i
b TeExas
INSTRUMENTS

TMS320C4x

User’s Guide

1991 Digital Signal Processing Products

TMS320C4x
User’s Guide

2564090-9721 revision A
May 1991

*ip
TeExAs
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (Tl) reserves the right to make changes to or to discontinue
any semiconductor product or service identified in this publication without notice.
Tl advises its customers to obtain the latest version of the relevant information
to verify, before placing orders, that the information being relied upon is current.

Tl warrants performance of its semiconductor products to current specifications
in accordance with TI's standard warranty. Testing and other quality control tech-
niques are utilized to the extent Tl deems necessary to support this warranty. Un-
less mandated by government requirements, specific testing of all parameters of
each device is not necessarily performed.

Tl assumes no liability for Tl applications assistance, customer product design,
software performance, or infringement of patents or services described herein.
Nordoes Tlwarrantorrepresent thatlicense, either express orimplied, is granted
under any patent right, copyright, mask work right, or other intellectual property
right of Tl covering or relating to any combination, machine, or process in which
such semiconductor products or services might be or are used.

Copyright © 1991, Texas Instruments Incorporated

Preface

Read This First

The purpose of this user’s guide is to serve as a reference book for the
TMS320C40 and TMS320C40-40 digital signal processors. Throughout the
book, all references to the TMS320C40 apply to the TMS320C40-40 as
well, unless an exception is noted. This document provides information to
assist managers and hardware/software engineers in application develop-
ment.

How to Use This Manual

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

This document contains the following chapters:

Introduction
A general description of the TMS320C40, its key features, and typical appli-
cations.

Architectural Overview
Functional block diagrams. TMS320C40 design description, hardware
components, and device operation. Instruction set summary.

CPU Registers, Memory, and Cache

Description of the registers in the CPU primary register file and expansion
register file. Memory maps. Instruction cache architecture, algorithm, and
control bits.

Data Formats and Floating-Point Operation

Description of signed and unsigned integer and floating-point formats. Dis-
cussion of floating-point multiplication, addition, subtraction, normalization,
rounding, conversions, and reciprocals.

Addressing

Addressing types. Operation, encoding, and implementation of addressing
modes. Format descriptions. Circular and bit-reversed addressing. System
stack management.

Preface — Read This First

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Chapter 14

Program Flow Control

Software control of program flow using repeat modes, different types of
branching, traps, interrupts, and interlocked operations. Reset operation,
including resulting values in registers and on pins.

External Bus Operation

Discussion of the two 80-pin local and global memory interfaces.
Programmable wait-states. Memory access timing. Signal group control.
Interlocked instructions. Interrupt acknowledge timing.

Communication Ports

Description of the six, bidirectional, 160-megabit-per-second (at 40-ns
cycle time) communication ports designed for sharing tasks between
processors. Memory maps of the ports and their registers. Port operation
and coordination of port activity with CPU and DMA coprocessors.

DMA Coprocessors and 'C40 Timers

DMA coprocessor operation. Description of coprocessor registers (channel
control, channel address, index, transfer count, and link pointer). Use in
unified and split mode. Priority and CPU/DMA arbitration. Autoinitialization
and interrupts. Operation of the 'C40 timers; their registers (global control,
timer counter, and period).

Pipeline Operation
Discussion of 'C40 pipeline operations. This includes pipeline conflicts and
methods for resolving these. Clocking of memory accesses. '

Assembly Language Instructions

Functional listing of instructions. Condition code defmmons (for conditional
instructions such as branch conditional). Alphabetized individual instruction
descriptions with examples.

Software Applications

Software application examples for using various TMS320C40
instruction-set and programming features. Code listings enhance
explanations.

Hardware Applications

Hardware design techniques and application examples for interfacing to
memories, peripherals, or other microcomputers/microprocessors. Code
listings, schematics, and timing diagrams facilitate explanations.

TMS320C4x Signal Descriptions and Electrical Characteristics
Pin locations and pin descriptions. 'C40 dimensions and package
description. Electrical characteristics. Signal timing and characteristics.

Preface

Preface — Read This First

Appendix A TMS320C40 Sockets
Two sockets available for the TMS320C40.

Appendix B XDS510 Design Considerations
Considerations for designing your TMS320C40 target system for use with
the XDS510 emulator.

References

The publications in the following reference list contain useful information re-
garding functions, operations, and applications of digital signal processing.
These books also provide other references to many useful technical papers.
The reference list is organized into categories of general DSP, speech,
image processing, and digital control theory, and is alphabetized by author.

L General Digital Signal Processing:

Antoniou, Andreas, Digital Filters: Analysis and Design. New York,
NY: McGraw-Hill Company, Inc., 1979.

Brigham, E. Oran, The Fast Fourier Transform. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1974.

Burrus, C.S., and Parks, TW., DFT/FFT and Convolution Algorithms.
New York, NY: John Wiley and Sons, Inc., 1984.

Digital Signal Processing Applications with the TMS320 Family. Texas
Instruments, 1986; Prentice-Hall, Inc., 1987.

Gold, Bernard, and Rader, C.M., Digital Processing of Signals. New
York, NY: McGraw-Hill Company, Inc., 1969.

Hamming, R.W., Digital Filters. Englewood Cliffs, NJ: Prentice-Hall,
Inc., 1977. ‘ ‘

IEEE ASSP DSP Committee (Editor), Programs for Digital Signal Pro-
cessing. New York, NY: IEEE Press, 1979.

Jackson, Leland B., Digital Filters and Signal Processing. Hingham,
MA: Kluwer Academic Publishers, 1986.

Jones, D.L., and Parks, T.W., A Digital Signal Processing Laboratory
Using the TMS32010. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987.

Lim, Jae, and Oppenheim, Alan V. (Editors), Advanced Topics in Sig-
nal Processing. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1988.

Morris, L. Robert, Digital Signal Processing Software. Ottawa, Cana-
da: Carleton University, 1983.

Preface — Read This First

Vi

Meyer, Riamund and Schwartz, Karl , FFT Implementation on DSP
Chips — Theory and Practice, Proceedings of ICAASP 90, vol. 3, 1990

Oppenheim, Alan V. (Editor), Applications of Digital Signal Process-
ing. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978.

Oppenheim, Alan V., and Schafer, R.W., Digital Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975.

Oppenheim, Alan V., and Willsky, A.N., with Young, .T., Signals and
Systems. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1983.

Parks, T.W., and Burrus, C.S., Digital Filter Design. New York, NY:
John Wiley and Sons, Inc., 1987.

Rabiner, Lawrence R., and Gold, Bernard, Theory and Application of
Digital Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, Inc.,
1975.

-Sorensen, Henrik V., Jones, Douglas, Heideman, M.T., and Burris,

C.S., Real-Valued Fast Fourier Transform Algorithms, IEEE Transac-
tions on Acoustics, Speech, and Signal Processing, vol. ASSP-35,
no. 6, June 1987.

Treichler, J.R., Johnson, Jr., C.R., and Larimore, M.G., Théory and
Design of Adaptive Filters. New York, NY: John Wiley and Sons, Inc.,
1987.

O Speech:

Gray, A.H., and Markel, J.D., Linear Prediction of Speech. New York,
NY: Springer-Verlag, 1976.

Jayant, N.S., and Noll, Peter, Digital Coding of Waveforms. Engle-
wood Cliffs, NJ: Prentice-Hall, Inc., 1984.

Papamichalis, Panos, Practical Approaches to Speech Coding. En-
glewood Cliffs, NJ: Prentice-Hall, Inc., 1987.

Rabiner, Lawrence R., and Schafer, R.W., Digital Processing of
Speech Signals. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978.

0 Image Processing:

Andrews, H.C., and Hunt, B.R., Digital Image Restoration. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1977.

Gonzales, Rafael C., and Wintz, Paul, Digital Image Processing.
Reading, MA: Addison-Wesley Publishing Company, Inc., 1977.

Pratt, William K., Digital Image Processing. New York, NY: John Wiley
and Sons, 1978.

Preface

Preface — Read This First

Q Digital Control Theory:

Jacquot, R., Modern Digital Control Systems. New York, NY: Marcel
Dekker, Inc., 1981.

Katz, P., Digital Control Using Microprocessors. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1981.

Kuo, B.C., Digital Control Systems. New York, NY: Holt, Reinholt and
Winston, Inc., 1980.

Moroney, P., Issues in the Implementation of Digital Feedback Com-
pensators. Cambridge, MA: The MIT Press, 1983.

Phillips, C., and Nagle, H., Digital Control System Analysis and De-
sign. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984.

Style and Symbol Conventions
This document uses the following conventions:

d Program listings, program examples, interactive displays, file names,
and symbol names are shown in a special font. Examples use a bold
version of the special font for emphasis. Here is a sample program list-

ing:

0011 0005 0001 .field 1, 2
0012 0005 0003 .field 3, 4
0013 0005 0006 .field 6, 3
0014 0006 .even

O In syntax descriptions, the instruction, command, or directive is in a
bold face font and parameters are in italics. Portions of a syntax that
are in bold face should be entered as shown; portions of a syntax that
are in jtalics describe the type of information that should be entered.
Here is an example of an instruction:

CMPF3 src2,src3

Note: Although the instruction mnemonic (CMPF3 in this example) is in
capital letters, the ‘C40 assembler is not case sensitive — it can
assemble mnemonics entered in either upper or lower case.

