
I else if ( !reset & !brl & br2 ) then gr2 
I else if ( !reset & brl ) then grl 
I else idle; 

state bry4: 
if ( reset ) then idle 
else if ( !reset & br4 ) then bry4 
else if ( !reset & !brl & !br2 & !br3 & !br4)then idle 
else if ( !reset & !brl & !br2 & br3 & !br4) then gr3 
else if ( !reset & !brl & br2 & !br4) then gr2 
else if ( !reset & brl & !br4) then grl; 

state bry3: 
if ( reset ) then idle 
else if ( !reset & br3 ) then bry3 
else if ( !reset & !br4 & !brl & br2 & !br3) then idle 
else if ( !reset & !br4 & !brl & br2 & !br3) then gr2 
else if ( !reset & !br4 & brl & !br3) then grl 
else if ( !reset & br4 & !br3) then gr4; 

state bry2: 
if ( reset ) then idle 
else if ( !reset & br2 ) then bry2 
else if ( !reset & !br3 & !br4 & !brl & !br2) then idle 
else if ( !reset & !br3 & !br4 & brl & !br2) then grl 
else if ( !reset & !br3 & br4 & !br2) then gr4 
else if ( !reset & br3 & !br2) then gr3; 

state 
if ( 
if( 
else 
else 
else 
else 

bryl: 
reset ) then idle 
!reset & brl ) then qryl 
if ( !reset & !br2 ~ !br3 & !br4 & !brl) then idle 
if ( !reset & !br2 & !br3 & br4 & !brl) then gr4 
if ( !reset & !br2 & br3 & !brl) then gr3 
if ( !reset & br2 & !brl) then gr2; 

state gr4: 
if ( !reset & (timeout t !brl & !br2 & !br3» then gr4 
else if ( reset ) then idle 

state gr3: 
if ( !reset & (timeout t !br4 & !brl & !br2» then gr3 
else if (reset ) then idle 

state gr2: 
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Figure 13-22. PLD Equations for Programming the 16R8 PLD (Continued) 
0109 if (!reset &) (timeout * !br3 & !br4 & !br1 » then gr2 
0110 else if ( reset ) then idle 
0111 
0112 
0113 state gr1: 
0114 if ( !reset & (timeout * !br2 & !br3 & !br4 ) then gr1 
0115 else if ( reset ) then idle 
0116 
0117 @page 
0115 test vectors 
0116 
0117 "rotating priority vectors 
0118 ([h50,br1,br2,br3,br4,timeout_,reset_) -> [bus_state) ) 
0119 "check for go to IDLE 
0120 [ c, X, X, X, X, X, L ) -> [idle) ; 
0121 I [ c, L, L, L" H, X, H ) -> [gr4); 
0122 I [ c, X, X, X, X, X, L ) -> [idle]; 
0123 I [ c, L, L, H, X, X, H ] -> [gr3); 
0124 I [ c, X, X, X, X, X, L ] -> [idle'] ; 
0125 I [ c, L, H, X, X, X, H ] -> [gr2) ; 
0126 I [ c, X, X, X, X, X, L ] -> [idle] ; 
0127 I [ c, H, X, X, X, X, H ) -> [gr1]; 
0128 I [ c, X, X, X, X, X, L ] -> [idle] ; 
0129 I [ c, L, L, L, H, X, H ) -> [gr4]; 
0130 I [ c, H, L, L, H, L, H ] -> [bry4] ; 
0131 I [ c, X, X, X, X, X, L ) -> [idle] ; 
0132 I [ c, L, L, H, X, X, H ] -> [gr3); 
0133 I [ c, L, H, H, L, L, H ) -> [bry3) ; 
0134 I [ c, X, X, X, X, X, L. ] -> [idle] ; 
0135 I [ c, L, H, X, X, X, H ) -> [gr2] ; 
0136 I [ c, L, H, H, H, L, H ] -> [bry2); 
0137 I [ c, X, X, X, X, X, L ] -> [idle] ; 
0138 [ c, H, X, X, X, X, H ] -> [gr1]; 
0139 [ c, H, H, H, H, L, H ) -> [bry1) ; 
0140 [ c, X, X, X, X, X, L ] -> [idle] ; 
0141 
0142 
0143 c, X, X, X, L, X, H -> [idle] ; 
0144 c, L, L, H, X, X, H -> [gr3]; 
0145 c, X, X, L, X, X, H -> [idle]; 
0146 c, L, H, X, X, X, H -> [gr2) ; 
0147 c, X, L, X, X, X, H -> [idle] ; 
0148 c, H, X, X, X, X, H' -> [gr1) ; 
0149 c, L, X, X, X, X, H -> [idle) ; 
0150 c, L, L, L, H, X, H -> [gr4]; 
0151 c, H, L, L, H, L, H -> [bry4] ; 
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Figure 13-22. PLD Equations for Programming the 16R8 PLD (Continued) 
0152 [ c, L, L, L, L, X, H ] -> [idle]; 
0153 [ c, L, L, H, X, X H ] -> [gr3]; 
0154 c, L, H, H, L, L, H -> [bry3]; 
0155 c, L, L, L, L, X, H -> [idle]; 
0156 c, L, H, X, X, X, H -> [gr2J; 
0157 c, L, H, H, H, L, H -> [bry2]; 
0158 c, L, L, L, L, X, H -> [idle]; 
0159 
0160 
0161 
0162 
0163 
0164 
0165 
0166 
0167 
0168 
0169 

c, H, X, X, X, X, H 
c, H, H, H, H, L, H 

[c, L, L, L, L, X, H, H 
"vector 7 

c, H, X, X, X, X, H 
c, H, X, X, X, H, H 
c, H, L, L, L, L, H 
c, H, X, X, H, L, H 
c, H, X, X, X, X, H 
c, H, X, X, X, X, H 

@page 
0170 "vector 15 
0171 
0172 
0173 
0174 
0175 
0176 
0177 
0178 
0179 
0180 
0181 
0182 
0183 
0184 
0185 
0186 
0187 
0188 
0189 
0190 
0191 
0192 

0193 
0194 
0195 
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c, L, L, L, H, X, H 
c, L,. L, L, H, X, H 
c, L, L, L, H, X, H 
c, X, X, X, H, H, H 
c, X, X, H, X, L, H 
c, X, X, X, H, X, H 
c, X, X, X, H, X, H 

"vector 21 
c, L, L, H, L, X, H 
c, L, L, H, L, X, H 
c, L, L, H, L, H, H 
c, X, X, H, X, H, H 

c, X, H, H, X, L, H 
c, X, X, H, X, X, H 
c, X, X, H, X, X, H 

"vector 27 
c, L, H, L, L, X, H 
c, L, H, L, L, X, W 
c, X, H, X, X, H, H 
c, L, H, L, L, L, H 
c, H, H, X, X, L, H 
c, X, H, X, X, X, H 

c, X, H, X, X, X, H 
"vector 33 

c, H, L, L, L, X, H 

-> [gr1]; 
-> [bry1]; 
-> [idle]; 

-> [grlJ; 
-> [grl]; 
-> [grl]; 
-> [bryl]; 
-> [bryl]; 
-> [bry1]; 

-> [gr4]; 
-> [gr4]; 
-> [gr4]; 
-> [gr4]; 
-> [bry4]; 
-> [bry4]; 
-> [bry4]; 

-> [gr3] i 
-> [gr3]i 
-> [gr3] i 
-> [gr3] i 

-> [bry3] i 

-> [bry3] i 
-> [bry3J i 

-> [gr2] i 
-> [gr2]i 
-> [gr2]i 
-> [gr2] i 
-> [bry2] i 
-> [bry2J i 
-> [bry2] i 

-> [grlJ i 
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Figure 1~22. PLD Equations for Programming the 16RB PLD (Concluded) 
0196 [ e, H, X, H, X, L, H ] -> [bry1] ; 
0197 [ e, L, L, H, X, X, H ] -> [gr3]i 
0198 [ e, H, x, H, x, L, H ] -> [bry3] ; 
0199 [ e, H, x, L, L, x, H ] -> [gr1]; 
0200 [ e, H, H, x, x, L, H ] -> [bry1] ; 
0201 [ e, L, H, x, x, x, H ] -> [gr2]; 
0202 [ e, x, H, x, H, L, H ] -> [bry2] ; 
0203 [ e, x, L, L, H, x, H ] -> [gr4] ; 
0204 [ e, x, H, x, H, L, H ] -> [bry4] ; 
0205 [ e, L, H, x, L, x, H ] -> [gr2]; 
0206 [ e, x, H, H, x, L, H ] -> [bry2"] ; 
0207 "vector 45 
0208 e, X, L, H, X, X, H -> [gr3]; 
0209 e, X, X, H, H, L, H -> [bry3] ; 
0210 e, X, X, L, H, X, H -> [gr4]; 
0211 e, H, X, X, H, L, H -> [bry4] ; 
0212 c, H, X, X, L, X, H -> [gr1]; 
0213 e, H, H, X, X, L, H -> [bry1] ; 
0214 end global_bus_entrl 
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Figure 13-23. PLD Equations for Programming the 16R6 PLD 
0001 Imodule c40_global_timeout 
0002 I title' 
0003 IDWG NAME global arbitration 
0004 IDWG 4/: 

0005 ICOMPANY TEXAS INSTRUMENTS INCROPORATED 
0006 I 
0007 
0008 
0009 
0010 
0011 
0012 
0013 
0014 
0015 
0016 
0017 
0018 
0019 
0020 
0021 

I DATE 
I 
I c40u4 

I 
I "inputs 
I h50 
I bg1_ 

I bg2_ 

I bg3_ 
I bg4_ 

timeout 
sl 
sO 

device 'P16R6'; 

Pin 1; 
Pin 2; 
Pin 3; 
Pin 4; 
Pin 5; 

- Pin 13; "output 
Pin 16; 
Pin 15; 

0022 "name substitution to increase readability 
0023 bus_active (!bg1_ 4/: !bg2_ 4/: !bg3_ 4/: !bg4_); 
0024 
0025 "define machine state bits 
0026 "[timeout_, sl, sO]; 
0027 
0028 "states 
0029 
0030 
0031 
0032 
0033 
0034 
0035 

idle 
count 1 
count2 
count3 
time 

"'b1ll; 
"'b110; 
"'bl01; 
"'b100; 
"'bOll; 

0036 outstate = [timeout_,sl,sO]; 
0037 
0038 
0039 
0040 

c,H,L,X .C.,l,O, .X.; 

0041 I state_diagram outstate 
0042 I 
0043 I state idle: 
0044 I if (!bus active) then idle 
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Figure 13-23. PLD Equations for Programming the 16R6 PLD (Continued) 
0045 else count1; 
0046 
0047 ,state countl: 
0048 if ( !bus_active) then idle 
0049 else count2; 
0050 
0051 I state count2: 
0052 , if ( !bus_active) then idle 
0053 , else count3; 
0054 , 
0055 ,state count3: 
0056 , if ( !bus_active) then idle 
0057 I else time; 
0058 I 
0059 , state time: GOTO idle; 
0060 I 
0061 @page 
0062 "Test counter 
0063 test vectors -
0064 ([h50, bg1_, bg2_, bg3_, bg4_] -> [outstate] ) 
0065 [ c, H, H, H, H ] -> [ idle] ; 
0066 [ c, L, H, H, H ] -> [count1] ; 
0067 [ c, H, H, H, H ] -> [ idle] ; 
0068 [ c, L, H, H, H ] -> [count1] ; 
0069 [ c, X, X, X, X ] -> [count2]; 
0070 [ c, H, H, H, H ] -> [ idle]; 
0071 [ c, L, H, H, H ] -> [count1]; 
0072 [ c, X, X, X, X ] -> [count2]; 
0073 [ c, X, X, X, X ] -> [count3] ; 
0074 [ c, H, H, H, H ] -> [ idle] ; 
0075 [ c, L, H, H, H ] -> [countl]; 
0076 [ c, X, X, X, X ] -> [count2]; 
0077 c, X, X, X, X ] -> [count3]; 
0078 
0079 c, X, X, X, X -> [ idle] ; 
0080 c , H, L, H, H -> [count1] ; 
0081 c, X, X, X, X -> [count2] ; 
0082 c , X, X, X, X -> [count3] ; 
0083 c , X, X, X, X -> [time] ; 
0084 c , X, X, X, X -> [ idle] ; 
0085 c, H, H, L, H -> [countl]; 
0086 c, X, X, X, X -> [count2] ; 
0087 c, X, X, X, X -> [count3]; 
0088 c , X, X, X, X -> [time] ; 
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Figure 13-23. PLD Equations for Programming the 16R6 PLD (Concluded) 
0089 c , X, X, X, X ] -> [ idle] ; 
0090 c , H, H, H, L ] -> [countl]; 
0091 c, X, X, X, X ] -> [count2)i 
0092 c, X, X, X, X 1 -> [count3)i 
0093 c, X, X, X, X ) -> [time) i 
0094 c , X, X, X, X ) -> [ idle) ; 
0095 
0096 
0097 
0098 
0099 
0100 end 
0101 
0102 
0103 
0104 
0105 

13.6.2 Arbitration Alternatives 

If more arbitration flexibility is desired, a fixed priority mode can be implem­
ented in the global bus controller PLD. A fixed scheme can be used in con­
junction with this rotating priority mode if a fixed/rotating input is added to 
the GBC PLD to allow either of the two arbitration methods. One of the spare 
IIOF pins can be configured as a general-purpose output pin to act as the 
arbitration mode control pin. For example, if FIX/ROT (IIOF2) = 0, the four 
'C40s have rotating priorities; if FIX/ROT = 1, the four processors have fixed 
priorities. To reduce state machine complexity, the rotating priorities can be 
preset at system reset to the same values as in the fixed arbitration mode, 
with the processors having priorities of 1 , 2, 3, or 4, with 1 being the highest 
(first serviced) priority. 

13.6.3 Global Bus Arbitration and Transfer Timing 
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To illustrate the timing involved with global bus arbitration and data trans­
fers, Figure 13-17 (page 13-47), Figure 13-24 (page 13-72), Figure 13-25 
and Figure 13-26, show shared bus timings using the rotating priority arbi­
tration configuration. 