CMPF3 is the instruction mnemonic. This instruction has two
parameters, indicated by src2 and src3.

vii

Preface — Read This First

viii

QO Square brackets ([and]) identify an optional parameter. If you use an

optional parameter, you must specify the information within the
brackets; however, you don't enter the brackets themselves. Here's an
example of an instruction that has an optional parameter:

LDP src[,DP]

The LDP instruction is shown with two parameters; one is optional. The
first parameter, src, is required. The second parameter, DP, is optional.
As this syntax shows, if you use the optional second parameter, you
must precede it with a comma.

Braces ({ and }) indicate a list. The symbol | (read as or) separates
items within the list. Here's an example of a list:

{ > | *+ | *=}
This provides three choices: *, *x+, or x—.,

Unless the list is enclosed in square brackets, you must choose one
item from the list.

The following is the format for a varying number of parameters. For ex-
ample, the .byte directive can have up to 100 parameters. The syntax
for this directive is

.byte value; [, ..., value,]

This syntax shows that .byte must have at least one value parameter,
but you have the option of supplying additional value parameters sepa-
rated by commas.

Preface

Preface — Read This First

Information About Cautions and Warnings

O A caution describes a situation that could potentially damage your
software or equipment.

QO A warning describes a situation that could potentially cause harm to
you.

Please read each caution or warning carefully. The information is provided
for your protection.

Trademarks
ABEL is a trademark of the Data I/O Corporation.

SPOX is a trademark of Spectron Microsystems, Inc.

Preface

Contents

1

Introduction i e e e e 1-1
11 TheTMS320 Familyoineiiiiiiiii i eeieaees 1-2
1.2 Parallel Processingcooiiiiiiii ittt i 1-3
1.3 TMS320C4X Featuresc.veiiiiineinneneenninereerrnnannnes 1-4
1.3.1 TMS320C40 Device Key Featuresccviiiin.. 1-4

1.3.2 Communication PortBenefitscoovit 1-7

1.3.3 DMA CoprocessorBenefitsccviiiiiiiniiiinns 1-8

1.3.4 TMS320C40 Parallel Processing Development Tools :
KeyFeaturesottt eiaa e 1-9

1.4 Applicationst ettt 1-11
Architectural Overview ettt e e, 2-1
2.1 Central ProcessingUnit (CPU)ttt 24
21,1 Multiplier ... it e 2-4

2.1.2 Arithmetic Logic Unit (ALU) ..., 2-4

2.1.3 Auxiliary Register Arithmetic Units (ARAUS) 2-6

2.1.4 CPUPrimary RegisterFileot 2-6

2.1.5 CPUExpansion RegisterFileooiiiiiia 2-9

22 MemoryOrganization.........cooiiiiiiiiiiniiiieriinnneneeennns 2-10
221 RAM,ROM,andCachecoiviiiiiiinnnnnnnnnnn. 2-10

222 MemoryMaps .. .cciiiiii i et e 2-12

223 Memory AddressingModesooiiii 2-15

2.3 InstructionSetSummaryt 2-16
2.4 InternalBus Operationoviiiiiiiiiiiiiiii i, 2-26
25 ExternalBusOperationc.oiiiiiiiiiiiiiiiiiiii, 2-27
251 INMermuUPtS ..o oo e it e e e 2-27

2.5.2 Interlocked Instructions ool 2-27

26 Peripheralscoiiiiiiiii i i it e e 2-28
2.6.1 Communication Portsccoiiiiiiiiiiiiiiiiiaaas 2-29

2.6.2 DirectMemory Access(DMA) ..., 2-29

2.6.3 TIMers ..ottt i i i e e i 2-29

CPU Registers, Memory,andCachettt 3-1
3.1 CPU Primary RegisterFilecoviiiiiiiiiiiiiiiiiiiainnn 3-3

3.1.1 Extended-Precision Registers (RO-R11) 3-4

3.1.2 Auxiliary Registers (AR0O-AR7)coiiriiiiiiiiiinnnnnn. 3-5
3.1.3 Data-Page Pointer (DP)c.ciiiiiiiiiiiiiiiiiianannnn 3-5
3.1.4 Index Registers (IR0, IR1)ccoiiiiiiiiiiiiiiins, 3-5
3.1.5 Block-Size Register (BK)ccciiiiiiiiiiiiiiiiinn.. 3-5
3.1.6 System Stack Pointer (SP)vviiiiiiiiiiiiiiinaans 3-5
3.1.7 Status Register (ST)coiiiiiiiiiiiiiiiiieiaen, 3-5
3.1.8 DMA Coprocessor Interrupt Enable Register (DIE) 3-8
3.1.9 CPU Internal Interrupt Enable Register (llE) 3-10
3.1.10 1IOF Flag Register (IIF) Controls External Pins IIOF(3 — 0),
Timer/DMAFlags ...t 3-12
3.1.11 Block-Repeat (RS, RE) and Repeat-Count (RC) Registers ... 3-14
3.1.12 Program Counter (PC)coiiiiiiiiiiiiiinannnnnn. 3-14
3.1.13 Reserved Bits and Compatibilityoen.. 3-14
3.2 CPUExpansionRegisterFileciiiiiiiiiiiiiin... 3-15
3.3 RESET VectorMappingcoviiiiiiiiiiiiiiiiiiineeenennn. 3-17
G 1= 41T e 3-18
34.1 OverallMemoryMapcoviiiiiiiiiiiiiiaanninn, 3-19
3.4.2 PeripheralBusMemoryMap il 3-20
3.5 Instruction Cache Architecturec.coiiiiiiiiiiiiia... 3-25
3.5.1 CacheAlgorithmo 3-27
3.5.2 CacheandSystemMemoryoovviiiiiininnnennn 3-28
353 CacheControlBitscccviiiiiiiiiiiiiiiianann.. 3-29
4 Data Formats and Floating-PointOperation............................ 4-1
4.1 SignedInteger Formatsottt 4-3
411 ShortintegerFormat ...t 4-3
4.1.2 Single-Precision Integer Format 4-3
4.2 Unsigned-IntegerFormatsccoviiiiiiiiiiiiininnennnnn. 4-4
4.2.1 .Short Unsigned-Integer Formatcouue.. 4-4
4.2.2 Single-Precision Unsigned-Integer Format 4-4
4.3 Floating-PointFormatscciiiiiiiiiiiiii i i 4-5
4.3.1 Short Floating-Point Formatcoeiint, 4-6
4.3.2 Single-Precision Floating-Point Format 4-7
4.3.3 Extended-Precision Floating-Point Format 4-8
4.3.4 Conversion Between Floating-Point Formats 4-9
4.4 Floating-Point Conversions (IEEE Std. 754/'C4x) 4-11
4.4.1 Converting IEEE Format to Twos-Complement
Floating-Point Formatciiiiiiiiean... 4-12
442 Converting Twos-Complement Floating-Point Format
tolEEEFormat ... e e 4-13
Xii Table of Contents

4.5 Floating-Point Multiplicationcciiiiiiiiiiiiii., 4-15
4.6 Floating-Point Addition and Subtraction 4-20
4.7 Normalization (NORM Instruction)coiiiiiiiiiin.. 4-24
4.8 Rounding (RND Instruction)coiiiiiiiiiiniiiiiiinnennns 4-26
4.9 Floating-Point-to-Integer Conversion (FIX Instruction) 4-28
4.10 Integer-to-Floating-Point Conversion (FLOAT Instruction) 4-30
4.11 Reciprocal (RCPF Instruction)ccoiiiiiiiiiiiiiiinnneennn 4-31
4.11.1 Reciprocal Algorithmc.ociiiiiiiiiiiiiiiiinnn, 4-32
4.12 Reciprocal Square Root (RSQRF Instruction) 4-33
4.12.1 Reciprocal Square Root Algorithm 4-34
4.12.2 Background on the Reciprocal Square Root 4-35
Addressingcoiiiiiiiiiiiiii i i it i it 5-1
5.1 Types of AdAressingcovviiiiiin it iiiiiiiieineereiiaenneans 5-2
5.1.1 Register Addressing PSS 5-3
5.1.2 Direct Addressingcovviiiiiiiii ittt 5-4
5.1.3 Indirect Addressingc.ccoiiiiiiiiiniiiiinnenennnnns 5-5
5.1.4 Immediate Addressingc.coiiiiiiiiiii ittt 5-17
5.1.5 PC-Relative Addressingcoiiiiiiiiiiiiian... 5-17
5.2 Groups of AddressingModesc..ciiiiiiiiiiiiiiia... 5-19
5.2.1 General AddressingModescoviiiiiiiiiin.. 5-19
5.2.2 Three-Operand AddressingModes 5-20
5.2.3 Parallel AddressingModesoiiiiiiiiiiiinn.. 5-23
5.2.4 Conditional-Branch AddressingModes 5-24
5.3 Circular Addressingccoiiiiiiiiiiiii i, 5-25
5.4 Bit-Reversed Addressing ...ttt 5-30
5.5 System and User Stack Management...............cooviinnnnn.. 5-31
5.5.1 Stacks ...t 5-32
552 QueuesandDequeues et e 5-33
ProgramFlow Control i, 6-1
6.1 RepeatModescoviiiiiiiiii ittt ittt e, 6-2
6.1.1 Repeat-Mode Initialization ool 6-2
6.1.2 RPTB and RPTBD Initializationt. 6-3
6.1.3 RPTS Initialization ..ot 6-4
6.1.4 Repeat-ModeOperationccciiiiiiiiiiiinn.. 6-4
6.2 DelayedBranchescciiiiiiiiiiiiii it e 6-7
6.3 Calls, Traps, Branches, Jumps,andReturns 6-9
6.4 Unifying Traps and Interruptsccviiiiiiiiiiniinnnnnnn.. 6-11
6.4.1 Initialization e e e et e, 6-11
6.4.2 Operationcciiiiiiiiiiii i e i ittt e 6-11

Xiv

6.5 Interlocked Operationsccoviiiiiiiiiiinnennnnennnnnannns 6-13
6.6 ResetOperationol 6-18
6.7 Interrupts i et i, 6-23
6.7.1 Interrupt Control Bits, 6-24
6.7.2 Prioritizationand Controlccoiiiii it 6-24
External BusOperation ittt 7-1
7.1 Global (and Local) Memory Interface Control Signals 7-3
7.2 Memory Interface Control Registersc.coiiiiiiiiiinnn.. 7-6
7.3 Use of the Global Memory Interface Registers 7-12
7.3.1 Mapping Addressesto Strobesl 7-12
7.3.2 PageSizeOperationc.cciiiiiiiiiiiiiii... 7-13
7.4 ProgrammableWaitStates i 7-15
7%= I 1 111 oo A 7-17
7.6 Using Enabled Signals to Control Signal Group 7-38
7.7 Interlocked-Instructions Definition and Bus Timing 7-39
7.8 TACK TIMING o\ ntitt e et e et 7-47
Communication Ports e 8-1
8.1 Introduction e 8-2
8.2 Communication Port Features e 8-3
8.3 Operational Overviewciiriiiiii ittt eiiiiinnnnns 8-5
8.4 Communication Port Memory Map and Registers 8-8
8.4.1 Communication Port Control Registers (CPCRSs) 8-9
84.2 InputPortRegistercccoiiiiiiiiiiiiiiiiiiiiia 8-9
8.4.3 OutputPortRegisterooviiiiiiiii i, 8-9
8.5 Communication Port Operationcciiiiiiiiiiiiinnnnnn. 8-12
8.5.1 Port Arbitration Units (PAUS) ..., 8-12
852 ModuleReset ... e 8-14
8.5.3 Halting of Inputand Qutput FIFOs 8-15
8.6 Coordinating Communication Port Actlvnty With CPU and DMA
L0 o] o] o To7 =10 Y PP 8-17
8.7 Communication Port TIMing ..o 8-18
8.7.1 TimingTableand Figurescoiiiiiiiiiiinnnn. 8-18
8.7.2 Synchronizer Timingcciiiiiiiiiiiiiiiiiinnnn. 8-31
DMA Coprocessorand'C40 Timersc.ccoiiiiiinninnnnnnnnn. 9-1
9.1 INtroduCHON . ..ottt e e e 9-2
9.2 DMA Coprocessor Functional Description 9-3
9.3 DMA CoprocessorRegistersooiiiiiiiiniiniiiiiiinnnnn. 9-7
9.3.1 DMA Channel Control Registercooiii.... 9-7
9.3.2 DMA Channel Address and Index Registers 9-16

Table of Contents

10

1"

9.3.3 DMA Channel Transfer-Counter and Auxiliary-Transfer-Count

Registerscoviiiii ittt ittt ittt it i 9-18

9.3.4 DMA-Channel Link-Pointer and Auxiliary-Link-Pointer
Registersccoiiiiiiiiiiiii ittt i i 9-19
9.4 DMA Channels in Unified and SplitModes 9-20
9.5 DMA Coprocessor Internal Priority Schemes 9-22
9.5.1 Fixed Priority Schemeo, 9-22
9.5.2 Rotating Priority Schemecoiiiiiiiiiia, 9-22
9.5.3 Split Mode and DMA Channel Arbitration 9-24
9.6 CPU and DMA Coprocessor Arbitrationoovnen. 9-27
9.7 DataTransferModesccoiiiiiiiiiiiiiiiiiiiiinniennnns 9-28
9.7.1 Running Under TRANSFERMODE =002 9-28
9.7.2 Running Under TRANSFERMODE =010c.uun.. 9-28
9.7.3 Running Under TRANSFERMODE =102 9-29
9.7.4 Running Under TRANSFERMODE =115cvvuunt 9-30
9.8 Autoinitializationcciiiiiiiii i i 9-31
9.8.1 FunWithLinkPointerscciiiiiiiiiiiiiiian.. 9-38
9.9 DMA Coprocessorand Interruptscooiiiiiiiiineiinnn, 9-40
9.9.1 Interrupts and Synchronization of DMA Channels 9-41
9.10 TMS320C40 TIMEIS .. vv v iiieiiieeeeaneneerenenenns R 9-45
9.10.1 Timer Global-Control Registercooviviiin. 9-47
9.10.2 Timer Period and Counter Registers 9-50
9.10.3 Timer Pulse Generationcciiiiiiiiiennnnn. 9-50
9.10.4 TimerOperationModescoiviiiiiiiiniinnnnnnnn. 9-52
Pipeline Operation it i 10-1
10.1 Pipeline Structuret i i i ittt 10-2
10.2 Pipeline Conflictscciiriiiiiiiii ittt it it et i 10-4
10.2.1 BranchConflictscciiiiiiii ittt 10-4
10.2.2 RegisterConflicts ...ttt 10-8
10.2.3 MemoryConflictscoiiiiiiiiiiiiiiii i, 10-11
10.3 Resolving Memory Conflictso, 10-18
10.4 Clocking of Memory ACCESSESccvviiinrerirnnneennennnnns 10-20
10.4.1 ProgramFetchescciiiiiiiiiiiiiiiiiiinennnnn. 10-20
10.4.2 Dataloadsand Storescccvvvrinnnnrnnnnnnss 10-21
Assembly Language Instructions oo, 11-1
11.1 Assembly Language Instructions — InstructionSet 11-3
11.1.1 Load-and-Store Instructions e 11-3
11.1.2 Two-Operandinstructionscccvveiiiinnnnnnn 11-4
11.1.3 Three-Operand Instructionsccoviiiiiieennnn. 11-6