These figures represent a 'C40 requesting a shared bus access when it is 
not currently the bus master. Clock H 1 is the output clock of the the 'C40 re­
questing access to the bus. Both clocks H1 and H3 have a rate of 25 MHz; 
however, the global bus controller (GBC) input clock is aysnchronous with 
respect to H1 and H3 and has a rate of 50 MHz. 
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Due to the arbitration logic synchronizer delays and the 35-ns SRAMs, 
access to the shared memory requires wait states. A !'lew bus master's first 
memory access after an arbitration win takes at least five H 1 cycles (the five 
cycles include the time period from status lines active to the end of the read 
or write cycle), but subsequent reads or writes take only two H 1 cycles. Two­
cycle memory accesses allow enough time for control signals to go active 
and inactive to complete read or write cycles for 35-ns memories. They also 
allow processors to stop driving the bus before another processor starts 
driving the bus after a bus arbitration contest. Also, the two-cycle memory 
accesses allow enough time for signal buffering between the processor bus 
and memory (buffer delays are less than 15 ns with commercially available 
parts). 

In Figure 13-17 (page 13-47), a 'C40 wins an arbitration contest immediate­
ly and does one read cycle. However, it loses arbitration forthe next transfer 
on the shared bus (busgrant . goes inactive high) and the first-level PLD 
brings its busrequest sigmifinactive high to signal the GBC that it has 
given up the bus. The first-level PLD at the same time sends bus disable sig­
nals (BUSENABLE and CTLENABLE high) to the AE, DE, and CE pins of 
the 'C40 to three-state the bus. The first-level PLD three-states the bus im­
mediately because the GBC will give another processor access to the 
shared bus as soon as it sees this BUSREQUEST and a time-out go inac­
tive. 

Figure 13-24 shows a successful arbitration contest followed by succes­
sive reads. The 'C40 is allowed to do successive reads on the shared bus 
because no other processor desires access (busgrant stays active). 

Figure 13-25 illustrates an arbitration win followed by a single write. 
Figure 13-26 shows an aribitration win followed by successive writes and 
an arbitration loss. The second write is allowec:l to occur because the 
busgrant going inactive is missed by the first-level PLDs, which 
synchronizes on H1 rising. The first-level PLD transcends to the do cycle 
state because STRB is high and the PLD has not seen the busgrant go 
inactive from the synchronizer output. Even though the first-level PLD sees 
thatthe busgrant is taken away during the next H1/H3 cycle, it does not 
take away its busr~quest until the end of the second write cycle. Then, 
the busrequest_ is made inactive, and the bus is disabled. 
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. Figure 13-24. Successful TMS320C40 Arbitration; Data Read; Data Read 

STAT(3-0):::::X X >c: 
busreq 

, 
bg 

, 
be \ 

brdy ~ ~ 

A(3Q-O) 
High Impedance ( Valid Address X Valid Address >c: 

0(31-0) ~ValidOata ~ Valid Data ~ 
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Figure 13-25. Successful TMS320C40 Arbitration and Data Write From Shared Bus Memory Followed 
by an Unsuccessful Arbitration Contest 

HI 

STAT(3-0) 

br 

bg 

be 

rely 

A(3Q-O) 

RIW 

STRB 

0(31-0) 

X ~ _________ ~_~_id_M_e_m_o~~~A_oo __ e~ __ R_e_qU_e_~ ________ --JX~~;~! __ _ 

\ 
Pending Memory 

Access_--
~ ________________________ _JI 
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\~-----------------

Hi Impedance 

Hi Impedance 
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Figure 13-26. Successful 'C40 Arbitration; Consecutive Data Writes; Arbitration Win Followed by 
Successive Writes and an Arbitration Loss 

HI 

STAT(3-0) ::::x X X,-__ 

buSIIIq \ r-
~ \ I 

be \ r-
, I \ I 

A(30-0) ____ ~H~~~hl~mws~a~~------<{::::::]~~lId~Addi5~"i:::::JX~ ___ ~_ali_dAdd __ ~_" ___ X:>--
~RB _____ H~i_hl_m~_d_an_~ __________ ~~~ __________ ~1 ' ... _______ f'+-

D(31-() ( Valid Write Data ) ( Valid Write Data ) High Imped~ 

13.6.4 Arbitration Protocol Limitations 
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This shared bus arbitration protocol uses handshaking between the GBC 
and the processors sharing the global bus to ensure that only one process­
sor is driving the bus at any given time. Nonetheless, the global bus control­
ler should not allow another processor to become bus master until the pre­
vious master is guaranteed to release the bus completely. Since 'C40s have 
a bus disable (AE, DE, or CE) time of less than 15 ns, bus turnoff time is not 
critical unless the GBC input clock frequency is greater than 50 MHz. How­
ever, if processors with slower turnoff times are used in a shared bus config­
uration with this protocol, the GBC input clock period cannot be less than 
the bus disable time of the slowest processor in the system. If the GBC input 
clock period is less than a processor's disable time, the GBC could give a 
new master ownership of the bus before the previous master is off the bus. 
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13.7 Reset Signal Generation Control Function 

Several aspects of 'C40 system hardware design are critical to overallsys­
tern operation. One such function is reset signal generation. 

The reset input controls initialization of internal 'C40 logic and also causes 
execution of the system initialization software. For proper system initializa­
tion, the reset signal must be applied for at least ten H1 cycles, i.e., 400 ns 
for a 'C40 operating at 50.00 MHz. Upon powerup, however, it can take 20 
ms or more before the system oscillator reaches a stable operating state. 
Therefore, the powerup reset circuit should generate a low pulse on the re­
set line for 100 to 200 ms. Once a proper reset pulse has been applied, the 
processor fetches the reset vector from location zero, which contains the 
address of the system initialization routine. Figure 13-27 shows a circuit 
that will generate an appropriate powerup or push button reset signal. 

Rgure 13-27. Reset Circuit 

+5V 

.> 
R1 = 100Kn .~ 

TMS320C40 

74ALS34 

....---.. 
C1 = 4.7 JlF T 

GND 

The voltage on the reset pin (RESET) is controlled by the R1 C1 network. 
After a reset, this voltage rises exponentially according to the time constant 
R1C1, as shown in Figure 13-28. In Figure 13-27, the 74ALS34 is used to 
provide a clean RESET signal to the 'C40. 
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Figure 13-28. Voltage on the TMS320C40 RESET Pin 

Voltage 
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V == Vee (1 - e -t/'t) 

lime 

The duration of the low pulse on the RESET pin is approximately t1 , which 
is the time ittakes for the capacitor C1 to be charged to 1.5 V. This is approxi­
mately the voltage at which the reset input switches from a logic 0 to a logic 
1. The capacitor voltage is expressed as 

v = Vee[ 1-e-t] (5) 

where t = R1 C1 is the reset circuit time constant. Solving (5) for t results in 

Setting the following: 

R1=100kn 

C1 = 4.7 j.1F 

VCC=5V 

V = V1 = 1.5 V 

t = - R1C11n[1 -~] 
Vee 

(6) 

results in t = 167 ms. Therefore, the reset circuit of Figure 13-27 provides 
a low pulse long enough to ensure the stabilization of the system oscillator 
upon powerup. 
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Note that if synchronization of multiple 'C40s is required, all processors 
should be provided with the same input clock and the same reset signal. Af­
ter powerup, when the clock has stabilized, all processors may then be syn­
chronized by generating a falling edge on the common reset signal. Since 
it is the falling edge of RESET that establishes synchronization, RESET 
must be high for at least ten H1 cycles initially. Following the falling edge, 
RESET should remain low for at leastten H1 cycles and then be driven high. 
This sequencing of RESET may be accomplished by using additional cir­
cuitry based on either RC time delays or counters. 
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Chapter 14 

TMS320C4x Signal Descriptions and 
Electrical Characteristics 

! 
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The sections in this chapter cover the following characteristics of 
theTMS320C4x: 

Section Page 

14.1 Pinout and Pin Assignments ......................... 14-2 

14.2 Signal Descriptions .............................. ~ .. 14-7 

14.3 TMS320C4x Mechanical Data. . . . . . . . . . . . . . . . . . . . . . .. 14-11 

14.4 Electrical Specifications ............................. 14-12 

14.5 Signal Transition Levels ............................. 14-14 

14.6 Timing ............................................ 14-15 

Note: Advance Information 

Unless otherwise noted, this chapter contains advance information on new 
products in the sampling or preproduction phases of development. 
Characteristic data and other specifications are subject to change without 
notice. 
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14.1 Pinout and Pin Assignments 

The TMS320C40 (TMS320C4x generation) digital signal processor is avail­
able in a 325-pin grid array (PGA) package. The pinout of this package is 
shown in Figure 14-1. Pin assignments are listed in the following tables: 

Q Table 14-1: Pins sorted by signal name (alphanumeric listing) 

Q Table 14-2: Pins sorted by pin number (location on Figure 14-1) 

Q Table 14-3: Pins sorted by function, describing each (page 14-7) 

Figure 14-1. TMS320C40 Pinout (Bottom View) 
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Table 14-1. TMS320C40 Pin Assignments Sorted by Signal Name 

Signal Pin Signal Pin Signal Pin Signal 

AO D32 COD6 AN7 C5D4 AM30 CVSS 
A1 832 COD7 AK8 C5DS AP32 CVSS 
A2 D30 C1DO AL7 C5D6 AM32 CVSS 
A3 C29 C1D1 AP8 C5D7 AL31 CVSS 
A4 830 C1D2 AM8 CACKO AN11 CVSS 
AS F28 C1D3 AK12 CACK1 AN13 CVSS 
A6 F24 C1D4 AK10 CACK2 AM14 CVSS 
A7 E29 C1DS AN9 CACK3 AM16 DO 
A8 C27 C1D6 AL9 CACK4 AK32 D1 
A9 D28 C1D7 AP10 CACKS AJ31 D2 
A10 828 C2DO AM18 CEO AA33 D3 
A11 F26 C2D1 AN19 CE1 V34 D4 
A12 C25 C2D2 AL19 CRDYO AP12 D5 
A13 E27 C2D3 AP20 CRDY1 AP14 D6 
A14 826 C2D4 AM20 CRDY2 AL15 D7 
A1S D26 C2D5 AN21 CRDY3 AL17 D8 
A16 C23 C2D6 AL21 CRDY4 AH30 D9 
A17 824 C2D7 AP22 CRDY5 AH32 D10 
A18 E25 C3DO AM22 CREOO AM10 D11 
A19 C21 C3D1 AN23 CRE01 AM12 D12 
A20 D24 C3D2 AL23 CRE02 AN15 D13 
A21 822 C3D3 AP24 CRE03 AN17 D14 
A22 E23 C3D4 AM24 CRE04 AN33 D15 
A23 C19 C3D5 AN2S CREOS AL33 D16 
A24 D22 C3D6 AL25 CSTR80 AL11 D17 
A25 820 C3D7 AP26 CSTR81 AL13 D18 
A26 E21 C4DO AN27 CSTR82 AP16 D19 
A27 818 C4D1 AM26 CSTR83 AP18 D20 
A28 C17 C4D2 AK24 CSTR84 AM34 D21 
A29 D20 C4D3 AL27 CSTR85 AK34 D22 
A30 816 C4D4 AP28 CVSS AR19 D23 
AE AG31 C4D5 AK26 CVSS AR7 D24 
CODO AP4 C4D6 AN29 CVSS N1 D2S 
COD1 ALS C4D7 AM28 CVSS AL3S D26 
COD2 ANS CSDO AL29 CVSS A27 D27 
COD3 AM4 CSD1 AP30 CVSS A9 D28 
COD4 AP6 CSD2 AK28 CVSS E1 D29 
CODS AM6 CSD3 AN31 CVSS J35 D30 

Pinout and Pin Assignments 

Pin 

E35 
AR2S 
AE1 
AR13 
A19 
R35 
AL1 
U33 
V32 
T34 
U31 
R33 
P34 
T32 
N33 
R31 
M34 
P32 
L33 
N31 
K34 
M32 
J33 
L31 
M30 
K32 
H34 
J31 
G33 
K30 
F34 
H32 
E33 
D34 
G31 
C33 
H30 
E31 

DVDD AR29 
DVDD A13 
DVDD A7 
DVDD A17 
DVDD L35 
DVDD AR23 
DVDD A29 
DVDD L1 
DVDD AC1 

AR17 
A23 
AJ1 
AJ35 

DVSS A21 
DVSS A25 
DVSS G35 
DVSS A11 
DVSS AG1 
DVSS AM2 
DVSS R1 
DVSS AR21 
DVSS AR1S 
DVSS A15 
DVSS AR27 
DVSS G1 
DVSS N35 
DVSS AR9 
EMUO AA35 
EMU1 AD34 

GDDVDD A35 
GDDVDD A1 
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Table 14-1. TMS320C40 Pin Assignments Sorted by Signal Name (Concluded) 

Signal Pin Signal Pin Signal Pin Signal Pin 
Hi AC3 LA25 R5 L026 B4 STATO A032 
H3 AC5 LA26 T2 L027 F8 STAT1 AE33 
lACK W3 LA27 U3 L028 06 STAT2 AF34 
1I0FO AN3 LA28 T4 L029 C3 STAT3 AE31 
1I0F1 AL3 LA29 V4 L030 E5 STRBO A030 
1I0F2 AH6 LA30 U5 L031 F6 STRB1 AC33 
1I0F3 AK2 LAOVOO B34 LOOVOO AR35 SUBS C31 
IVSS AR5 LAOVOO AB2 LOOVOO AP2 TCK Y34 
IVSS AR31 LAOVOO AP34 LOOVOO U1 TCLKO AE3 
IVSS AG35 LAE AB4 LOE A04 TCLK1 A02 
IVSS A31 LCEO AG5 LLOCK AA5 TOO AB34 
IVSS J1 LCE1 AF2 LOCK W33 TOI AC35 
IVSS A5 LOO E19 LPAGEO AH2 TMS W35 
LAO 02 L01 C15 LPAGE1 AG3 TRST AE35 
LA1 04 L02 018 LROYO AF6 VOOL ANi 
LA2 E3 L03 B14 LROY1 AE5 VOOL AN35 
LA3 F4 L04 E17 LRIWO AH4 VOOL C35 
LA4 H6 L05 016 LRIW1 AF4 VOOL C1 
LA5 F2 L06 C13 LSTATO AA3 VSSL A3 
LA6 G5 L07 E15 LSTAT1 Y4 VSSL AR3 
LA7 G3 L08 B12 LSTAT2 Y2 VSSL AR33 
LA8 H4 L09 014 LSTAT3 W5 VSSL A33 
LA9 H2 L010 C11 LSTRBO AJ3 Xi Wi 
LA10 K6 L011 E13 LSTRB1 A06 X2/CLKIN AA1 
LA11 M6 L012 B10 NMI AJ5 
LA12 J5 L013 012 PAGEO AG33 
LA13 J3 L014 C9 PAGE1 AB32 
LA14 K4 L015 E11 ROYO Y32 
LA15 K2 L016 F12 ROY1 W31 
LA16 L3 L017 010 RESETLOCO AF30 
LA17 L5 L018 BB RESETLOC1 AH34 
LA18 M2 L019 E9 RESET AJ33 
LA19 M4 L020 C7 ROMEN AK4 
LA20 N3 LD21 F10 RIWO AF32 
LA21 N5 L022 B6 R1W1 AC31 
LA22 P2 L023 08 
LA23 P4 L024 C5 
LA24 R3 L025 E7 
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Table 14-2. TMS320C40 Pin Assignments Sorted by Pin Number 