11.1.4 Program Control Instructionscceevviiinn... 11-6

11.1.5 Interlacked Operations Instructions 11-7

11.1.6 Parallel Operations Instructions 11-8

11.2 ConditionCodesandFlagscoviiiiiiiininneneeiennnn. 11-10

11.3 Individual Instructionscci ittt i 11-13

11.3.1 Symbols and Abbreviations e reeeieeaea 11-13

11.3.2 Optional Assembler Syntaxesccvvviiiiiinns. 11-15

11.3.3 Individual Instruction Descriptionsccovvvnn.. 11-17

12 SoftwareApplications ittt i . 12-1

12.1 ProcessorInitialization ...t 12-3

12.1.1 ReSEtProCeSS ...vvvit ittt iiii ittt 12-3

12.1.2 Initializationttt i i i s 12-3

12.2 Program Controlcvieimiiiiiiiii ittt iieanenens 12-9

12.2.1 Subroutinescoiiiiiiiii i 12-9

12.2.2 SoftwareStackccoiiiiiiiiiii i i e 12-13

12.2.3 Interrupt Service Routinescccoviiiiinnnnn.. 12-14

12.2.4 DelayedBranchesccoiiiiiiiiiiiiiinnne, 12-22

1225 RepeatModesccoiiiiiiiiiiiiiiiiiiiiiiinnnes 12-23

12.2.6 Computed GOTOs to Select Subroutines at Runtime 12-27

12.3 Logical and Arithmetic Operationscoiiiiiiininenn 12-28

12.3.1 BitManipulationcooiiiiiiiiiiiii it 12-28

12.3.2 BIoCKMOVESviiii i i e 12-29

12.3.3 Byte and Half-Word Manipulation 12-30

12.3.4 Bit-Reversed Addressingciiiiiiiiia., 12-31

12.3.5 Integer and Floating-Point Division 12-33

12.3.6 SquareRoot O 12-38

12.3.7 Extended-Precision Aruthmetnc 12-41
12.3.8 Floating-Point Format Conversion: IEEE to/from

TMS320C40 ...ooiiiii ittt ettt 12-42

12.4 Application-Oriented Operationsccoiiiiiiiiiinnnnnn 12-46

1241 Compandingcvviiniiniennenreenneenrneneenennns 12-46

12.4.2 FIR, lIR, and Adaptive Fllters 12-51

12.4.3 Matrix-Vector Multiplicationo... 12-61

12.4.4 Fast Fourier Transforms (FFT)ottt 12-63

1245 LatticeFilters......... ..o 12-88

12.5 Programming TIPS vt iieeeet e ieiiiieeienaneeannannnnn 12-94

12.5.1 C-Callable Routinescoovieiiiiiriiiiieinnnnnnn. 12-94

12.5.2 Hints for Optimizing Assembly Code 12-95

12.6 Peripheralsc.couiiiiiiiii ittt itiieiiaiaannns 12-97

12.6.1 Timers AP 12-97

xvi Table of Contents

12.6.2 Communication POMScvitiiiiie it riiernesnnnnns 12-98

12.6.3 Direct Memory ACCESScvviiiirniiininnnnnnnnnnn 12-101

13 Hardware Applications cciiiiiiiiiiiiiiiiiinrnnnnn 13-1

13.1 System Configuration Options Overviewccevivnennnn. 13-3

13.1.1 Categories of Interfaces on the TMS320C40 13-3

13.2 Boot Loader Description and External ROM Interfacing 13-5

13.2.1 TMS320C40 Boot Loader Description/Operation 13-5

13.2.2 BootlLoadSequenceciiviiiiiiiiiiiiieeann. 13-6

13.2.3 Examples of External Memory Loads 13-8

13.2.4 Communication PortLloadingcovviiiiiinnnnn.. 13-8

13.2.5 External ROM Interfacing to the TMS320C40 13-9

13.2.6 HIOF(3-1)PinLoadingccovvviiiiiiiiinnnnann,. 13-14

13.2.7 TMS320C40 Boot Loader Source Program e 13-14

13.3 Globaland LocalBusInterfacecccivvvviiiiinnann., 13-20

13.3.1 Zero Wait-State Interfaceto RAMs 13-20

13.4 Wait States and Ready Generationccoiiiniieennn. 13-27

13.4.1 ORing of the Ready Signals (STRBxSWW =10) 13-28

13.4.2 ANDing of the Ready Signals (STRBxSWW =11) 13-28

13.4.3 External Ready Generationcciviiiin.... 13-29

13.4.4 Ready ControlLogiCccoviiiiiiiiiiiinnnennnn, 13-30

13.4.5 ExampleCircuitccciiiiiiiiiiiiiiiiii, 13-31

13.4.6 Page Switching Techniquescovvivve.... 13-32

13.5 Parallel ProcessingInterfacesccoiiiiiiiiiiinn.... 13-37
13.5.1 Message Broadcasting From One TMS320C40

to Many TMS320C40’Scciiitiiinniiiennnaannnnn 13-37

13.5.2 Shared Global Memory Interface With Fair Bus Arbitration .. 13-38

13.5.3 Shared Bus Interface Overviewccvvvnnn.. 13-43

13.6 Bus Arbitrationcc i e 13-48

13.6.1 Arbitration Implementationiiiias, 13-48

13.6.2 Arbitration Alternativesccoiiiiiiiiiiin. 13-70

13.6.3 Global Bus Arbitration and Transfer Timing 13-70

13.6.4 Arbitration Protocol Limitations 13-74

13.7 Reset Signal Generation Control Function 13-75

14 TMS320C4x Signal Descriptions and Electrical Characteristics 141

14.1 Pinoutand Pin ASSignmentsvuveiriririeneneneneannnns 14-2

14.2 SignalDescriptions ...ttt it i it it ... 147

14.3 TMS320C4x MechanicalDataccovviiiiiiiininnnnnnn. 14-11

14.4 Electrical Specificationsccoiiiiiiiiiiiiiii i 14-12

14.5 Signal Transition Levels........ e bereeeee et 14-14

146 TIMING .« ottt it ittt st ittt it 14-15

A TMS320CAxX SOCKEeTScoiviiiiiiiiii it ianeenneeanns A-1
A.1 Tool-Activated ZIF PGA Socket (TAZ)ccvviiiiiiiniennnnn. A-2
A2 Handle-Actuated ZIF PGA Socket (HAZ) ...t A-3

B XDS510Design Considerationscoiiiiiiiiiiiiinann, B-1
B.1 HeaderandHeaderSignalscooiiiiiiiiiiiine B-2
B.2 BUusSProtocolcoiiiiiiiiii i i B-3
B3 CablePod ... e e e s B-4
B.4 Test Clock Generated in TargetSystemccoviivninnn B-7
B.5 Multiprocessor Configurationccoiiiiiiiiiiiiiiiiinnn. B-8
B.6 Emulation Timing Calculationscooiiiiiiiiinnnnnnnennn B-11

1 = Index-1

Xviii

Table of Contents

Figures

3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
41
4-2

TMS320 Family of DEVICESvivii it e iii it 1-2
TMS320C40 Throughput Increases Use of Communication Ports 1-7
TMS320C40 Throughput Increases Use of DMA Coprocessor 1-8
Matrix of TMS320 DSP Applicationsc.cciviiiiennnnnnnn 1-11
TMS320C40 Block Diagramcciiiiiiniin i, 2-2
Central Processing Unit (CPU) it 2-5
Memory Organizationccoiiiiiiiiiiii i it 2-11
MeMOrY Maps ..ottt e e e 2-13
PeripheralMemory Map ... 2-14
PeripheralModules o i e 2-28
Extended-Precision Register Floating-Point Format 3-4
Extended-Precision Register Integer Format 3-4
Status Register ... i e 3-6
DMA Interrupt Enable Register Bit Functions 3-8
Internal Interrupt Enable Register (IIE) 3-11
Interrupt Flag Register (IIF)o 3-12
Trap Vector Table (TVT) ..o e et e e e iian s 3-15
Interrupt-Vector Table (IVT) it 3-16
Y =T g o VR Y, - o 3-19
PeripheralMemory Map ... i e 3-20
Memory Interface Control Registersccoiiiiiiininnnn.. 3-21
Analysis Module Registerso 3-21
Timer Registers ... 3-22
Communication PortMemory Map ..ot 3-23
DMA CoprocessorMemory Mapcoiiiiiinin ittt 3-24
Address Partitioning for Cache Control Algorithm 3-25
Instruction Cache Architectureccoviiiiiiiiiiiiiinnnn.n. 3-26
Short Integer Format and Sign Extension of Short Integer 4-3
Single-PrecisionInteger Format ... 4-3

e e

LLLS

4-7

4-9
4-10

4-11
4-12
4-13

- 4-14

4-15
4-16

4-17
4-18
4-19
4-20

5-1
5-2
5-3

5-5

5-7

5-9
5-10
5-11
5-12
5-13
5-14

Short Unsigned-Integer Formatand Zero Fill 4-4

Single-Precision Unsigned-Integer Format 4-4
Generic Floating-Point Formatoo i, 4-5
Short Floating-Point Format L 4-6
Single-Precision Floating-Point Formatt 4-7
Extended-Precision Floating-Point Formatcccoeueieennon.. 4-8
|IEEE Single-Precision Std. 754 Floating-Point Format 4-11
TMS320C4x Single-Precision Twos-Complement Floating-Paint

o 11 - | PP 4-11
Flowchart for Floating-Point Multiplication 4-16
Flowchart for Floating-Point Addition, 4-21
Flowchart for NORM Instruction Operationcot... 4-24
Flowchart for Floating-Point Rounding by the RND Instruction 4-27

Flowchart for Floating-Point-to-Integer Conversion by FIX Instructions ... 4-29
Flowchart for Integer-to-Floating-Point Conversion by FLOAT

INSIUCHONS .. o e et 4-30
RCPF Instruction Algorithm i e 4-31
Newton—Raphson Algorithm for Computing the Reciprocal 4-32
RSQRF Instruction Algorithm 4-33
Newton—Raphson Algorithm for Computing the Reciprocal
SQUAre ROOtttt e e e 4-34
Direct Addressingcovviiiiiii it e i 5-4
Encoding for 24-Bit PC-Relative AddressingMode 5-18
Encoding for General AddressingModesciiin. 5-20
Encoding for Type 1 Three-Operand Addressing Modes
(C30anNd’ CA0) ...ouiiitet ittt e e 5-22
Encoding for Type 2 Three-Operand Addressing Modes ('C40 Only) 5-22
Encoding for Parallel AddressingModes, 5-23
Encoding for Conditional-Branch AddressingModes 5-24
Flowchart for Circular Addressingcccoiiiiiiiiiiiinnnannn 5-26
Circular Buffer Implementation 5-27
Circular Addressing Examplecoiiiiiiiiiiiiiiiinnnn.. 5-28
Data Structure for FIR Filters 5-29
FIR Filter Code Using Circular Addressingccovviiiiinnn... 5-29
Bit-Reversed AddressingExample ..., 5-30
System Stack Configuration i, 5-31
Table of Contents

5-15
5-16

7-10

7-11

7-12

7-13

7-14
7-15

7-16.