Pin Signal Pin Signal Pin Signal Pin Signal 

AO GDDVDD AD30 STRBO AK24 C4D2 AM30 C5D4 

A3 VsSL AD32 STATO AK26 C4D5 AM32 C5D6 

A5 1Vss AD34 EMU1 AK28 C5D2 AM34 CSTRB4 
A7 DVDD AE1 CVSS AK32 CACK4 AN1 VDDL 
A9 CVss AE3 TCLKO AK34 CSTRB5 AN3 1I0FO 
A11 DVss AE5 LRDY1 AL1 CVSS AN5 COD2 
A13 DVDD AE31 STAT3 AL3 1I0F1 AN7 COD6 
A15 DVSS AE33 STAT1 AL5 COD1 AN9 C1D5 
A17 DVDD AE35 TRST AL7 C1DO AN11 CACKO 

A19 cVss AF2 LCE1 AL9 C1D6 AN13 CACK1 
A21 DVss AF4 LRIW1 AL11 CSTRBO AN15 CRE02 
A23 DVDD AF6 LRDYO AL13 CSTRB1 AN17 CRE03 
A25 DVss AF30 RESETLOCO AL15 CRDY2 AN19 C2D1 
A27 cVss AF32 RIWO AL17 CRDY3 AN21 C2D5 
A29 DVDD AF34 STAT2 AL19 C2D2 AN23 C3D1 
A31 1Vss AG1 DVSS AL21 C2D6 AN25 C3D5 
A33 VSSL AG3 LPAGE1 AL23 C3D2 AN27 C4DO 
A35 GDDVDD AG5 LCEO AL25 C3D6 AN29 C4D6 
AA1 X2ICLKIN AG31 AE AL27 C4D3 AN31 C5D3 
AA3 LSTATO AG33 PAGEO AL29 C5DO AN33 CRE04 
AA5 LLOCK AG35 1VSS AL31 C5D7 AN35 VDDL 
AA31 DE AH2 LPAGEO AL33 CRE05 AP2 LDDVDD 
AA33 CEO AH4 LRIWO AL35 CVSS AP4 CO DO 
AA35 EMUO AH6 1I0F2 AM2 DVSS AP6 COD4 
AB2 LADVDD AH30 CRDY4 AM4 COD3 AP8 C1D1 

AB4 LAE AH32 CRDY5 AM6 COD5 AP10 C1D7 
AB32 PAGE1 AH34 RESETLOC1 AM8 C1D2 AP12 CRDYO 
AB34 TDO AJ1 DVDD AM10 CREOO AP14 CRDY1 
AC1 DVDD AJ3 LSTRBO AM12 CRE01 AP16 CSTRB2 
AC3 H1 AJ5 NMI AM14 CACK2 AP18 CSTRB3 
AC5 H3 AJ31 CACK5 AM16 CACK3 AP20 C2D3 
AC31 RIW1 AJ33 RESET AM18 C2DO AP22 C2D7 
AC33 STRB1 AJ35 DVSS AM20 C2D4 AP24 C3D3 
AC35 TDI AK2 1I0F3 AM22 C3DO AP26 C3D7 
AD2 TCLK1 AK4 ROMEN AM24 C3D4 AP28 C4D4 
AD4 LDE AK8 COD7 AM26 C4D1 AP30 C5D1 
AD6 LSTRB1 AK10 C1D4 AM28 C4D7 AP32 C5D5 

AK12 C1D3 AP34 LADVDD 
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Table 14-2. TMS320C40 Pin Assignments Sorted by Pin Number (Concluded) 

Pin Signal Pin Signal Pin Signal Pin Signal Pin Signal 
AR1 GADVDD C1 VDDL E1 CVSS H2 LA9 P2 LA22 
AR3 VSSL C3 LD29 E3 LA2 H4 LA8 P4 LA23 
AR5 IVss C5 LD24 E5 LD30 H6 LA4 P32 D10 
AR7 CVss C7 LD20 E7 LD25 H30 D29 P34 D5 
AR9 DVss C9 LD14 E9 LDi9 H32 D24 R1 DVSS 
AR11 DVDD C11 LD10 E11 LD15 H34 D19 R3 LA24 
AR13 CVss C13 LD6 E13 LD11 J1 1VSS R5 LA25 
AR15 DVss C15 LD1 E15 LD7 J3 LA13 R31 D8 
AR17 DVDD C17 A28 E17 LD4 J5 LA12 R33 D4 
AR19 CVss C19 A23 E19 LDO J31 D20 R35 CVSS 
AR21 DVss C21 A19 E21 A26 J33 D15 T2 LA26 
AR23 DVDD C23 A16 E23 A22 J35 CVSS T4 LA28 
AR25 CVss C25 A12 E25 A18 K2 LA15 T32 D6 
AR27 DVss C27 A8 E27 A13 K4 LA14 T34 D2 
AR29 DVDD C29 A3 E29 A7 K6 LA10 U1 LDDVDD 
AR31 1Vss C31 SU8S E31 D30 K30 D22 U3 LA27 
AR33 VSSL C33 D28 E33 D25 K32 D18 U5 LA30 
AR35 LDDVDD C35 VDDL E35 CVSS K34 D13 U31 D3 
82 GADVDD D2 LAO F2 LA5 L1 DVDD U33 DO 
84 LD26 D4 LA1 F4 LA3 L3 LA16 U35 GADVDD 
86 LD22 D6 LD28 F6 LD31 L5 LA17 V2 GDDVDD 
88 LD18 D8 LD23 F8 LD27 L31 D16 V4 LA29 
810 LD12 D10 LD17 F10 LD21 L33 D11 V32 D1 
812 LD8 D12 LD13 F12 LD16 L35 DVDD V34 CE1 
814 L03 D14 LD9 F24 A6 M2 LA18 Wi Xi 
816 A30 D16 LD5 F26 A11 M4 LA19 W3 lACK 
818 A27 D18 LD2 F28 A5 M6 LA11 W5 LSTAT3 
820 A25 D20 A29 F32 D31 M30 D17 W31 RDY1 
822 A21 D22 A24 F34 D23 M32 D14 W33 LOCK 
824 A17 D24 A20 G1 DVSS M34 D9 W35 TMS 
826 A14 D26 A15 G3 LA7 N1 CVSS Y2 LSTAT2 
828 A10 D28 A9 G5 LA6 N3 LA20 Y4 LSTAT1 
830 A4 D30 A2 G31 D27 N5 LA21 Y32 RDYO 
832 Ai D32 AO G33 D21 N31 D12 Y34 TCK 
834 LADVDD D34 D26 G35 DVSS N33 D7 

N35 DVSS 
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14.2 Signal Descriptions 

This section gives signal descriptions for the TMS320C40 device. 
Table 14-3 lists each signal, the number of pins, function, and operating 
mode(s}, i.e., input, output, or high-impedance state as indicated by I, 0, or 
Z. All pins labeled NC are not to be connected by the user. A line over a sig­
nal name (e.g., RESET) indicates thatthe signal is active low (true at a logic 
o level). The signals are grouped according to function. 

Table 14-3. TMS320C40 Signal Descriptions 

Signal Pins TYI* Description 

Global Bus External Interface (8D-pins) 

O{31-O) 32 I/O/Z 32-bit data port of the global external interface 

DE 1 I Data bus enable signal for the global external interface 

A{30-O) 31 O/Z 31-bit address port of the global external interface 

AE 1 I Address bus enable signal for the global bus interface 

STAT{3-0) 4 0 Status signals for the global bus interface 

LOCK 1 0 Lock signal for the global bus interface 

STRBOt 1 O/Z Access strobe 0 for the global bus interface 

RlWO 1 O/Z Read/write signal for STRBO accesses 

PAGEO 1 OIZ Page signal for STRBO accesses 

RDVO 1 I Ready signal for STRBO accesses 

CEO 1 I Control enable for the STRBO, PAGEO, and RIWO signals 

STRB1t 1 O/Z Access strobe 1 for the global bus interface 

RlW1 1 O/Z Read/write signal for STRB1 accesses 

PAGE1 1 O/Z Page signal for STRB1 accesses 

RDV1 1 I Ready signal for STRB1 accesses 

CE1 1 I Control enable for the STRB1, PAGE1, and RIW1 signals 

t STRBO and STRB1 and associated signals (RIW1. RIWO. PAGEO. PAGE1. etc.) are effective over the ad­
dress ranges defined by the STRB ACTIVE bits, as listed in Table 7-3 on page 7-8. * I = input, 0 = output, Z = high impedance. 
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Table 14-3. TMS320C40 Signal Descriptions (Continued) 

Signal Pins Type* Description 

Local Bus External Interface (80 pins) 

LD(31-Q) 32 I/O/Z 32-bit data port of the local external interface 

LDE 1 I Data bus enable signal for the local external interface 

LA(30-0) 31 O/Z 31-bit address port of the local external interface 

LAE 1 I Address bus enable signal for the local bus interface 

LSTAT(3-0) 4 0 Status signals for the local bus interface 

LLOCK 1 0 Lock signal for the local bus interface 

LSTRBOt 1 O/Z Access strobe 0 for the local bus interface 

LRIWO 1 O/Z Read/write signal for LSTRBO accesses 

LPAGEO 1 O/Z Page signal for LSTRBO accesses 

LRDVO 1 I Ready signal for LSTRBO accesses 

LCEO 1 I Control enable for the LSTRBO, LPAGEO, and LRIWO signals 

LSTRB1 t 1 O/Z Access strobe 1 for the local bus interface 

LRIW1 1 O/Z Read/write signal for LSTRB1 accesses 

LPAGE1 1 O/Z Page signal for LSTRB1 accesses 

LRDV1 1 I Ready signal for LSTRB1 accesses 

LCE1 1 I Control enable for the LSTRB1, LPAGE1, and LRIW1 signals 

Communication Port 0 Interface (12 pins) 

COD(7 - 0) 8 I/O Communication port 0 data bus 

CREQO 1 I/O Communication port 0 token request signal 

CACKO 1 I/O Communication port 0 token request acknowledge signal 

CSTRBO 1 I/O Communication port 0 data strobe signal 

CRDVO 1 I/O Communication port 0 data ready signal 

t LSTRBO and LSTRB1 and associated signals (LRIW1, LRIWO, LPAGEO, LPAGE1, etc.) are effective over 
the address ranges defined by the STRB ACTIVE bits, as listed in Table 7-3 on page 7-8. * I = input, 0 = output, Z = three-stated (high impedance). 
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Signal Descriptions 

Table 14-3. TMS320C40 Signal Descriptions (Continued) 

Signal Pins Type* Description 1-Communication Port 1 Interface (12 pins) 
C10(7 -0) 8 I/O Communication port 1 data bus 

CRE01 1 I/O Communication port 1 token request signal 

CACK1 1 I/O Communication port 1 token request acknowledge signal 

CSTRB1 1 I/O Communication port 1 data strobe signal 

CROY1 1 I/O Communication port 1 data ready signal 

Communication Port 2 Interface (12 pins) 

C20(7 - 0) 8 I/O Communication port 2 data bus 

CRE02 1 I/O Communication port 2 token request signal 

CACK2 1 I/O Communication port 2 token request acknowledge signal 

CSTRB2 1 I/O Communication port 2 data strobe signal 

CROY2 1 I/O Communication port 2 data, ready signal 

Communication Port 3 Interface (12 pins) 

C30(7 - 0) 8 I/O Communication port 3 data bus 

CRE03 1 I/O Communication port 3 token request signal 

CACK3 1 I/O Communication port 3 token request acknowledge signal 

CSTRB3 1 I/O Communication port 3 data strobe signal 

CROY3 1 I/O Communication port 3 data ready signal 

Communication Port 4 Interface (12 pins) 

C40(7 - 0) 8 I/O Communication port 4 data bus 

CRE04 1 I/O Communication port 4 token request signal 

CACK4 1 I/O Communication port 4 token request acknowledge signal 

CSTRB4 1 I/O Communication port 4 data strobe signal 

CROY4 1 I/O Communication port 4 data ready signal 

Communication Port 5 Interface (12 pins) 

CSO(7 -0) 8 I/O Communication port S data bus 

CREOS 1 I/O Communication port S token request signal 

CACKS 1 I/O Communication port S token request acknowledge signal 

CSTRBS 1 I/O Communication port S data strobe signal 

CROYS 1 I/O Communication port S data ready signal 

:j: I = input. 0 = output. Z = three-stated (high impedance). 
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Table 14-3. TMS320C40 Signal Descriptions (Continued) 

Signal Pins Type* Description 

Interrupts, liD Flags, Reset, Timer (12 pins) 

1I0F(3 - 0) 4 I/O Interrupt and I/O flags 

NMI 1 I Nonmaskable interrupt. It is sensitive to a low-going edge. 

lACK 1 0 Interrupt acknowledge 

RESET 1 I Reset signal 

RESETLOC(1,0) 2 I Reset-vector location pins 

ROMEN 1 I On-chip ROM enable (0 = disable, 1 = enable) 

TCLKO 1 I/O Timer 0 pin 

TCLK1 1 I/O Timer 1 pin 

Clock and Power (4 pins) 

Xi 1 0 Crystal pin 

X2/CLKIN 1 I Crystal/oscillator pin 

Hi 1 0 Hi clock 

H3 1 0 H3 clock 

Emulation (7 pins) 

TCK 1 I JTAG test port clock 

TDO 1 OfT JTAG test port data out 

TDI 1 I JTAG test port data in 

TMS 1 I JTAG test port mode select 

TRST 1 I JTAG test port reset 

EMUO 1 I/O Emulation pin 0 

EMU1 1 I/O Emulation pin 1 

:j: I = input, 0 = output, Z = three-stated (high impedance). 