7-17
7-18
7-19
7-20

7-21

Implementations of High-to-Low Memory Stacks
Implementations of Low-to-High Memory Stacks
Repeat-Mode Control Algorithmot
CALLResponse TIMiNGcciiiiiiinniiin i inannenns
Unified Flow of Traps and Interrupts,
Multiple TMS320C40s Sharing GlobalMemory
Interrupt-Vector Table (IVT) ... e ieee et
INterrupt Processingooiiiiii i et
Global and Local Memory Interface Control Signals
Format for the Memory-Interface Control Registers
Effects of STRB ACTIVE on Global Memory Bus Memory Map
STRBx PAGESIZE Fields Example ...,
STRBand RDY Timing . .. oo ovei it e e ieeieeeeiannenenns
Read Same Page, Read Same Page, Write Same Page Sequence
Write Same Page, Write Same Page, Read Same Page Sequence
Read Same Page, Read Different Page, Read Same Page Sequence ...
Write Same Page, Write Different Page, Write Same Page Sequence ...

Write Same Page, Read Different Page, Write Different Page
SBgUENCE ..ttt e

Read Different Page, Read Different Page, Write Same Page
SBQUENCE ..ttt e e

Write Different Page, Write Different Page, Read Same Page
ST = T 11 1= 5 o=

Read Same Page, Write Different Page, Read Different Page
SBUENCE ..ttt e

Read Same Page, Idle One Cycle, Read Same Page Sequence
Write Same Page, Idle One Cycle, Write Different Page Sequence.
Idle, Read Different Page, Idle Sequenceccoiiii.t.
Idle, Write Same Page, Idle Sequencecoiiiiii,
Write Different or Same Page, Idle, Idle Sequence

Read Same Page on STRB1, Read Same Page on STRB0O, Read
Same Page on STRB1 Sequence When STRB SWITCH=0...........

Read Same Page on STRB1, Read Same Page on STRBO, Read
Same Page on STRB1 Sequence When STRBSWITCH=1...........

Read Same Page ‘on STRB1, Read Same Page on STRBO, Read
Different Page on STRB1 Sequence When STRB SWITCH=0

7-23

7-24

7-25
7-26
7-27
7-28
7-29
7-30

7-31

7-32

7-33

xXi

7-22

7-23

7-24
7-25
7-26

7-27
7-28
7-29
7-30
7-31
81
8-2
8-3
8—4

8-6
8-7
8-8

8-9

8-10
8-11
8-12

8-13

8-14
8-15
8-16
8-17
8-18
8-19
9-1

xXii

Read Same Page on STRB1, Read Same Page on STRBO,
Read Different Page on STRB1 Sequence When STRB SWITCH=1 ... 7-34

Write Same Page on STRB1, Write Same Page on STRBO,

Read Same Page on STRB1Sequencec.coviiiiininnnennns 7-35
Read WithOneWaitStateccviiiiiiiiiii ittt iii i 7-36
Write With OneWait Statecoviieiiiiiiiiii i iiienannns 7-37
Using Enabled Signals to Put Signal Groups in a High-Impedance

State ... P A 7-38
LDIl or LDFI External Access S 7-40
STl or STFIExternal ACCESS ... iviiiiiiiiiiiii i iiinnenneanns 7-42
SIGI External Access Timing R 7-44
SIGI When LOCK Is Already LOWo 7-46
(Y03 2 11111 TP S 7-48
Communication Port Block Diagramcooiiiiiiiiiinne, 8-4
TMS320C40 Communication-Port Interface-Connection Example 8-5
Communication PortMemoryMapoviiiiiiiiiiiiiiiiennen. 8-8
Communication Port Control Register (CPCR) 8-10
Communication Port Arbitration Unit State Diagram 8-13
Signal-Naming Examplet 8-18
Token Transfer Sequencec.cciiiiiiiiiiii ittt iiieeinaann 8-23
End of Token Transfer Sequence Followed by a Word Transfer and

the Beginning of a Second Word Transferc.... 8-24
End of a Word Transfer Followed by a Word Transfer 8-25

End of a Word Transfer Followed by an Idle State and Token Transfer ... 8-26
End of a Word Transfer Followed by an Overlapping Token Transfer 8-27
End of the Transfer of the Last Word in an Output FIFO Followed by

an Idle Condition Until Another Word Is Available to Be Transferred 8-28
End of a Word Transfer Followed by a Not Ready Due to the Input FIFO
Becoming Full, Continuing Once the Input FIFO Is No Longer Full 8-29
Post-Reset State foran Output Portt 8-30
Post-Reset State foran InputPort il 8-30
Type-One Synchronizer MinimumDelay, 8-31
Type-One Synchronizer MaximumDelayt 8-31
Type-Two Synchronizer MinimumDelaycoooiiiiiint. 8-32
Type-Two Synchronizer MaximumDelay, 8-32
DMA Coprocessor Memory Mapc.vviiiee i ieiiees s 9-4
Table of Contents

9-2
9-3
94
9-5

9-7

9-9

9-10
911
9-12
9-13
9-14
9-15
9-16

9-17
9-18
9-19
9-20
9-21

9-22
9-23
9-24
9-25
9-26
9-27
9-28
9-29

9-30

9-31

Subsections Where DMA Channel Registers Are Described 9-5
DMA Channel Control Registerccoviiiiiriiieiiiiiineneennnn. 9-8
DMA-Coprocessor Address Generationc.vovvvenennn... 9-17
DMA Coprocessor Transfer-Count Registerscceevuenennn.. 9-18
DMA Coprocessor Link Pointer Registersc.cociiiin..n 9-19
Typical Unified Mode DMA Channel Configuration 9-21
Typical Split-Mode DMA Configuration, 9-21
Rotating Priority Mode Example of the DMA Coprocessor.............. 9-23
DMA Read and Write Sequence Example 9-23
Example of a Priority Wheelcccou... e 9-24
Example of a Channel Priority Scheme in SplitMode 9-25
Service Sequence for Split Mode Priority Example 9-26
Running a DMA Channel Under TransferMode 102 9-29
Running a DMA Channel Under Transfer Mode 115 9-30
Store New Values of DMA Channel Registers in Memory

(SPLITMODE = 0) +\iititiiiiti it ee et iieieeteeeeeaeenaaaaeeenns 9-32
Store New Values of DMA Channel Registers in Memory

(SPLITMODE = 1) t.titiiiiii ettt et isiieaaeaeensanennennns 9-33
Store New Values of DMA Channel Registers in Memory

(SPLIT MODE = 1 and Auxiliary Transfer Counter=0) 9-33
DMA Channel Control Register Bits That Can Be Modified by

Autoinitialization Under UnifiedModecoiiiii... 9-35
DMA Channel Control Register Bits That Can Be Modified by

Autoinitialization of the Primary Channel Under SplitMode 9-35
DMA Channel Control Register Bits That Can Be Modified by

Autoinitialization of the Auxiliary Channel Under Split Mode 9-36
Self-Referential Link Pointerccviuiiniiiineineninan... 9-38
Referringto aNew Link Pointerccoiiiiiiiiininnnnnn 9-39
No DMA Synchronizationttt iiieineannn. 9-41
DMA Source Synchronizationc.eeeueriinernensnnenennnns 9-42
DMA Destination Synchronizationc.ciiiiiiiiiin... 9-43
DMA Source and Destination Synchronization........................ 9-44
Timer Block Diagram ...ttt it 9-45
Memory-Mapped TimerLocationscciiiiiiiiinnnnnnnn 9-46
Timer Global-Control Registerco i 9-47
Timer TIMING . ..ot e e e 9-51

9-32
9-33
10-1
10-2
10-3
10-4
10-5
10-6
11-1
12-1
12-2
12-3
12-4
12-5
12-6
12-7
13—1
13-2
13-3
13-4
13-5
13-6
13-7
13-8
13-9
13-10
13-11
13-12
13-13
13-14
13-15
13-16
13-17

13-18

XXiv

Timer I/O Port Configurationscooviiiiiie..... 9-52
Timer Modes as Defined by CLKSRCand FUNC 9-53
TMS320C40 Pipeline StUGHUIE\ eeiteeeeeeeeaneeeenns, 10-3
Two-Operand Instrucion Wordoveveiieeiinennennnnnns 10-21
Three-Operand InstructionWord ...l 10-21
Multiply or CPU Operation With a Parallel Store 10-22
TWO Parallel StOresiovueere ettt 10-23
Parallel Multiplies and AdASovueiniinieeniiiennaeannn. 10-24
Status REGISIErceeiiiiniieiiiiie i 11-11
Data Memory Organization foran FIRFilter 12-51
Data Memory Organization for a Single Biquad 12-54
Data Memory Organization for NBiquads 12-56
Data Memory Organization for Matrix-Vector Multiplication 12-61
Structure of the Inverse Lattice Filtercoveeniinieennnn.. 12-89
Data Memory Organization for Inverse Lattice Filters 12-89
Structure of the (Forward) Lattice Filtercoovviiinenn.n.. 12-92
External Interfaces tothe TMS320C40o, 13-3
Possible System COnfigurationseeeeereneeneuneeneenn. 13-4
Circuit for Generation of a Low |IOF Signal for Boot Loader Selection .. 13-14
Boot Loader Source Programceeeseeununeeeeannnnn. 13-14
TMS320C40 Interface to Zero-Wait-State SRAM 13-22
Consecutive Reads Followed by aWriteccoveen... 13-24
Consecutive Writes FollowedbyaRead 13-24
TMS320C40 Interface to Zero-Wait-State SRAMs, Two Strobes 13-26
Logic for Generation of 0, 1, or 2 Wait States for Multiple Devices 13-31
State Machine and Equation forthe 16R4PLD 13-33
Page Switching for the Cypress Semiconductor CY7C185 13-35
Timing for Read Operations Using Bank Switching 13-36
Message Broadcasting by One 'C40to Many’C40S 13-38
TMS320C40 Parallel DSP System Architectures e 13-40
TMS320C40 Shared Memory Interfaceocovveeninennennnn. 13-44
TMS320C40 Shared Memory and Bus Controller Interface 13-45
Successful TMS320C40 Arbitration and Data Read From Shared
Bus Memory Followed by an Unsuccessful Arbitration Contest 13-47
Shared Bus Interface PLD State Machingc........ 13-49
Table of Contents