14-10 TMS320C4x Signal Descriptions and Electrical Characteristics 



14.3 TMS320C4x Mechanical Data 
Figure 14-2. TMS320C40 325-Pin PGA Dimensions 

0.050Typ 

1.860 ±o.019 

1.700 ±o.017 ----"""~~ 

10 12 14 16 18 20 22 24 26 28 30 32 34 

·1 

13 15 17 19 21 23 25 27 29 31 33 35 

0.040 Ref X 45° 
Pin Al 

IDI 

\ 

• 

0.048 Sland-Off 
Pin 4 Places 

(Top View) 

Index Mark Pin A 1 

0.020 Ref X 45° 
3 Places 

TMS320C3x Mechanical Data 

0.120±o.012 ---1 ~ 
-, ~ 0.180Typ 

0.018 ±o.002 

0.005 radius Typ 

-.1 __ - 0.050 Typ 

Notes: Dimensions are in inches. 
Package designator: GF. 
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Electrical Specifications 

14.4 Electrical Specifications 

Table 14-4. Absolute Maximum Ratings Over Specified Temperature Range 

Condition/Characteristic Range 

Supply voltage range. VOO -0.3Vto7V 

Input voltage range -0.3Vto7V 

Output voltage range - 0.3Vto 7 V 

Operating case temperature range OOCto85°C 

Storage temperature range - 55°C to 150°C 

Notes: 1) Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent 
damage to the device. This is a stress ratinQ only; functional operation of the device at 
these or any other conditions beyond those Indicated in the "Recommended Operating 
Conditions" table of this specification is not implied. Exposure to absolute-maxi mum­
rated conditions for extended periods may affect device reliability. 

2) All voltage values are with respect to VSS. 

Table 14-5. Recommended Operating Conditions 

Parameter Min I Nom I Max 

VOO Supply voltages (OOVOO. etc.) 4.75 5 5.25 

VSS Supply voltages (CVSS. etc.) 0 

VIH High-level input voltage 2 Voo + 0.3 

Vil low-level input voltage -0.3 0.8 

IOH High-level output current -300 

IOl low-level output current 2 

T Operating free-air temperature 0 85 

VTH ClKIN high-level input voltage for ClKIN 2.6 VOO +0.3 

Note: Note 1 for Table 14-4 also applies to this table. All inputs and output voltages are 
TTL compatible. 

Unit 

V 

V 

V 

V 

J.lA 

mA 

°C 

V 
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Table 14-6. Electrical Characteristics Over Specified Free-Air Temperature Range 
..,.. -.... 
-.~ ................................... Min NOm\ .... ~nllt 1) 

VOHHigh-level output voltage ( VOO = Min, IOH = Max) 2.4 3 

VOL Low-level output voltage ( VOO = Min, IOL = Max) 0.3 

IZ Three-state current ( VOO = Max) -20 

II Input current ( VI = VSS to VOO) -10 

liP Input current ( Inputs with internal pull-ups) (See -400 
Note 4) 

ICC Supply current ( T A = 25 oC, VOO = Max, fx = Max) 350 

CI Input capacitance 

Co Output capacitance 

Notes: 1) All nominal values are at Voo = 5 V, T A = 25 °C. 
2) fx is the input clock frequency. The maximum value is 50 MHz. 
3) All input and output voltage levels are TTL compatible. 
4) Pins with internal pull-up devices: TOI, TCK. 
5) Pin with internal pull-down device: TRST. 

Figure 14-3. Test Load Circuit 

Tester Pin 
Electronics 

Where: IOL = 2.0 rnA (all outputs) 
IOH = 300 IlA (all outputs) 
VLoad = 2.15 V 

-, 
I 
I 
I 
I 
I Output 

)---.--~ Under 
I Test 

T CT
: 

- I 
- I 

_J 

CT = 80 pF typical load circuit capacitance. 

Max Unit 

V 

0.6 V 

20 JlA 

10 JlA 

20 JlA 

850 rnA 

15 pF 

15 pF 
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Signal Transition Levels 

14.5 Signal Transition Levels 

TTL-level outputs are driven to a minimum logic-high level of 2.4 volts and 
to a maximum logic-low level of 0.6 volt. Output transition times are speci­
fied as follows. 

For a high-to-Iow transition on a TTL-compatible output signal, the level at 
which the output is said to be no longer high is 2.0 volts, and the level at 
which the output is said to be low is 1.0 volt. For a low-to-high transition, the 
level at which the output is said to be no longer low is 1.0 volt, and the level 
at which the output is said to be high is 2.0 volts. 

Figure 14-4. TTL -Level Outputs 

--~ ~------- ------------ -----

--- ---------------- ---

2.4 V 
2.0V 

1.0 V 
0.6 V 

Transition times for TTL-compatible inputs are specified as follows. For a 
high-to-Iow transition on an input signal, the level at which the input is said 
to be no longer high is 2.0 volts, and the level at which the input is said to 
be low is 0.8 volt. For a low-to-high transition on an input signal, the level 
at which the input is said to be no longer low is 0.8 volt, andthe level at which 
the input is said to be high is 2.0 volts. 

Figure 14-5. TTL -Level Inputs 

----l- ~---- 2.0V ----- -------------- ----- 90~' 

----. ----------------- • --- 10Yo 
'---- 0.8V 
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14.6 Timing 

Figure 14-6. X2/CLKIN Timing 
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- Timing parameter table on next page -

Figure 14-7. H11H3Timing 
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- Timing parameter table on next page -

Timing 
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Table 14-7. Timing Parameters for CLKIN, H1, H3 (Figure 14-6 and Figure 14-7) 

TMS320C40 TMS320C40-40 

No. Name Description Min Max Min Max Unit 

(1 ) tf(CI) ClKIN fall time 4 4 ns 

(2) tw(CU.) 
ClKIN low pulse duration 7 8 ns 
te(CI) = min 

(3) tw(CIH) 
ClKIN high pulse duration 7 8 ns 
tc(CI) = min 

(4) tr(CI) ClKIN rise time 4 4 ns 

(5) tc(CI) ClKIN cycle time 20 25 ns 

(6) tf(H) H1/H3 fall time 3 3 ns 

(7) tw(Hl) H1/H310w pulse duration p-st P-6t ns 

(8) tw(HH) H1/H3 high pulse duration P-7t P-7t ns 

(9) tr(H) H1/H3 rise time 4 4 ns 

(9.1) 1d(Hl-HH) 
Delay from H1 (H3) low to 0 5 0 5 ns 
H3(H1) high 

(10) teCH) H1/H3 cycle time 40 485 50 500 ns 

t p = te(CI) as shown in Figure 14-6. 
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Figure 14-8. Memory ((L)STRB = 0) Read 
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~= I\J.I 1 (L)STRB I 

I 1 

(2) -l -,.,1-_...-__ _ 

L 
(L)RIW 

1 1 
1 I 

(L)D 

1 1 I:\. -t I- (~) 
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(L)A --+!~~~ ____ ..JX 1 
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! 'f In I r,...------
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Table 14-8. Timing Parameters for a Memory (L)STRB = 0) ReadIWrite 

TMS320C40 TMS320C40-40 

No. . Name Description Min Max 

(1 ) fd(H1 L-(L)SL) H1 low to (L)STRB low 7 
(2) fd(H1 L-(L)SH) H1 low to (L)STRB high 7 
(3) fd(H1 H-RWL) H1 high to (L)RIW low 7 
(4) fd(H1L-A) H1 low to (L)A valid 7 
(5) tsu(D)R (L)D valid before H1 low (read) 12 
(6) th«L)D)R (L)D hold time after H1 low (read) 0 
(7) tsu(L)(RDY) (L)RDY valid before H1 low 20 

(8) th((L)RDY) (L)RDY hold time after H1 low 0 
(8.1) td(H1L-5) HI low to (L)STAT(3-0) valid 7 

Note: For consecutive reads, {L)R/W stays high and {L)STRB stays low. 

- Table continued on next page -

Min Max 

7 

7 

7 

11 

13 

0 

20 

0 

11 

Timing 

Unit 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 
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Figure 14-9. Memory ((L)STRB = 0) Write 
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\ / (L)RDY Ii 

--l 
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(L)STAT(0-3) X X 

Table 14-8. Timing Parameters for a Memory ((L)STRB = 0) ReadlWrite (Concluded) 

TMS320C40 TMS320C40-40 

No. Name Description Min Max Min Max Unit 

(9) tcJ(H1 H-(L)RWH) H1 high to (L)RIW high (write) 7 7 ns 

(10) tv«L)D)W (L)D valid after H1 low (write) 16 16 ns 

(11 ) th«L)D)W 
(L)D hold time after H1 high 0 0 ns 
(write) 

(12) tcJ(H1 H-A) 
H1 high to A valid on back-to- 13 15 ns 
back write cycles (write) 

Note: The delay for (L)RDY to become active after the address is valid should be a maximum of 
13 ns for the 'C40 and 19 ns for the ·C40-40. 
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Figure 14-10. DE, AE, and CE Enable Timing , ) {L}DE 
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Table 14-9. DE, AE, and CE Enable Timing 

TMS320C40 TMS320C40-40 

No. Name Description Min Max Min Max Unit 

(1 ) 1c!(DEH-DZ) Time (L}DE high to (L)D(0-31) HI-Z 0 15 0 15 ns 

(2) 1c!lDEL-DV) Time (L}DE low to (L)D(0-31) valid 0 15 0 15 ns 

{3} 1c!(AEH-AZ) Time (L}AE high to (L)A{0-31) HI-Z 0 15 0 15 ns 

(4) 1c!lAEL-AV) Time (L}AE low to (L}A(0-31) valid 0 15 0 15 ns 

{5} 1c!lCEH-RWZ) Time (L}CE high to {L)R/W(O,1) HI-Z 0 15 0 15 ns 

(6) td(CEL-RWV) Time {L}CE low to {L)R/w(O.1} valid 0 15 0 15 ns 

(7) 
1c!{CEH-STRBZ) 

Time (L)CE high to (L)STRB(O.1) in 0 15 0 15 ns 
high impedance state 

(8) 1c!(CEL-STRBV) Time {L)CE low to (L)STRB(O.1) valid 0 15 0 15 ns 

(€i) 1c!(CEH-PAGEZ) 
Time (L)CE high to (L)PAGE{O.1) 0 15 0 15 ns 
in high impedance state 

(10) 1c!(CEL-PAGEV\ Time (L)CE low to (L)PAGE(O,1) valid 0 15 0 15 ns 
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Figure 14-11. nming for (L)LOCK When Executing LDFror LDII 

I LDF or LOll I 
external access 

H3 J \ / \ I \ / \ ;-
H1 \ / \ / \ / \ / '-

(L)STRB \ / 
(L)RIW 

(X)A D< X 
I 
I 

--< > 
I 
I 

(X)D 

I 

(L)RDY I \ / 
(1) -i l-

(L)LOCK X 
Table 14-10. nming Parameters for (L)LOCK When Executing LDFI or LDII 

TMS320C40 TMS320C40-40 

No. Name Description Min Max Min Max Unit 

(1 ) tctCH1 L-LOCKU H1 low to (L)LOCK low 7 11 ns 
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Figure 14-12. Timing for (L)LOCK When Executing a 8TFI or 8m 
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Table 14-11. Timing Parameters for (L)LOCK When Executing 8TFI or 8m 
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TMS32OC40 TMS320C40-40 

No. Name Description Min Max Min Max 

(1 ) fcjlH1 L-LOCKH) H1 low to (L)LOCK high 7 11 

Timing 

r 
>C 
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r 
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r 

Unit 

ns 

14-21 



Figure 14-13. Timing for (L)LQCK When Executing SIGI 

H3 

H1 

(1) -I I-- -..l I- (2) 

\l 1/ (L)LOCK 

(L)RIW \r 
(L)A X X 

(L)D 0 
(L)RDY ~ I 

(L)STAT(3-0) X X 

Table 14-12. Timing Parameters for (L)LOCK When Executing SIGI 

TMS320C40 TMS320C40-40 

No. Name Description Min Max Min Max Unit 

(1 ) td(H1 L-LOCKL) H1 low to (L)LOCK high 7 11 ns 

(2) idCH1 L-LOCKH) H1 low to (L)LOCK high 7 11 
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Figure 14-14. Timing Parameters for (L)PAGE(O, 1) 
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Table 14-13. Timing Parameters for (L)PAGE(O, 1) During Memory Accesses to a Different Page 

TMS32OC40 TMS320C40-40 

No. Name Description Min Max Min Max Unit 

(1) fcI(H1 L-PH) H1 low to PAGE high for access to 0 7 11 ns 
different paoe 

(2) fcI(H1 L-PL) 
H1 low to PAGE low for access to 0 7 11 ns 
different page 
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Figure 14-15. 

H3 

H1 

FLAG Bit 

Timing for Loading IIF Register (IIOF Pins) When Configured as an Output Pin 

Fetch Load 
Instruction Decode Read Execute 

~lorO 
~ I- (1) 

IIOF Pin ------------------------X_.,I __ 

Table 14-14. Timing Parameters for Loading /IF Register When Configured as an Output Pin 

TMS320C40 TMS320C40-40 

No. Name Description Min Max Min Max Unit 

(1 ) tvlH1L-IFl H1 low to IIOF valid 11 12 ns 
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Figure 14-16. Change of 1I0F From Output to Input Mode 

Buffers Go 
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Load oflOF 
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Table 14-15. Timing Parameters of 1I0F Changing From Output to Input Mode 

TMS32OC40 

No. Name Description Min Max 

(1 ) th(H1 L-IF01) IIOFhoid after H110w 11 

(2) tsu(lF) IIOF setup before H1 low 8 

(3) th(IF) IIOF hold after H1 low 0 

TMS320C40-40 

Min Max Unit 

12 ns 

8 ns 

0 ns 
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Figure 14-17. Change of 1I0F From Input to Output Mode 
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Execution of 
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I 

Table 14-16. Timing Parameters of 1I0F Changing from Input to Output Mode 
TMS32OC40 

No. Name Description Min Max 

(1 ) fd(H1 L-XFIO) 
H1 low to 1I0F switching from input 16 
to output 

I 
I 
I 
I 
I 

---I t-- (1) 
I I 

( 

TMS320C40-40 

Min Max Unit 

16 ns 

14-26 TMS320C4x Signal Descriptions and Electrical' Characteristics 



Figure 14-18. RESET Timing 
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Notes: 1) (L)O includes O?l - 0/, LO(31 - 0), and CxO(7 - 0). 
2) L(A) includes A 30 - ° . 
3) Control signals LSTRBO, LSTRB1, STRBO, STRB1, (L)STAT(3 - 0), (L)LOCK, (L)RlWO, and (L)RlWl go high while (L)PAGEO, and 

(L)PAGE1 go low. __ 
4) Asynchronously reset signals that go into high impedance after RESET goes low include TCLKO, TCLK1, IIO.F(3 - 0), and the 

communication port control signals CREQx, CACKy, CSTRBy, and CROYx (where x = 0, 1, or 2, and y = 3, 4, or 5). (At reset, ports 0, 1, 
and 2 become outputs, and ports 3, 4, and 5 become inputs.). . __ __ ___ __ 

5) Asynchronously reset signals that go to a high logic level after RESET goes low include CREQy, CACKx, CSTRBx, and CROYy (where 
x = 0, 1, or 2, and y = 3, 4, or 5) . 

6) RESET is an asynchronous input and can be asserted at any point during a clock cycle. If the specified timings are met, the exact sequence 
shown will occur; otherwise, an additional delay of one clock cycle may occur. 
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Table 14-17. Timing Parameters for RESET (Figure 14-18) 

TMS320C40 TMS320C40-40 
No. Name Description Min Max Min Max Unit 

(1 ) tsu(RESET) 
Setup for RESET before 8 Pt 8 Pt ns 
ClKIN low 

(2.1) tct(ClKINH-H1 H) ClKIN high to H1 high 5 12 5 13 ns 

(2.2) td(ClKINH-H1 l) ClKIN highto H1 low 5 12 5 13 ns 

(3) 
Setup for RESET high 

8 8 tsu(RESETH-H1 l) before H110w and after ns 
10 H1 clock cycles 

(4.1) tct{ClKINH-H3l) ClKIN high to H3 low 5 12 5 13 ns 

(4.2) tct(ClKINH-H3H) ClKIN high to H3 high 5 12 5 13 ns 

(5) tctis(H1 H-XO) 
H1 high to (l)O high-im- 15 15 ns 
pedance 

(6) tctis(H3H-XA) 
H3 high to (l)A 15 15 ns 
high-impedance 

(7) tct(H3H-CONTROlH) 
H3 high to control signals 7 7 ns 
high (low for (l)Page) 

(8) tct(H1 H-IACKH) H1 high to lACK high 7 7 ns 

(9) 
RESET low to asynchron-

15 tctis(RESETl-ASYNCH) ously reset signals high- 15 ns 
impedance 

(10) 
td(RESETl-COMMH) 

RESET low to asynchron- 10 10 ns 
ously reset signals high 

t P = tc(cl). the ClKIN period as shown in Figure 14-6. 
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Figure 14-19. IOOF(3 - 0) Interrupt Response Timing 
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Table 14-18. TimingParametersforIOOF(3-0) 

TMS320C40 TMS320C40·40 

No. Name Description Min Typ Max Min Typ Max Unit 

(1 ) tsu(IOOF) 
IOOF(3 - 0) setup before H1 

11 12 ns low 

(2) tW(IOOFl Interrupt pulse width to 
P 1.5P <2P P 1.5P <2P ns (See No e 1) guarantee one interrupt seen 

Notes: 1) Interrupt pulse width must be at least 1 P wide (P = one H1 period) to guarantee it will 
be seen. It must be less than 2 P wide to guarantee it will be responded to only once. 
Recommended pulse width is 1.5 P. 

2) IOOF is an asynchronous input and can be asserted at any point during a clock cycle. 
Ifthe specified timings are met, the exact sequence shown will occur; otherwise, an addi­
tional delay of one clock cycle may occur. 

3) The 'C40 can accept an interrupt from the same source every two H1 clock cycles. 

4) For edge-triggered interrupts, only timing number (1) applies. 
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Figure 14-20. lACK Timing 
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Table 14-19. Timing Parameters for lACK 

TMS320C40 TMS320C40-40 
No. Name Description Min Max Min Max Unit 

(1 ) tcJ(H1 H-IACKL) H1 high to lACK low 7 7 ns 

(2) tcJ(H1 H-IACKH) 
H1 high to lACK high during first 7 7 ns 
cycle of lACK instruction data read 

Note: The lACK output is active for the entire duration of the bus cycle and is therefore extended 
if the bus cycle utilizes wait states. 
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Figure 14-21. Communication-Port Word-Transfer Cycle Timing 

CSTRB 

I 
I 

CD(7-Q) X X X X X : X 
I 

(2) -, 

Note: For correct operation during token exchange, the two communicating 'C40s must have ClKIN 
frequencies within a factor of 2 of each other (in other words, at most, one of the 'C40s can be 
twice as fast as the other). 

Table 14-20. Communication-Port Word-Transfer Cycle Timing 

TMS320C40* TMS320C4Q-40* 
No. Name Description Mint Maxt Mint Maxt Unit 

(1 ) tWORD 
Word transfer period 

1.SP + 46 2.SP +202 1.SP + 46 2.SP +202 ns 
(4 bytes = 1 word) 

CRDY low to CSTRB low 
(2) 1d(RL-SL)W between back-to-back write 1.SP + 7 

cycles 
2.SP + 28 1.SP + 7 2.SP +28 ns 

t P is the duration of the H1 clock period with a minimum value of 40 ns (P ~ 40 ns). 

:j: For these timing values, it is assumed that the 'C40 receiving data is ready to receive data. 
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Figure 14-22. Communication Port Byte Timing (Write and Read) 
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Table 14-21. Communication Port Byte Timing (Write and Read) 

TMS320C40 TMS320C40-40 
No. Name Description Min Max Min Max Unit 

(1 ) tsu(CD)W Data valid before CSTRB (write) 2 2 ns 

(2) ld(RL-5H)W CRDY low to CSTRB high (write) 3 15 3 15 ns 

(3) th(CD)W CD hold after CRDY low (write) 2 2 ns 

(4) td(RH-SL)W 
CRDY high to CSTRB low for 3 15 3 15 ns 
subsequent bytes (write) 

(5) tBYTE Byte period 12 54 12 54 ns 

(6) ld(SL-RL)R CSTRB low to CRDY low (read) 3 12 3 12 ns 

(7) tsu(CD)R CD valid after CSTRB (read) 0 0 ns 

(8) th(CD)R CD held valid after CRDY low (read) 0 0 ns 

(9) td(SH-RH)R CSTRB high to CRDY high (read) 3 12 3 12 ns 
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Figure 14-23. Communication Token Transfer Sequence From an Input to an Output Port 

(3) I.---
CD(7-Q) 

= When signal is an input (clear = when signal is an output). 

Note: Before the token exchange, C'REQ and CRDY are output Signals asserted by the 'C40 
that is receiving data. CACK, CSTRB, and CD(7-O) are input signals asserted by the 
device sending data to the 'C40; these are asynchronous with respect to the H 1 clock of 
the receiving 'C40. After token exchange, CACK, CSTRB, and CD(7-Q) become output 
signals, and CREQ and CRDY become inputs. 

- Timing parameter table on next page -
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Table 14-22. Communication Token Transfer Sequence From an Input to an Output Port 
(Figure 14-23) 

TMS320C40 TMS320C40-40 
No. Name Description Mint Maxt Mint Maxt Unit 

CACK low to CSTRB 
(1)t tcJ(AL-SO)T change from input to a high- O.5P+6 1.5P+22 O.5P+ 6 1.5P+ 22 ns 

level output 

CACK low to start of CREQ 
(2)t tcJ(AL-RQH)T going high for token request P+5 2P+20 P+5 2P+20 ns 

acknowledge 

(3) 
Start of CREQ going high to 

tcJ(RQH-RQI)T CREQ change from output to O.5P-5 O.5P+13 O.5P-5 O.5P+ 13 ns 
an input 

(4) 
Start of CREQ going high to 

tcJ(RQH-AO)T CACK change from an input O.5P -5 O.5P+13 O.5P-5 O.5P+13 ns 
to an output level high 

(4.1) 
Start of CREQ going high to 

tcJ(RQH-DO)T CD(7-D) change from inputs O.5P-5 O.5P+13 O.5P-5 O.5P+13 ns 
driven to outputs driven 

(4.2) 
Start of CREQ going high to 

tcJ(RQH-RI)T CRDY change from an out- O.5P-5 O.5P+13 O.5P-5 O.5P+13 ns 
put to an input 

(5) 
Start of CREQ going high to 

tcJ(RQH-8L)T CSTRB low for start of word 1.5P-8 1.5P+ 9 O.5P-8 1.5P+ 9 ns 
transfer out 

CRDY low at end of word 
(6) tcJ(RL-8L)T input to CSTRB low for word 3.5P+12 5.5P+48 3.5P+12 5.5P+48 ns 

output 

t These timing parameters result from synchronizer delays and are referenced from the falling 
ed~e of H1. The inputs (that cause the output-signal pins to change values) are sampled on H1 
failing. The minimum delay occurs when the input cOndition occurs just before H1 falling. and the 
maximum delay occurs when the input condition occurs just after H1 falling. 
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Figure 14-24. Communication Token Transfer Sequence From an Output to an Input Port 

I I I I 
I I I" (8) ~ _mm"Ct4tM_: CREQA~OUTPUT r- (1)-1 (5)~ r- I 

I I I 
-----C-A-CK-A-N=t OUTPUT=-!t!iiiiU • 

l (6)--.1 I--
AN OUTPUT CSTRB AN INPUT 

CO(7-o) 

CRDY AN OUTPUT 

= When signal is an input (clear = when signal is an output). 

Note: Before the token exchange, CACK, CSTRB, and CD(7-Q) are asserted by the 'C40 
sending data. CREQ and CRDY are input signals asserted by the 'C40 receiving data 
and are asynchronous with respect to the H 1 clock of the sending ·C40. After token ex­
change, CREQ and CRDY become outputs, and CSTRB, CACK, and CD(7-Q) become 
inputs. 

- Timing parameter table on next page -
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Table 14-23. Communication Token Transfer Sequence From an Output to an Input Port 
(Figure 14-24) 

TMS320C40 TMS320C40-40 
No. Name Description Min Max Min Max 

CREQ low to start of CACK 
(1)t 1cI(RQL-AL)T going low for token request p+s 2P+22 p+s 2P+22 

acknowledge 

CRDY low at end of word 
(2)t td(RI:..-AL)T transfer out to start of CACK P+6 2P+27 P+6 2P+27 

going low 

(3) 
Start of CACK going low to 

1cI(AL-CD)1 CD(7-O) change from O.SP-S O.SP + S O.SP-S O.SP + S 
outputs to inputs 

(4) 
Start of CACK going low to 

1cI(AL-RO)T CRDY change from an input O.SP-S O.SP-S O.SP- S O.SP-S 
to output. high level 

(S)t 
CREQ high to CREQ 

1cI(RQH-AQ)T change from an input to 
output. high level 

4 22 4 22 

(6)t 1cI(RQH-AI)T 
CREQ high to CACK change 4 22 4 22 
from output to an input 

(7)t 
CREQ high to CSTRB 

1cI(RQH-8I)T change from output to an 
input 

4 22 4 22 

(S)t 1cI(RQH-RQL)T 
CREQ high to CREQ low for P-4 2P+S P-4 2P+S 
the next token request 

Unit 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

t These timing parameters result from synchronizer delays and are referenced from the falling 
ed~e of H1. The inputs (that cause the output-signal pins to change values) are sampled on H1 
failing. The minimum delay occurs when the input condition occurs just before H1 falling. and the 
maximum delay occurs when the input condition occurs just after H1 falling. 
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Figure 14-25. Timer Pin Timings 

H3 

H1 

,. (2)-! 

,--...... (1""-\)~ ~ ~,.._~ 
Peripheral Pin X >(.."----1IIrI'\,,.. __ --' 

Table 14-24. Timing Parameters for Timer Pin 

No. Name Description 

(1 ) tsu(TCLKH1 L) TCLK setup before H1 low 
(2) th(TCLKH1 L) TCLK hold after H1 low 
(3) 1d(TCLKH1 H) TCLK valid after H1 high 

TMS320C40 TMS320C40-40 

Min Max Min Max Unit 

9 10 ns 
0 0 ns 

7 7 ns 

Note: Period and polarity of valid logic level are specified by contents of internal control registers. 
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Figure 14-26. JTAG Emulation Timings 

TCK -..J \'-----~ I( 
I j4- (1) ~ 

TMSITOI ------+-L-(3-) ~ ~ (2~ 
TOO ______________________ :>(J_ 

Table 14-25. Timing Parameters for JTAG Emulation 

TMS320C40 TMS320C40-40 
No. Name Description Min Max Min Max Unit 

(1 ) tsu(TMS-TCKH) TMSITOI setup to TCK high 10 10 ns 
(2) th(TMSITOI) TMSITOI hold from TCK high 5 5 ns 
(3) ld(TCKL-TOOV) TCK low to TOO valid 0 15 0 15 ns 
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This appendix describes sockets available to accept the TMS320C4x pin 
grid array (PGA). Both sockets covered in this appendix feature zero inser­
tion force (ZIF): 

Q a tool-activated ZIF socket (TAZ) 

Q a handle-activated ZIF socket (HAZ). 