13-19
13-20
13-21
13-22
13-23
13-24
13-25

13-26

13-27
13-28
141
14-2
14-3
14-4
14-5
14-6
14-7
14-8
14-9
14-10
14-11
14-12
14-13
14-14
14-15

14-16
14-17
14-18
14-19
14-20
14-21
422
14-23

PLD Equations for Programming the 16R4 PLD (First-Level Logic)
PLD Equations for Programmingthe 16R4 PLD
Global Bus Controllor PLD (Rotating Priority Mode Only)
PLD Equations for Programming the 16R8PLDcevvunnnn...
PLD Equations for Programming the 16R6 PLD
Successful TMS320C40 Arbitration; Data Read; DataRead

Successful TMS320C40 Arbitration and Data Write From Shared Bus
Memory Followed by an Unsuccessful Arbitration Contest

Successful ‘C40 Arbitration; Consecutive Data Writes; Arbitration Win
Followed by Successive Writes and an Arbitration Loss

Reset CirCUIt . ottt ittt it it et ceirtnesnnanenaanannnenn
Voltage on the TMS320C40 RESET Pin .. ovvviieeii i eiienennes
TMS320C40 Pinout (Bottom View)coviiiiii i
TMS320C40 325-Pin PGADimensionscoviiiiiieninnn..
TestLoad CirCUIitoviiiii i it i et et e e e eaanns
TTL-Level Outputs ..ot i ettt eennns
TTL-LevelInputs ... it ettt et eens

X2/CLKIN TImMING . .ottt aaes f

L] R T 71T
Memory (LISTRB=0) Readccevvuuruuiunenenurennnnnns
Memory (L)STRB = 0) Write\ eeurenennnnnnnnns P
DE, AE, and CEEnable TimMiNgocuovuiinenerniuninenenannns
Timing for (L)LOCK When Executing LDFlorLDIl
Timing for (L)LOCK When Executinga STFlor ST
Timing for ((JLOCK When Executing SIG!ccvvvvnnnnn... '
Timing Parameters for (L)PAGE(0,1)coiiiiiiiiiiiiiannnn

Timing for Loading IIF Register (IIOF Pins) When Configured as an
OUtPUL Pin . ..o e

Change of IIOF From Outputto InputModeoovvnann

Change of IIOF From Inputto OutputModeoo..t. ,

RESET Timing . ..en i ettt ittt ee e e

IOOF(3—0)Response TIMiNgGcoviviiiiiirreeenenenennnn _

IACKTIMING ..ot
Communication-Port Worq-Trans’fer Cycle Timing
Communication Port Byte Timing (Write and Read)

Communication Token Transfer Sequence From an Input to an
OUtPUL POt .t e e e i e, .

14-24 Communication Token Transfer Sequence From an Output

14-25
14-26
A-1
A-2
B~1
B2
B-3
B—4
B-5
B-6
B-7

XXVi

toan Input Port i it e 14-35
Timer Pin TiMiNgsoiitriiiii it e e e eiiiaeenens 14-37
JTAG Emulation Timings ..ottt iiiiiiiiineennn 14-38
ToOl-ACtivated ZIF SOCKEueeeeereeeanreeeeiineeeainneenns A-2
Handle-Activated ZIF Socketcoiiiiiiiiiiiiiiiii e A-3
14-pin Header Signals and Header Dimensions B-2
EmulatorPodinterface ... B-5
Emulator Pod Timingsooiiiiiiiiiii e ane B-6
Target-System Generated TestClockccooiiiiiiit, B-7
MultiprocessorConnections i B-8
Unbuffered Signals s eteriererarerererararenae B-9
Buffered Signalsc.couriiii i i s B-9

Table of Contents

Tables

3-9
4-1

4-2

5-1
5-2
5-3

6-1
6-2
6-3
7-1
7-2

7-4

CPUPrimary Registerscoiiiiiiiiiiiiiiiiiiiin i, 2-7
Instruction Set Summaryl i i e 2-16
Parallel Instruction SetSummaryo i, 2-23
CPU Primary Register Fileo 3-3
Status Register Bits Summary o i, 3-6
DMA Channels 0 and 1 Synchronization Interrupts (DMAO and DMA1) ... 3-9
DMA Channels 2 to 5 Synchronization Interrupts (DMA2 to DMAS) 3-9
Summary of Interrupt Enable Register Bits (IlE) S 3-11
IIF Register Bits SUMMAryoiriitiiii i iieneneaenn. 3-13
CPU Expansion Registersc.ociiiiiiiiiiiiiiiininniiinnnn.. 3-15
Four RESET Vector Locations Chosen by Values on Pins

RESETLOC(1,0) «evitiiii e et i 3-17
Combined Effectofthe CEand CFBitsot 3-29
Rules for Converting IEEE Format to Twos-Complement _
Floating-Point Format ittt ne 4-12
Rules for Converting Twos-Complement Floating-Point Format to

IEEE Format e 4-13
CPU Register/Assembler Syntax and Function 5-3
Indirect Addressingooieinn ittt 5-6
Three-Operand Instruction Address Forms 5-20
Index Steps and Bit-Reversed Addressingcooveeueenn... 5-30
Repeat-Mode Registersot 6-2
Interlocked Operations e S S PSRN 6-13
Pin Operation at Reset S T I 6-18
Global Memory Interface Control Signals eeeeeereian 7-4
Global Memory Port Status for STRBO and STRB1 Accesses 7-5
Bit Definitions for Both Memory Interface Control Registers 7-8

Page Size as Defined by STRB0/1 PAGESIZEBits 79

9-9
9-10
911
10-1
10-2
111
11-2
11-3
11-4
11-5
11-6
17
11-8.
11-9
11-10
12-1
12-2
131

XXViii

Address Ranges Specified by STRB ACTIVEBits 7-10
Address Ranges Specified by LSTRB ACTIVE Bits 7-11
Wait-State Generation for Each Value of SWW 7-16
CPCRBItFUNCHONSottt et et ieaeeenans 8-10
PAU State Definitions ...ttt 8-12
Summary of Input and Output FIFOHalting 8-16
Handshaking Events in Communication Port Intercommunication 8-20
Communication Port Signals and Synchronizer Delays 8-32
DMA Channel Control Register Bit Definitions 9-8
DMA PRI Bits and CPU/DMA ArbitrationRules 9-14
TRANSFER MODE and AUX TRANSFER MODE Field Description 9-14
SYNCH MODE Field Description ...ttt 9-15
START and AUX START Field Descriptioncooiiiiiiiiiinan. 9-15
STATUS and AUX STATUS Field Description 9-16
DMA PRI Bits and CPU/DMA Arbitration Rules 9-27
TRANSFER MODE Field Description Summaryc..oovvnne. 9-28
Effect of SYNC MODE and AUTOINIT MODE Bits in Autoinitialization ... 9-37
Timer Global-Control Register Bits Summarycooe. 9-48
Result of a Write of Specified Values of GOand HLD 9-49

One Program Fetch and One Data Access for Maximum Performance . 10-18
One Program Fetch and Two Data Accesses for Maximum Performance 10-19

Load-and-Store Instructions ...t 11-4
Two-Operand Instructions ..o, 11-5
Three-Operand Instructionsttt 11-6
Program Control Instructionsttt 11-7
Interlocked Operations INStructionsc.ccoviiiiiiiiiiniennnenn 11-7
Parallel InStructionst s 11-8
Output Value Formatsooviiiiiiii it 11-10
ConditionCodesand Flagsccoiiiiiinniiiiiiiiiiiiinenn. 11-12
Instruction Symbols 11-14
CPURegister Syntaxooiiiiiiiiiiiiiiie i 11-17
Relationship of RESETLOC(1,0) Pins to RESET Vector Location 12-3
TMS320C40 FFT Timing Benchmarkst 12-88
Boot Loader Mode Selection Using Pins IOF(3—1) 13-5

Table of Contents

13-2
13-3
141
14-2

14-5

14-14

14-15
14-16
14-17
14-18
14-19
14-20
14-21
14-22

14-23
14-24
14-25

B-1
B-2

Structure of Source Program DataStream 13-7
Page Switching Interface Timingccooiiiiiiiiiiiiiieannn, 13-36
TMS320C40 Pin Assignments Sorted by SignalName 14-3
TMS320C40 Pin Assignments Sorted by Pin Number 14-5
TMS320C40 Signal Descriptionsc.ccoviiiiiiiiiiiiienns 14-7
Absolute Maximum Ratings Over Specified Temperature Range 14-12
Recommended Operating Conditions 14-12
Electrical Characteristics Over Specified Free-Air Temperature Range . 14-13