The sockets described herein are manufactured by AMP Incorporated®. 
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Tool Activated ZIF PGA Socket 

A.1 Tool-Activated ZIFPGA Socket (TAZ) 

FigureA-1. Tool·ActivatedZIF Socket 

A-2 

This socket requires AMp™ actuator tool: 354234-1 

Description: 

o AMP part number: 
o pin positions: 

382533-9 
325 

0.350 In. Max. 

o soldertaillength: 0.170 in. for PC boards 0.125 in. thick (other tail 
lengths available) 

Features: 

o slightly larger than PGA device 

Cl easy package loading because of large funnel entry 

o zero insertion force 

Cl contact wiping action during insertion ensures clean contact points 

o spring-loaded cover ensures proper loading 

Cl can be used with robotic insertion and removal 

o its horizontal socket forces (vs. vertical) prevent damage to device 

TMS320C4x Sockets 



Handle Activated ZIF PGA Socket 

A.2 Handle-Activated ZIF PGA Socket (HAZ) 

Figure A-2. Handle·Activated ZIF Socket 

0.350 In. Max. 

Description: 

a AMP part number: 
a pin positions: 
a solder tail length: 

a Dimensions: 

382320-9 
325 
0.170 in. for pc boards 0.125 in. thick (other tail 
lengths available) 
Height: 0.350 inch maximum to device 

plane and 0.650 inch to top of 
handle in closed position 

Width: 2.700 by 2.875 inches maximum 
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Handle Activated ZIF PGA Socket 

A-4 

Features: 

Cl can be used for test and burn-in 

Cl spring contacts are normally closed 

Cl easy package loading because of large funnel entry 

a zero insertion force 

Cl contact wiping action during socket closing ensures clean contact 
points 

a operating temperature is 1600 C (burn-in capability) 

TMS320C4x Sockets 



Append.ix B 

XDS51 0 De~i!sn Considerations 

The information in this document is assist you in meeting the design require­
ments of the XDS51 0 emulator. This information supports XDS51 0 Cable 
no. 2563988-001, rev 8. 

The TMS320C4x family supports emulation through a dedicated emulation 
port. The emulation port is a superset of the IEEE 1149.1 (JTAG) standard 
and can be accessed by the XDS51 0 emulator. For details on the JTAG pro­
tocol, refer to the IEEE 1149.1 specification. 

This appendix contains the following sections: 

Section Page 
8.1 Header Signals .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2 
8.2 8us Protocol ........................................... 8-3 
8.3 Cable Pod ............................................. 8-4 
8.4 Test Clock Generated in Test System ...................... 8-7 
8.5 Processor Configuration ................................. 8-8 
8.6 Emulation Timing Calculations ............................ 8-11 
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Header Signals 

B.1 Header and Header Signals 

To perform emulation with the XDS510, your target system must have a 
14-pin header (two 7-pin rows) with connections as shown in Figure B-1. 
Table B-1 describes the emulation signals. 

Although you can use other headers, recommended parts include: 

Straight header, unshrouded 

Right-angle header, unshrouded 

DuPont Electronics™ part num­
ber 67996-114 

DuPont Electronics™ part num­
ber 68405-114 

Figure B-1. 14-pin Header Signals and Header Dimensions 

TMS 
TOI 

PO (+5 V) 
TOO 

TCK_RET 
TCK 

EMUO 

1 
3 
5 
7 

9 

11 

13 

2 
4 

U 
8 

10 

12 
14 

TRST 
GNO 
No pin (key) 
GNO 
GNO 
GNO 
EMU1 

Header Dimensions: 
Pin-to-pin spacing: 0.100 in. (X,V) 
Pin width: 0.025 in., square post 
Pin length: 0.235 in., nominal 

Table B-1. 14-Pin Header Signal Description 

XDS510 tXDS510 tTarget Description Signal State State 

TMS 0 I JTAG test mode select 

TOI 0 I JTAG test data input 

TOO I 0 JTAG test data output' 

JTAG test clock. TCK is a 1 o-MHz clock source from the 
TCK 0 I emulation cable pod. This signal can be used to drive the 

system test clock. 

TRST 0 I JTAG test reset 

EMUO I 1/0 Emulation pin 0 

EMU1 I 1/0 Emulation pin 1 

Presence detect. Indicates that the emulation cable is con-
PO I 0 nected and that the target is powered up. PO should be tied 

to +5 volts in the target system. 

TCK_RET I 0 JTAG test clock return. Test clock input to the XOS510 
emulator. May be a buffered or unbuffered version of TCK. 

t I = input; 0 = output 
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Bus Protocol 

B.2 Bus Protocol 
The IEEE 1149.1 specification covers the requirements for JTAG bus slave 
devices (such as the TMS320C4x family) and provides certain rules. Those 
rules are summarized as follows: 

a The TMSrrOI inputs are sampled on the rising edge of the TCK signal 
of the device. 

a The TOO output is clocked from the falling edge of the TCK signal of the 
device .. 

When JTAG devices are daisy-chained together, the TOO of one device has 
approximately a half TCK cycle set up to the next device's TOI signal. This 
type of timing scheme minimizes race conditions that would occur if both 
TOO and TOI were timed from the same TCK edge. The penalty for this tim­
ing scheme is a reduced TCK frequency. 

The IEEE 1149.1 specification does not provide rules for JTAG bus master 
(XOS51 0) devices. Instead, it states that it expects a bus master to provide 
bus slave compatible timings. The XDS51 0 provides timings that meet the 
bus slave rules and also provides an optional timing mode that allows you 
to run the emulation at a much higher frequency for improved performance 
by avoiding the timing penalty dexcribed herein. 
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Cable Pod 

B.3 Cable Pod 

B-4 

Figure B-2 shows a portion of the XOS51 0 emulator cable pod. These are 
the functional features of the emulator pod: 

Q Signals TOO and TCK_RET can be parallel-terminated inside the pod 
if required by the application. The default is that these signals are not 
terminated. 

Q Signal TCK is driven with a 74AS1 034 device. Because of the high cur­
rent drive (48 rnA loL,lIOH)' this signal can be parallel terminated. If TCK 
is tied to TCK_RET, then you can use the parallel terminator in the pod. 

Q Signals TMS and TOI can be generated from the falling edge of 
TCK_RET, according to the IEEE 1149.1 bus slave device timing 
rules.They can also be driven from the rising edge of TCK_RET, which 
allows a higher TCK_RET frequency. The default is to match the IEEE 
1149.1 slave device timing rules. This is an emulator software option 
that can be selected when the emulator is invoked. In general, single­
processor applications can benefit from the higher clock frequency. 
However, in multiprocessing applications, you may wish to use the IEEE 
1149.1 bus slave timing mode to minimize emulation system timing con­
straints. 

Q Signals TMS and TOI are series terminated to reduce signal reflections. 

Q A 1 Q-MHz test clock source is provided.You may also provide your own 
test clock for greater flexibility. 
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Cable Pod 

Rgure B-2. Emulator Pod Interface 

~+5V r;; 
1800 ~ 2700 

JP1 

74F175 

Q 

TOO (Pin 7) t-----..... ------t 0 

330 _""""rv--.... TMS (Pin 1) 
74AS258 

GNO (Pins 4,6,8,10,12) 
_""""rv--.... TOI (Pin 3) 

TCK (Pin 11) 

EMUO (Pin 13) 
74AS1034 

TRST (Pin 2) 

EMU1 (Pin 13 t--------.----I 

~+5V ~ 
1800~ 2700 

JP2 74AS1004 

TCK_RET (Pin 9) 

PO (Pin 5) 

1000 
fCLl 
L-.,J74AS74 

Figure B-3 and Table 8-2 show the signal timings for the XDS51 O. Timing 
parameters are calculated from standard data sheet parts used in the cable 
pod. These timings are for reference only. Texas Instruments does not test 
or guarantee these timings. 

The emulator pod uses TCK_RET as it's clock source for internal synchroni­
zation. TCK is provided as an optional target system test clock source. 
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Cable Pod 

Figure 8-3. Emulator Pod Timings 

1:,...---..-". ·1 ,...-----,. 
TCK_RET J, \ ___ 3-1 ' ·5V '-

14--- 2 --.t ----.I 

TMS TOI (Default) 

TMS TOI (Optional) 

6 -r:l 7 ~ ,----

TOO ====================JYc X'-___ _ 
Table B-2. Emulator Pod Timing Param,eters 

No. 

1 

2 

3 

4 

5 

6 

7 
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Reference Description Min Max Unit 

tTCKmin TCK_RET period 35 200 ns 
tTCKmax 

tTCKhighmin TCK RET high pulse duration 15 ns 

tTCKlowmin TCK_RET low pulse duration 15 ns 

tci(XTMXmin) 
tci(XTMXmax) 

TMS/TOI valid from TCK_RET low (default timing) 6 20 ns 

td(XTMSmin) 
tci)XTMSmax) 

TMS/TOI valid from TCK_RET high (optional timing) 7 24 ns 

tsu(XTOOmin) TOO setup time to TCK_RET high 3 ns 

thcl(XTOOmin) TOO hold time from TCK RET high 12 ns 

It is extremely important to provide high-quality signals between the emula­
tor and the target processor. If the distance between the emulation header 
and the processor is greater than 6 inches, the emulation signals should be 
buffered. Sections 8.4 and 8.5 illustrate typical connections between the 
target processor and the emulation header. 
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Test Clock Generated in Target System 

B.4 Test Clock Generated in Target System 

Figure 4 shows an application with the system test clock generated in the 
target system. In this application the TCK signal is left unconnected. 

Figure 8-4. Target-System Generated Test Clock 

TMS32OC4x 

EMUO 
EMU1 
TRST 

TMS 
TOI 

TOO 

TCK 

System Test Clock 

r GreaterThan l 
6 Inches 

+5V 

~ ~ 
~ 

13 
14 

2 
1 

3 
7 

- NC -11.. 
9 

f--

+5 v 
Emulator Header r 5 EMUO PO 

EMU1 

'fRS'i" GNO 4 

TMS GNO 6 

TOI GNO 8 

TOO GNO 
10 

TCK GNO 12 

TCK_RET 7 

GN o 

There are two benefits to having the target system generate the test clock: 

1) You can set the test clock frequency to match your system require­
ments. The emulator provides only a single 1 Q-MHz test clock. 

2) You may have other devices in your system that require a test clock 
when the emulator is not connected. 
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Multiprocessor Configuration 

8.5 Multiprocessor Configuration 

Figure 8-5. Multiprocessor Connections 

TMS320C4x TMS320C4x 

r- TOO 

~ ~ I~ 

8-8 

TOI ~)- TOO TOI·· -
0 .,.. 

~ It; o .,.. 
;:) ;:) 

~ 
;:) ;:) 

~ ~ ~ ~ ~ ~ w w w w 

+5 V 
Emulator Header .~ 

I " 1 
u - 13 

EMUO PO ~ 

.11 
II 

14 
EMU1 

II 
II 

2 TRST GNO 
4 r--

II 
II 

1 
TMS GNO ~. 

3 TOI GNO ~~ 

" II 
7 TOO GNO ~~ 

II 
II 

11 
TCK GNO ~. 

9 
TCK_RET '7 

GN 0 

Figure B-5 shows a typical multiprocessor configuration. This is a daisy­
chained configuration (TOO-TOI daisy-chained) that meets the minimum 
requirements ot the IEEE 1149.1 specification. The emulation signals in this 
example are buffered to isolate the proceksors from the emulator and pro­
vide an adequate signal drive for the target system. One of the benefits of 
a JTAG test interface is that you can generally slow down the test clock to 
eliminate timing problems. Several key points to multiprocessor support are 
as follows: 
Q The processor TMS, TOI, TOO, and TCK should be buffered through 

the same physical package to better control timing skew. 
Q The input buffers forTMS, TOI, and TCK should have pullups to 5 volts. 

This will hold these signals at a known value when the emulator is not 
connected. A pullup of 4.7 kQ or greater is suggested. 

Q Buffering EMUO and EMU1 is optional but highly recommended to pro­
vide isolation. These are not critical signals and do not need to be buff­
ered through the same physical package as TMS, TCK, TOI, and TOO. 
Unbuffered and buffered signals are shown in Figure B-6 and 
Figure B-7. 
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Multiprocessor Configuration 

No signal buffering. In this situation, the distance between the header and 
the processor should be no more than 6 inches. 

Figure 8-6. Unbuffered Signals 

~+ +5 v 
TMS320C4x I- .~ Emulator Header r • 

EMUO 13 EMUO PO 5 

EMU1 14 EMU1 

'I'RS'f 2 Tim" GNO 4 

TMS 1 TMS GNO 6 

TOI 3 TOI GNO 8 

TOO 
7 

TOO GNO 10 

TCK 11 TCK GNO 12 

9 TCK_RET 7 

GN o 

Emulation signals buffered. The distance between the emulation header 
and the processor is greater than 6 inches. The emulation signals - TMS, 
TOI, TOO, and TCK_RET - are buffered through the same package. 

Figure 8-7. Buffered Signals 

TMS320C4x ~ 
~ 

EMUO 

EMU1 

TRST 

TMS 

TOI 

TOO 

TCK 

Greater Than 
6 Inches 

+ 5V 

~ 
13 

14 

2 

1 
3 

7 

11 

9 

+5 v 
Emulator Header ~~ 

EMUO PO 5 

EMU1 

TRST GNO 
4 

TMS GNO 6 

TOI GNO 8 

TOO GNO 10 

TCK GNO 12 

TCK_RET , 
G NO 

Q The EMUO and EMU1 signals must have pullups to 5 volts. The pullup 
resistor value should be chosen to provide a signal rise-time less than 
10 J.lS. A 4.7 kO resistor is suggested for most applications. EMUO - 1 
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Multiprocessor Configuration 

8-10 

are 1/0 pins on the 'C4x; however, they are only Inputs to the XOS51 o. 
In general, these pins are used in multiprocessor systems to provide 
global run/stop operations. 

Q It is extremely important to provide high quality signals, especially on 
the processor TCK and the emulator TCK_RET signal. In some cases, 
this may require you to provide special PWB trace routing and use 
termination resistors to match the trace impedance. The emulator pod 
does provide optional internal parallel terminators on the TCK_RET, 
and TOO. TMS and TOI provide fixed series termination. 
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Emulation Timing Calculations 

B.6 Emulation Timing Calculations 
Following are a few examples on how to calculate the emulation timings in 
your system. For actual target timing parameters, see, the appropriate de­
vice data sheets. 