Timing Parameters for CLKIN, H1, H3 (Figure 14—6 and Figure 14-7) .. 14-16
Timing Parameters for a Memory (L)STRB = 0) Read/Write 14-17
DE, AE, and CEENable TIMINGovvrtnririntineienenrinanennns 14-19
Timing Parameters for (L)LOCK When Executing LDFlor LDII 14-20
Timing Parameters for (L)LOCK When Executing STFl or STII 14-21
Timing Parameters for ()LOCK When Executing SIGI 14-22
Timing Parameters for (L)PAGE(0,1) During Memory Accesses to a
Different Page ...t e, 14-23
Timing Parameters for Loading IIF Register When Configured as an
OUPUL PN .o e e 14-24
Timing Parameters of IIOF Changing From Output to Input Mode 14-25
Timing Parameters of IIOF Changing From Input to Output Mode 14-26
Timing Parameters for RESET (Figure 14-18)c.covvvenn.n. 14-28
Timing Parameters forlOOF(3—0)oviiiiiiiiiiiiiininnnnnn 14-29
Timing Parameters for TACKcoooiiiiiiiiiiiiiiaennnne. 14-30
Communication-Port Word-Transfer Cycle Timing 14-31
Communication-Port Byte Timing (Writeand Read) 14-32
Communication Token Transfer Sequence From an Input to an
Output Port (Figure 14-23)t 14-34
Communication Token Transfer Sequence From an Output to an
Input Port (Figure 14-24) i ittt iaaneans 14-36
Timing Parameters for TimerPin oo, 14-37
Timing Parameters for JTAG Emulationoooiiet, 14-38
14-Pin Header Signal Description ...ttt B-2
B-6

Emulator Pod Timing Parametersccoiiiiiiiiiiiiinnnnn.

XXix

ExamEIes | |

NP IS P AR X

4-9
4-10

PLIELY

5-7

5-9

5-10

5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18

XXX

Floating-Point Multiply (Both Mantissas = =2.0) e rereenrenes . 4-18
Floating-Point Multiply (Both Mantissas =1.5)ccoviiians, 4-18
Floating-Point Multiply (Both Mantissas =1.0)cc.ovevvvennn, 4-19
Floating-Point Multiply Between Positive and Negative Numbers......... 4-19
Floating-Point Multiplyby Zerocovviiiiiiiiiiiiiiinenns 4-19
Floating-Point AdGItIONvvveeeeeeeeeeeeeiiiinnenereeneeens. 4-22
Floating-Point Subtractionccoiiiiiiiiiiiiiiiiiiiiinnn, 4-22
Floating-Point Addition With a 32-Bit Shift 4-23
Floating-Point Addition/Subtractionand Zeroc.ue. 4-23
NORMINStructionc.ciiiiiiiiiiiiiiiiiiiiiiiiiinnnenneenns 4-25
Direct AdAressingcccviiiiiiiiiiiiiiininserrerennnssneennnnnns 5-4
Auxiliary RegisterIndirectottt i 5-8
Indirect With Predisplacement Addcoiiiiiiiiiiiie, 5-8
Indirect With Predisplacement Subtractccooiat 59
Indirect With Predisplacement Add and Modify 5-9
Indirect With Predisplacement Subtract and Modify 5-10
Indirect With Postdisplacement Add and Modify 5-10
Indirect With Postdisplacement Subtract and Modify 5-11
Indirect With Postdisplacement Add and Circular Modify 5-11
Indirect With Postdisplacement Subtract and Circular Modify 5-12
Indirect With Preindex Add resessrarssesssesnnananns 5-12
Indirect With Preindex Subtracto, 5-13
Indirect With Preindex Add and Modifyccciiiiiiiiinnns. 5-13
Indirect With Preindex Subtract and Modifyccuunn... 5-14
Indirect With Postindex Add and Modifycccoeiiiinnn, 5-14
Indirect With Postilndex Subtract and Modify S 5-15
Indirect With Postindex Add and Circular Modify 5-15
Indirect With Postindex Subtract and Circular Modify 5-16

Table of Contents

5-19
5-20
5-21

TLITTX

6-7

10-1
10-2

104
10-5
10-6
10-7
10-8
10-9
10-10
10-11
10-12
10-13
12—1
12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9
12-10

Indirect With Postindex Add and Bit-Reversed Modify 5-16
Immediate Addressingccoiiiiiiiiiiiiiiiii ittt 5-17
PC-Relative Addressingccoiiiiiiiniiiiiiieeerenneennnns 5-17
RPTB Operation ettt eeieeeeeeee e, 6-5
Incorrectly Placed StandardBranchcoiiiiiiiiiiiinnnn, 6-6
Incorrectly Placed DelayedBranch ..., 6-6
Incorrectly Placed Delayed Branchesccoivviiiiininnn. 6-8
Busy-Waiting LoOpcciiiiiiii ittt ittt e 6-15
Task Counter Manipulationo, 6-15
Implementation of V(S) ... e 6-16
Implementation of P(S) ...t e 6-16
Standard Branch.............oiiiiiiiiii i 10-5
DelayedBranch ...ttt iien s 10-6
Using BcondAF and BcondAT Instructionsccoiiiiiiiieantn 10-7
Write to an AR Followed by an AR for Address Generation............. 10-9
A Read of ARs Followed by ARs for Address Generation 10-10
Program Wait Until CPU Data Access Completes 10-12
Program Wait Due to Multicycle Accessccoviiiiiinne, 10-13
Multicycle Program Memory Fetchescoooiiiias, 10-13
Single Store Followedby Two Readscccviiiiiinnnn, 10-14
Parallel Store Followed by Single Readooovitt 10-15
Busy External Portottt e 10-16
Multicycle DataReadsccoiiiiiiiiiiiiiiiiiiiiiiinennnns 10-17
ConditionalCallsand Trapscciviii ittt e i eeaes 10-17
Processor Initialization Example ..ottt 12-4
Regular Subroutine Call (Dot Product)cccevvviiiniinnnann. 12-10
Zero-Overhead Subroutine Call (Dot Product), 12-12
Use of Interrupts for Software Pollingccooiiiiiiit.. 12-15
Context-Save forthe TMS320C40cciiiiiiiiirnnnannnns 12-17
Context-Restore forthe TMS320C40cciviiiiinninnnnnnn. 12-18
Use of One Interrupt Signal for Two Different Services 12-20
Interrupt Service Routine ...ttt ittt 12-21
Delayed Branch Execution ...ttt iiiiiiinnenn. 12-23
Use of Block Repeat to Find a Maximum or a Minimum 12-23

12-11

12-12
12-13
12-14
12-15
12-16
12-17
12-18
12-19
12-20

12-21

12-22
12-23
12-24
12-25
12-26
12-27
12-28
12-29
12-30
12-31

12-32
12-33
12-34
12-35
12-36
12-37
12-38
12-39
12-40
12-41
12-42
12-43
12-44

XXXii

Loop Using Delayed Block Repeatcooiiiiiiinenennnenn.. 12-25

LoopUsing Single Repeat ...t 12-26
Computed GOTO ..ot e et ettt 12-27
Use of TSTB for Software-Controlled Interrupt 12-28
Copy a Bit From One Location to Anothercccovvi.... 12-29
Block Move Under Program Controlcoooiiiiiiiinaan.. 12-30
Use of Packing Data From Half-Word FIFO to 32-Bit Data Memory 12-30
Use of Unpacking 32-Bit Data Into Four-Byte-Wide Data Array 12-31
Bit-Reversed Addressingc.oiiiiiiiiiiiiiii it 12-32
Integer DiViSiONt e 12-35
Inverse of a Floating-Point Number With 32-Bit Mantissa Accuracy 12-37
Reciprocal of the Square Root of a Positive Floating-Point 12-39
64-Bit Addition e 12-41
64-Bit Subtraction i 12-42
32-Bit by 32-Bit Multiplication i 12-42
IEEE to TMS320C40 Conversion Within Block Memory Transfer....... 12-45
TMS320C40 to IEEE Conversion Within Block Memory Transfer....... 12-45
p-Law Compression ...t 12-47
p-Law ExXpansion 12-48
A-Law Compressionuiiiii ittt et 12-49
A-Law EXpansioncuutiiiii i e 12-50
| T T T 12-52
lIRFilter (OneBiquad)cciiiiiii it 12-54
lIRFilters(N>1Biquads)coiiiiiiiiiiii s 12-56
Adaptive FIR Filter (LMS Algorithm) 12-59
Matrix Times a Vector Multiplicationt 12-62
Complex, Radix-2, DIF FFTo e 12-65
Table With Twiddle Factors for a 64-Point FFT 12-68
Complex, Radix-4, DIF FFT e 12-70
Real, Radix-2 FFT ... et n 12-75
Faster Version Complex, Radix-2 DITFFTcooiiinie.... 12-78
Inverse Lattice Filter ... 12-90
Lattice Filterovueiiii ittt iienenes [12-92
Maximum Frequency Timer Clock Setupc.ccoiiiiiina.. 12-98