Assumptions: tsu(TTMS) 

th(TTMS) 

tcJ(TTDO) 

tcJ(bufmax) 

tcJ(bufmln) 

t(bufskew) 

ttckfactor 

Target TMSITOI setup to TCK high 

Target TMSITOI hold from TCK high 

Target TOO delay from TCK low 

Target buffer delay maximum 

Target buffer delay minimum 

Target buffer skew between two devices 
in the same package: 

[tcJ(bufmax) - tcJ(bufmin)] x 0.15 

Assume a 40/60 duty cycle clock 

10 ns 

5 ns 

15ns 

10 ns 

1 ns 

1.35 ns 

0.4 

Given In Table B-2 (page B-6): 

tcJ()<TMSmax) XOS51 0 TMSITOI delay from TCK_RET 
low, maximum 20 ns 

tcJ(XTMX) min XOS51 0 TMSlTOI delay from 
TCK_RET low, minimum 6 ns 

tcJ(XTMSmax) XOS510 TMSITOI delay from TCK_RET 
high, max 24 ns 

tcJ(XTMXmin) XOS51 0 TMSlTOI delay from TCK_RET 
high, minimum 7 ns 

tsu(XTDOmin) TOO setup time to XDS510 TCK_RET 
high 3 ns 

There are two key timing paths to consider in the emulation design: 
the TCK_RETITM,SITOI (tprdtck_TMS) path, and 
the TCK_RETITDO (tprdtck_TDO) path. 

In each case, the worst case path delay is calculated to determine the maxi­
mum system test clock frequency. 
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Emulation Timing Calculations 

Case 1: 

case 2: 

Single processor, direct connection, TMSITOI timed from TCK_RET low 
(default timing). 

tprdtck_ TMS = [ld(XTMSmax) + tsu(TTMS)] / ttckfactor 
= (20 ns + 10 ns) /0 .4 
= 75 ns (13.3 MHz) 

tprdtck_ TOO = [ld(TTOO) + tsu(XTOOmin)] / ttckfactor 
- (15 ns + 3 ns) / 0.4 
= 45 ns (22.2 MHz) 

In this case, the TCKlTMS path is the limiting factor. 

Single processor, direct connection, TMSITOI timed from TCK_RET high 
(optional timing). 

tprdtck_ TMS = ld(XTMSmax) + tsu(TTMS) 
= (24 ns + 10 ns) 
= 34 ns (29.4 MHz) 

lprdtck_ TOO = [ld(TTOO) + tsu(XTOOmin)] / ttckfactor 
= (15 ns + 3 ns) / 0.4 
= 45 ns (22.2 MHz) 

In this case, the TCKlTOO path is the limiting factor. One other thing to con­
sider in this case is the TMSITOI hold time. The minimum hold time for the 
XOS51 0 cable pod .is 7 ns, which meets the 5-ns hold time of the target de­
vice. 

case 3: . Single/multiple processor, TMSITOI buffered input; TCK_RETITOO buff-

8-12 

ered output, TMSITOI timed from TCK_RET high (optional timing). 

tprdtck_ TMS = ld(XTMSmax) + tsu(TTMS) + 2ld(bufmax) 
= 24 ns + 10 ns + 2 (10) 
= 54 ns (18.5 MHz) 

tprdtck_ TOO = ld(TTOO) + tsu(XTOOmin) + tbufskew 

ttckfactor 

= (15 ns + 3 ns + 1.35 ns) / 0.4 
= 58.4 ns (20.7 MHz) 

In this case, the TCKlTMS path is the limiting factor. The hold time on TMS/ 
TOI is also reduced by the buffer skew \ 1.35 ns) but still meets the minimum 
device hold.time. 
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C8se4: 

Emulation Timing Calculations 

Single/multiprocessor, TMsrrolrrcK buffered input; TOO buffered output, 
TMSrrOI timed from TCK_RET low (default timing). 

tprdtck.. TMS == tct(XTMSmax) + tsu(!!MS) + tbufskew 

ttckfactor 

• (24 ns + 10 ns + 1.35 ns) I 0.4 
- 88.4 ns (11.3 MHz) 

tprdtck_ TOO - tct(!!OO) + tsu(XTDOmin) + tct(bufmax) 

ttckfactor 

III (15 ns + 3 ns + 10 ns) I 0.4 
- 70 ns (14.3 MHz) 

In this case, the TCKlTMS path is the limiting factor. 

In a multiprocessor application, it is necessary to ensure that the EUM0-1 
lines can go from a logic low level to a logic high level in less than 10 J1S. This 
can be calculated as follows (remember that t = 5 RC): 

trise - 5(Rpullup x Ndevices x Cload-per_device) 
== 5(4.7 kn x 16 x 15 pF) 
- 5.64J1S 
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D 
A-Iaw compression, expansion, 12-46 
adaptive filters, 12-58 
AD DC instruction, 12-41 
addition, floating point, 4-20 
address buses 

address reach (space), 1-5 
external,2-27 
general,1-5 

address range 
LSTRBO,1-field specified, 7-11 
STRBO,1-field specified, 7-10 

addressing modes 
conditional branch, 2-15, 5-24 
general, 2-15, 5-19 
parallel, 2-15, 5-23 
three operand, 2-15, 5-20 

addressing types, 5-2 
direct addressing, 5-4 
immediate, 5-17 
indirect addressing, 5-5-5-16 
PC relative, 5-17 
register, 5-3 

ALU, 2-4 
analysis module 

general, 1-5 
registers, 3-21 

ANSI C compiler, 1-9 
applications 

hardware, 13-1 
list, 1-11 

software, 12-1 
ARAU (auxiliary register arithmetic unit), 2-6 
arithmetic logic unit (ALU), 2-4 
arithmetic operations, 12-28 
assembly language Instructions, 11-1 

categories, 11-3-11-9 
interlocked operation, 11-7 
load and store, 11-3 
parallel operation, 11-8 
program control, 11-6 
three-operand, 11-6 
two-operand, 11-4 

condition codes, flags, 11-10 
example instruction, 11-18 
register syntax, 11-17 
summary, 2-16-2-25,11-3-11-9 
symbols used to define, 11-14-11-17 
syntax options, 11-15-,-11-17 

auxiliary register arithmetic units (ARAUs), 
2-6 

auxiliary registers (AR0-7), 2-6, 3·5 

m 
Bcond instruction, 12-11 
BcondAF, BcondAT instructions, 6-8 
benchmarks, FFT timing, 12-88 
biquads, 12-53 
bit manipulation, 12-28 
bit-reversed addressing, 5-30, 12-31 

modify example, 5-16 
block diagrams 

communication port control register, 8-10 
communication ports, 8-4, 8-5 

Index-1 



Index 

block diagrams (Continued) 
CPU, 2-5 
memory organization, 2-11 
peripheral modules, 2-28 
timers, 9-45 
TMS320C40, 2-2 

block moves, 12-29 
block repeat, 6-2 

example, 12-24 
registers (RS, RE), 3-14, 12-26 

block repeat registers (RS, RE), 3-14,12-26 
block size (BK) register, 3-5, 12-52 
boot loader, 13-5 

communication port, 13-8 
external memory, 13-8 
source program, 13-14 

branches, 6-7, 6-9,12-22 
delayed,6-7 

BRD instruction, 12-95 
bus operation 

arbitration, 13-48, 13-70 
external,2-27 
internai, 2-26 

busy-waiting example, 6-15 
byte manipulation, 12-30 

m 
cache, optimization of code, 12-96 
cache memory, 2-10 

algorithm, 3-27 
architecture, 2-10, 3-25 
control bits, 3-29 
general,1-6 
hit, 3-27 
instruction cache, 3-25 
miss, 3-27 
optimization of code, 12-96 
size, 1-6 

CALL instruction, 6-9, 12-13 
CALLcond instruction, 6-9, 12-27 
calls, 6-9 

example code, 12-9 
zero overhead, 12-11 

central processing unit, 2-4 
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channel control register. See DMA channel 
control register 

circular addressing, 5-25 
circular modify example, 5-12 
communication port arbitration unit (PAU), 

8-5 
communication port control register, 8-5, 

8-10 
field descriptions, 8-10 
memory map, 3-23 

communication ports 
applications, 12-98 
architecture, 2-29 
benefits, 1-7 
block diagram, 8-4, 8-5 
control register. See communication port 

control register 
features, 8-3 
general, 1-4 
memory map, 3-23, 8-8 
port arbitration unit (PAU), 8-12 
synchronizer timing, 8-32 
throughput, 1-4, 1-7 
timing, 8-18, 8-32,14-31 

companding, 12-46 
compiler, 1-9 
computed GOTOs, 12-27 
condition codes, flags, 11-12 
conditional delayed branches, 6-7 
conditional-branch addressing modes, 2-15, 

5-24 
context switching, 12-15 
conversion of format 

2s complement floating-point to IEEE, 
4-13 

extended-prec floating-point to single-
prec floating-point, 4-10 

floating point to integer, 4-28 
IEEE single prec. std. 754, 4-11 
IEEE std. 754, 4-11 
IEEE to 2s complement floating-point, 

4-12 
IEEE tolfrom 'C40, 12"42 
integer to floating point, 4-30 



conversion of format (Continued) 
short floating point to extended-prec. 

floating point, 4-9 
short floating point to single-prec. floating 

point, 4-9 
single-prec. floating-point to extended­

prec floating-point, 4-10 
single-prec. 2s compl. floating-point, 4-11 

counter example, 6-15 
counter register (timer), 9-50 

See also timers 
CPU 

architecture, 2-4 
buses, 2-26 
general,1-4 
instruction cycle times, 1-4 
primary register file, 3-3 
throughput, 1-4 

CPU internal interrupt enable register (liE), 
2-8,3-10 

CPU primary register file, 3-3 
CPU registers, 3-3 

auxiliary (ARO.,..AR7), 2-6, 3-5 
block repeat (RS, RE), 3-14, 12-26 
block size (BK), 2-7,3-5 
data page pointer (DP), 2-7, 3-5, 5-4 
DMA interrupt enable (DIE), 2-8, 3-8 

bit descriptions, 3-9 
extended precision (RQ.,-R 11), 2-6, 3-4 
IIOF flag register (IIF), 2-8, 3-12 
index (IR1, IRO), 2-7, 3-5 
internal interrupt enable (liE), 2-8, 3-10 

bit descriptions, 3-11 
list of, 2-7, 3-3 
primary register file, 3-3 
program counter (PC), 2-9, 2-26,3-14 
repeat count (RC), 2-8, 3-14, 6-2, 12-26 
repeat end address (RE), 3-14, 6-2 
repeat start address (RS), 3-14, 6-2 
reserved bits, 3-14 
stack pointer (SP), 2-8, 3-5 

application, 12-13 

status register (ST), 2-8, 3-5,11-11 
bit descriptions, 3-6 

m 
data buses 

external, 2-27 
general, 1-5 
transfer rate, 1-5 

data page pointer (DP), 2-7, 3-5, 5-4 
delayed branches, 6-7 

example, 12-23 
incorrectly placed, 6-6, 6-7 
optimization use, 12-95 

dequeues (stack), 5-33 

Index 

development tools. See software develop-
menttools 

dimensions (,C40), 14-11 
direct addressing, 5-4 
direct memory access. See DMA coproces-

sors 
disabled interrupts by branch, 6-8 
displacements, 5-5-5-16· 
division 

floating point, 12-33 
integer, 12-33 

DMA. See DMA coprocessors 
DMA channel control register, 9-7 

AUTOINIT STATIC bit, 12-105 
PRI bits, 9-14 
bit definitions, 9-8 
field descriptions, 9-8 
START bits, 12-103 
STATUS bits, 9-16 
SYNC MODE bits, 12-103 
TRANSFER MODE field, 9-28 

DMA coprocessors 
architecture, 2-29 
autoinitialization, 9-31, 12-105 

example, 12-107 
benefits, 1-8 
buses, 2-26 
channel address register, 9-16 
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DMA coprocessors (Continued) 
channel control register 

AUTOINIT STATIC bit, 12-105 
PRI bits, 9-14 
START bits, 9-15 
STATUS bits, 9-16 
SYNC MODE bits, 9-15 
TRANSFER bits, 9-14 

channel register map, 3-24 
channel synchronization, 9-41-9-46 
features, 9-2, 9-3 
functional description, 9-3 
general, 1-4,2-29 
index register, 9-16 
interrupts, 9-40,12-102 

example of use, 12-107 
link-pointer register, 9-19, 9-38 

example, 12-105 
memory mapped registers, 9-4 
operation examples, 12-101 
priorities, 9~22 
priority wheel, 9-24 
registers, 9-5, 9-7 
split mode example, 12-104 
START bits, 12-103 
SYNC MODE bits, 12-103 
synchronization of channels, 9-41-9-46 
throughput, 1-8 
transfer count register, 9-18 
transfer description, 9-5, 12-103 
TRANSFER MODE field, 9-28 
unified and split modes, 9-20 

DMA interrupt enable register (DIE), 2-8, 3-8 
double precision, fixed point, 12-41 

edge-triggered interrupts, 6-23 
eleCtrical characteristics, 14-13 
electrical specifications, 14-12 
emulator (XDS510), 1-9 
event counters. See timers 
expansion register file, 2-9, 3-15 

interrupt vector table (IVT), 3-16, 6-26 
application, 12-19 

trap vector table (TVT), 3-15 
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extended precision number, floating-point 
format, 4-8 

extended precision registers, 2-6, 3-4, 12-41 
floating point format, 3-4 
integer format, 3-4 
saving (example), 12-13 

external buses (global, local), wait states, 
7-15 

external interrupts, 2-27 

II 
fast Fourier transforms, 12-31, 12-63 

DIF (decimation in frequency), 12-64. 
12-65,12-70 

DIT (decimation in time), 12-64, 12-78 
timing benchmarks, 12-88 
twiddle factors, 12-68 

features (of TMS320C40), 1-4 
FFT. See fast Fourier transforms 
filters 

adaptive, 12-58 
FIR, 12-51, 12-59 
IIR, 12-53, 12-54 
lattice, 12-88 

FI R filters, 12-51, 12-59 
FIX instruction, 4-28, 12-33 
FLOAT instruction, 4-30, 12-33 
floating point 

addition, 4-20 
conversion (to/from IEEE), 12-42 
conversion to integer, 4-28 
extended-precision format, 4-8 
format conversion, 4-9 
formats, 12-43 

IEEE,12-44 
multiplication, 4-15 
normalization, 4-20, 4-24 
pop and push, 12-13 
reciprocal,4-31 
register format, 3-4 
rounding value, 4-26 
short format, 4-6 
single-precision format, 4-7 
subtraction, 4-20 
underflow, 4-21 



flush pipeline, 12-22 
formats 

conversion, floating-point, 4-9 
See also conversion of formats 

floating point, 12-43 
signed integer, 4-3 
unsigned integer. 4-4 

FRIEEE instruction, 12-43 

m 
general addressing modes, 2-15, 5-19 
global control register (timer), 9-47 
global memory, 6-13, 6-17 

interface, 2-27,13-20 
global memory interface. See memory inter-

face (local, global) 
GOTOs. 1 ?-27 

m 
H1/H3 timing, 14-15 

D 
lACK instruction, 7-47 
lACK pin, 7-47 

timing, 14-30 
ICFULL flag 

description, 12-99 
enabling, 3-11 

ICRDYflag 
description, 12-99 
enabling, 3-11 
example of use, 12-106 
interrupt use, 3-9 

IEEE std. 754 (conversions), 4-11 
IIOF flag register (IIF), 2-8, 3-12, 12-103 
1I0F pins 

boot loader use, 13-6 
loading, 13-14 
timing, 14-24, 14-29 

IIR filters, 12-54 
immediate addressing, 5-17 
index registers (IRO, IR1), 2-7, 3-5, 9-16 
indirect addressing, 5-5 

initialization of processor, 12-3 
example code, 12-4 

instruction cache, 3-25 
instruction register (IR), 2-26 
instruction set summary, 2-16-2-25. 

11-3--11-9 
functional groups, 11-3 

instructions, Chapter 11 
integer formats 

short integer, 4-3 
signed,4-3 
single-precision integer, 4-3 
unsigned, 4-4 

interfaces, 13-3 
external, 13-3 

Index 

memory. See memory interfaces (local, 
global) 

parallel processing, 13-37 
shared bus, 13-43 

interlocked instructions, 2-27, 6-13, 7-39 
interlocked operations, 6-13 
internal bus, 2-26 
internal interrupt enable register (liE), 2-8, 

3-10 
interrupt service routine, 12-14, 12-21 
interrupt vector table (IVT), 3-16 

application, 12-19 
boot loader use, 13-7 

interrupts, 2-27, 6-23 
answering, 12-28 
communication port, 12-100 
context switching, 12-15 
control bits, 6-24 
DMA, 6-25, 9-40, 12-102 

example, 12-107 
edge/level triggered, 6-23 
example, 12-28 
external,2-27 
initiation condition, 6-11 
NMI, 6-23,12-14 
prioritizing, 6-24 
processing, 6-27 
service routines, 12-14,12-21 
trap comparison, 6-11 
vectors, 3-20, 6-25, 6-26 
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inverse of floating point, 12-36 
IR filters, 12-51,12·53 
IVTP. See interrupt vector table (IVT) 

IJ 
JTAG emulation timing, 14-38, B-3 
jumps, 6-9 

zero-overhead use, 12-11 

II 
LAJ instruction, 6-9,12-11,12-22,12-95 
LAJcond instruction, 6-9 
LAT instruction, 12-22 
LATcond instruction, 6-9, 6-11 
lattice filter, 12-88 
LB, LBU instructions, 12-30 
LOFI instruction, 6-13, 7-40 

timing, 14-20 
LOll instruction, 6-13, 7-40 

timing, 14-20 
level-triggered interrupts, 6-23 
LH, LHU instructions, 12-30 
LMS algorithm, 12-58 
local memory interface, 2-27, 13-20 

See also memory interface (local, global) 
LOCK signal, 7-39 
logical operations, 12-28 
loops, 12-23-12-26 
LWL, LWR instructions, 12-30 

II 
MB, MH instructions, 12-30 
mechanical data, 14-11 
memory, 2-10 

See also memory interface 
accesses 

fetches, 10-20 
loads, stores, 10-21 
pipeline, 10-20 
timing, 10-20 

cache, 2-10, 3-25 
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memory (Continued) 
communication ports memory map, 8-8 
general organization, 2-10 
global, 6-13, 6-17 
interfaces. See memory interface (local, 

global) 
memory interface control registers, 3-21 
memory maps, 2-12 

analysis module registers, 3-21 
communication ports, 3-23 
DMA,9-4 
DMA coprocessors, 3-24 
memory interface control registers, 

3-21 
overall description, 2-13 
peripherals, 2-14 
timer registers, 3-22, 9-46 

organization, 2-10, 3-18 
pipeline conflicts, 10-11, 10-18 
RAM,2-10 

zero wait states, 13-21 
ranges, 7-10 
registers. See memory interface control 

registers 
ROM,2-10 

interface to 'C40, 13-9 
ROMEN pin effect, 3-18 
sharing, 6-16 
timing, 7-17, 10-20, 14-18 

memory interface (local, global), 13-20 
bus arbitration, 13-48 
control registers. See memory interface 

control registers 
control signals, 7-3 
features, 7-1 
RAM (zero wait states), 13-21 
ready generation, 7-15, 7-17, 13-27 
shared bus, 13-43 
shared with bus arbitration, ·13-38 
signals, 7-3 
strobes 

single, 13-21 
two banks, 13-25 

timing, 7-17 
wait states, 7-15, 13·27 



memory interface control registers, 3-21, 7-6 
address ranges, 7-10, 7-11 
bit contents, 7-7 
boot loader use, 13-7 
example configuration, 13-46 
LSTRB ACTIVE field, 13-21 
page size, 7-9 
PAGESIZE field, 13-21, 13-32 
reset effect, 7-6 
STRBx SWW field, 7-16 
STRBx SWW fields, 13-28 
timing, 7-17 
wait states, 7-15 

memory maps, 2-12-2-14, 3-18 
analysis module registers, 3-21 
communication ports, 3-23, 8-8 
DMA,9-4 
DMA coprocessors, 3-24 
memory interface control registers, 3-21 
overall description, 2-13 
peripherals, 2-14 
timer registers, 3-22, 9-46 

MPYI3 instruction, 12-42 
MPYSHI3 instruction, 12-42 
multiple processors, 6-13 
multiplication, matrix vector, 12-61 
multiplication, floating point, 4-15 
multiplier, 2-4 

m 
nested block repeats, 6-6 
NMI,6-23 
NORM instruction, 4-24 
normalization, 12"38 

floating point value, 4-20, 4-24 

m 
OCEMPTY flag 

description, 12-99 
enabling, 3-11 

OCRDYflag 
description, 12-99 
enabling, 3-11 
interrupt use, 3-9 

optimization (assembler code), 12-95 
overflow, 4-21, 4-28 

iii 
P flag (cache), 3-25 
packing data example, 12-30 
page 

size, 7-9, 7-13 
switching, 13-32 
timing, 14-23 

parallel addressing modes, 2-15, 5-23 
parallel instruction set 

optimization use, 12-95 
summary, 2-23-2-25 

parallel processing 
'C40-to-'C40, 13-37 
general, 1-3 
shared bus, 13-43 

PAU (port arbitration unit), 8-12 
See also port aribtration unit 
operation, 8-12 

performance, 1-6 
period register (timer), 9-50 

See also timers 
peripheral bus, 2-28 

communication port, 2-29 
general architecture, 2-28 
map, 3-22 

pin (TMS320C40) 
descriptions, 14-7 
names, 14-2 

pin states at reset, 6-18 
pinouts, 14-2 
pipeline, 10-1 

conflicts 
avoiding, 12-96 
branching, 10-4 
memory, 10-11 
memory (resolving), 10-18 
registers, 10-8 

flush,12-22 
memory accesses, 10-20 
structure, 10-2 

POPF instruction, 12-13 
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port arbitration unit, (PAU) 8-5, 8-12 
synchronizer timing, 8-32 

postdisplacement examples, 5-11 
postindex examples, 5-15 
predisplacement examples, 5-9 
preindex examples, 5-13 
primary register file (CPU), 2-6, 3-3 
priority (memory) 

fixed, 13-70 
rotating, 13-58 

priority wheel (DMA), 9-24 
products, 320 family, 1-2 
program 

buses, 2-26 
control, 12-9 
flow, 6-1 

program counter (PC), 2-9, 2-26, 3-14 
programming methodology, tips, 12-94 
PUSHF instruction, 12-13 

m 
queues (stack), 5-33 

Ii] 
RAM,2-10 

zero wait states, 13-21 
RCPF instruction, 4-31,12-33,12-36 
ready 

generation, 7-15,13-27 
timing, 7-17 

reciprocal (RCPF inst.), 4-31 
reciprocal square root (RSQRF inst.), 4-33 
register buses, 2-26 
registers, 2-7 

auxiliary (ARO-AR7), 2-6, 3-5 
block repeat (RS, RE), 3-14, 12-26 
block size (BK), 2-7, 3-5 
counter (timer), 9-50 
data page pointer (DP), 2-7, 3-5, 5-4 
DMA interrupt enable (DIE), 2-8, 3-8 

bit descriptions, 3-9 
extended precision (RQ-R11), 2-6, 3-4 

saving (example), 12-13 
global control (timer), 9-47 
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registers (Continued) 
1I0F flag register (IIF), 2-8, 3-12, 6-23, 

6-24 
index (IR1, IRO), 3-5 
internal interrupt enable (liE), 2-8, 3-10, 

6-23 
bit descriptions, 3-11 

optimization use, 12-96 
period (timer), 9-50 
pipeline conflicts, 10-8 
program counter (PC), 2-9, 2-26, 3-14 
repeat count (RC), 2-8, 3-14, 6-2,12-26 
repeat end address (RE), 3-14, 6-2 
repeat start address (RS), 3-14, 6-2 
reserved bits, 3-14 
saved in context switches, 12-16 
stack pointer (SP), 2-8, 3-5 

application, 12-13 
status register (ST), 2-8, 3-5, 11-11 

bit descriptions, 3-6 
repeat count register (RC), 2-8, 3-14, 6-2, 

12-26 
repeat end address register (RE), 3-14, 6-2 
repeat mode, RPTS initialization, 6-4 
repeat modes (block, single instruction), 6-2 

initialization, 6-2 
optimization use, 12-95 

repeat start address register (RS), 3-14, 6-2 
reset, 3-17, 6-18,12-3 

communication ports, 8-14 
memory interface control registers, 7-6 
operations performed, 6-22 
pin states, 6-18 
signal generation, 13-75 
timing, 14-28 
vector mapping, 3-17,12-3 
vectors, 6-25 

RESETLOCx pins, 3-17,12-3,13-9 
RETlcond instruction, 6-9, 6-12 
RETlcondD instruction, 6-9, 12-22 
RETScond instruction, 6-9 
return from subroutine, 6-9 
RND instruction, 4-26 
ROM,2-10 
rounding of floating point value, 4"26 



RPTB and RPTBD instructions, 6-3, 12-23, 
12-63 
optimization use, 12-95 

RPTS instruction, 6-4 
example, 12-23, 12-30 
optimization use, 12-95 

RSQRF instruction, 4-33, 12-38 

segment start address (SSA) register, 3-25 
semaphores, 6-17 
shared bus interface, 13-43 
short floating-point format, 4-6 
SIGI instruction, 6-13, 7-44 

timing, 14-22 
signal descriptions, 14-7-14-10 
signal transition levels, 14-14 
signal-group control, 7-38 
simulator, 1-10 
software control, 6-1 
software development tools, 1-9 

ANSI C compiler, 1-9 
assembler/linker, 1-9 
compiler, 1-9 
general, 1-9 
linker, 1-9 
simulator (state-accurate), 1-10 
SPOX operating system, 1-9 
XDS510 emulator, 1-9, B-1 

split mode (DMA), 9-20,12-104 
SPOX operating system, 1-9 
square root, 12-38 
stack, 5-31 , 5-33 

dequeues, 5-33 
queues, 5-33 

stack pointer (SP), 2-8, 3-5 
application, 12-13 

state diagram, port arbitration unit, 8-13 
status register (ST), 2-8, 3-5, 11-11 

bit descriptions, 3-6 
STFI instruction, 6-13, 7-42 

timing, 14-21 

STII instruction, 6-13, 7-42 
timing, 14-21 

strobe settings, 7-8 
strobes, 7-12 

timing, 7-17 
wait states, 13-21 

SUBB instruction, 12-41 
SUBC instruction, 12-33 
subroutines, 12-11 , 12-15 

calls. See calls 
subtraction, floating point, 4-20 
system configurations, 13-4 

D 
test load circuit, 14-13 
three-operand addressing modes, 2-15, 5-20 
throughput, 1-4, 1-6 

communication port, 1-7 
DMA,1-8 

timer global control register, 9-47 
diagram, bit summary, 9-47 

timer registers, 3-22 
Itimers,9-45-9-54 

applications, 12-97 
architecture, 2-29 
counter register, 9-45, 9-50 
global control register, 9-46, 9-47 
operation nodes, 9-51 
period control registers, 9-50 
period register, 9-45, 9-50 
timing, 14-37 

timing 
bus control, 14-19 
memory access, 7-17,14-18 
parameters, 14-15-14-26 
STRB, RDY, 7-17 

TLCKO,1 pins, 12-97 
TMS320 family, products 1-2 
TOIEEE instruction, 12-43 
trap vector table (TVT), 3-15 

boot loader use, 13-7-13-8 
TRAPcond instruction, 6-9 
traps, 6-9, 6-11 
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TSTB instruction, 12-28 
TTL levels, 14-14 
TVTP. See trap vector table (TVT) 
twiddle factor, 12-68, 12-78 

m 
Il-Iaw 

compression, expansion, 12-46 
conversion, linear, 12-46 

underflow, 4-20 
unified mode (DMA), 9-20 
unpacking data example, 12-31 

II 
vectors (reset, interrupts), 6-25 
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Ii 
wait states, 7-15, 7-36, 7-37, 13-20, 13-27 

bus disabled, 7-38 
consecutive reads, then write, 13-23 
consecutive writes, then read, 13-25 
multiple waits circuitry, 13-31 
requirements, 13-20 

word manipulation, 12-30 

II 
XDS510 emulator, 1-9, B-1 
XDS510 emulator design considerations, B-1 



Printed til. U.S.A., May 1991 
2564090-9761 revision. A 

• TEXAS 
INSTRUMENTS 

SPRU063 