Table of Contents

12-45
12-46
1247
12-48
12-49
12-50
12-51
13-1

13-2

13-3

Read Data From Communication Port With CPU ICFULL Interrupt 12-100

Write Data to Communication Port With Polling Method 12-101
Array Initialization WithDMAo i i ittt it iieans 12-102
DMA Transfer With Communication Port ICRDY Synchronization 12-103
DMA Split-Mode Transfer With External Interrupt Synchronization 12-104
DMA Autoinitialization With Communication Port ICRDY 12-106
Single-Interrupt-Driven DMA Transfercccvvvivieen.. 12-107
Byte-Wide ConfiguredMemoryoiiiiiiiiiiiiiiiiinrnnnns 13-10
16-Bits-Wide Configured Memory eretiereeraaaaeeeaaas 13-12
32-Bits-Wide ConfiguredMemorycoiiiiiiiiiiiinnnnnnnns 13-13

xxXiii

XXXV Table of Contents

Chapter 1

Introduction

Texas Instruments’ TMS320C4x generation floating-point processors are
designed specifically to meet the needs of parallel processing and other
real-time embedded applications. TMS320C4x products consist of both
parallel processing devices and development tools. With world-class
parallel-processing development tools, designers are able to fully utilize the
immense performance of 275 MOPS (millions of operations per second)
and 320 Mbytes per second throughput made available by the TMS320C4x
generation.

This chapter provides a brief overview of the TMS320C4x generation. Major
topics covered are as follows:

Section Page
1.1 The TMS320Familyciiiiii it nnes 1-2
1.2 Parallel Processingccoiiiiiiiiiiiiiiiiii i 1-3
1.3 The TMS320C40x Generationcccovvuvunnn. 1-4
1.4 Applications ...ttt e, 1-11

1-1

- The TMS320 Family
1

1.1 The TMS320 Family

The TMS320C4x is one of five generations in the TMS320 family of digital
signal processors. The TMS320C1x, TMS320C2x, and TMS320C5x offer
designers acomplete line of general-purpose and application-specific fixed-
point DSPs. The TMS320C3x and TMS320C4x generations round out the
TMS320 family, providing an ensemble of floating-point DSPs. The
TMS320 family has blossomed from a single device introduced in 1982, the
TMS32010, to nearly thirty different products across five CPU architectures.
On-chip hardware multipliers, register files, barrel shifters, ALUs, ROM,
RAM, caches, and I/O peripherals along with massive internal busing (all
within a product as programmable as a general-purpose microprocessor),
make TI's TMS320 devices ideal for the gamut of computer-intensive appli-
cations.

Figure 1-1. TMS320 Family of Devices

P
E ", " |: " "u “‘\ Il"t .."
83200801, ", ", ",
o] msazocsom R B
R ..,11;;.‘?4‘53339@3242% M,) ""."'""».
M ', TMS320G31-27, TMS320C5x N
A D R g
N ’1 My h, ", '1,‘“ |IIl ! TMS320C50 K‘I. "x.]‘“'h,"l
c ") TMS320C51 N
TMS32020 .
TMS320C25 "
M TMS320E25 N
I TMS320C25-33 S 1
P e TMS320C25-50 -,
s (TMS320C1x 3 | TMs320C26 .
/ TMS32010/C10 ", ™,
M TMS320C10-14/-25 A . " ",
F TMS320C14 \
L TMS320E14/P14 W
TMS320C15/LC15 W "
(o] TMS320E15/P15 K
P TMS320C15-25
S TMS320E15-25 "
TMS320C16 o])
TMS320C17/LC17 o b, '

TMS320E17/P17

GENERATION

<
G Fixed-Point Generations Floating-Point Generations

1-2 Introduction

Parallel Processing
1.2 Parallel Processing

The need for parallel processing is quickly growing. As floating-point per-
formance requirements grow exponentially, semiconductor manufacturers
can no longer meet the need with single processing elements. Processors
not designed for parallel processing are inadequate for the task, as interpro-
cessor communication quickly saturates device 1/0O and adversely affects
computing efficiency. Productsinthe TMS320C3x generation made the first
step in addressing the need for parallel processing by providing designers
with two external interface ports, each with a comprehensive memory inter-
face. This yields an immense amount of I/O bandwidth. Devices in the
TMS320C4x generation go several steps further by incorporating on-chip
hardware to facilitate high-speed interprocessor communication and con-
current /0O without degrading CPU performance. These features, coupled
with a host of sophisticated parallel processing development tools, make
the TMS320C4x generation of floating-point processors ideal for realtime
embedded applications.

1-3

- TMS320C4x Features
1

1.3 TMS320C4x Features

The TMS320C4x generation consists of two equally important aspects, par-
allel processing devices and parallel processing development tools.

1.3.1 TMS320C40 Device Key Features
The Primary features of the TMS320C4x devices are:

[Sixcommunication ports for high speed interprocessor communication.
Communication port key features include:

B 20-Mbytes/sec asynchronous transfer rate at each port for maxi-
mum data throughput

B Direct (glueless) processor-to-processor communication for ease
of use

B Bidirectional transfers for maximum communication flexibility

[Six-channel DMA coprocessor for concurrent I/0O and CPU operation,
thereby maximizing sustained CPU performance by alleviating the CPU
of burdensome 1/0. DMA coprocessor key features include:

B Concurrent data transfers and CPU operation for sustained CPU
performance

B Self-programming (autoinitialize) capability for each channel,
thereby not requiring the CPU for initialization, maximizing sus-
tained CPU performance

B Data transfers to and from anywhere in the processor’s memory
map for maximum flexibility

 High-performance DSP CPU capable of 275 MOPS and 320 Mbytes/
sec. CPU key features include:

B Eleven operations per cycle throughput, resulting in massive com-
puting parallelism and sustained CPU performance

B 40-ns and 50-ns instruction cycle times

W 40/32-bit single-cycle floating-point/integer multiplier for high per-
formance in computationally intensive algorithms

B Single-cycle IEEE floating-point conversion for efficient interface to
IEEE-compatible processors

B Hardware divide and inverse square root support for high perform-
ance

B Byte and half-word manipulation capabilities for fastdata (un)pack-
ing

1-4 Introduction

TMS320C4x Features -
1

W Source code compatible with TMS320C3x generation for easy up-
ward and downward mobility

B Support for linear, circular, and bit-reversed addressing for high
performance

B Single-cycle branches, calls, and returns for fast program control

B Single-cycle barrel shifter for 0-31 single-cycle right or left shifts for
fast bit manipulation

B Relocatable reset and interrupt vectors for easy integration into
parallel processing systems

Two identical external data and address buses supporting shared
memory systems and high data rate, single-cycle transfers. Key fea-
tures include:

B High port data-transfer rate of 100 Mbytes/sec

B 16-Gbyte continuous program/data/peripheral address space for
maximum design flexibility

B Status pins that signal type of memory access requested for fast,
intelligent bus arbitration in shared memory systems

B Separate address, data, and control-enable pins for high-speed
bus arbitration ‘

B Four sets of memory-control signals support different speed
memories in hardware, enabling efficient use of low- and high-
speed memories '

On-chip analysis module supporting efficient, state of the art parallel
processing debug. Key features include:

B Separate breakpoint comparators for program, data, and DMA ac-
cesses, providing onchip hardware breakpoint capabilities for fast
debug and development

B Discontinuity stack for hardware trace, facilitating fast debug and
development

B Event counter for accurate benchmarking and profiling
B JTAG interface for standard system connection

- TMS320C4x Features
1

(2 On-chip program cache and dual-access/single-cycle RAM for in-
creased memory access performance. On-chip memory key features
include:

B 512-byte instruction cache for increased system performance

B 8K-bytes of single-cycle dual access program or data RAM for in-
creased system performance and lower system cost

B Bootloader (ROM based) supporting program bootup via 8-, 16- or
32-bit memories over any one of the communication ports

[Separate internal program, data, and DMA coprocessor buses for sup-
port of massive concurrent I/O of program and data throughput, thereby
maximizing sustained CPU performance.

Summed up, the total device performance is 275 MOPS and 320 Mbytes/
sec as noted below.
TMS320C40 Performance
Sustained 1/0:
® Communication Ports
® DMA Coprocessor
® Global and Local Buses

Sustained Computation:
® DMA Coprocessor
® High-Performance CPU

* C:g-en'?"lme

CPU and DMA PERFORMANGE DATA THROUGHPUT

CPU — 8 OPS/Cycle = 200 MOPS Global Port 100 Mbytes/sec
¢ 2 Data Access)és 60 MOPS Local Port 100 Mbytes/sec
« 1 FP Multiply 25 MOPS 6 Com Ports 120 Mbytes/sec

¢ 1 FP ALU Operation = 25 MOPS
¢ 2 Addr. Register Mods 60 MOPS
¢ 1 Loop Counter Update 25 MOPS

TOTAL I/0 = 320Mbytes/sec

¢ 1 Branch 25 MOPS
DMA COPROCESSOR

3 OPS/Cycle = 75 MOPS

* 1 Data Access 25 MOPS

o 1 Addr. Register Mods. 25 MOPS
« 1 Transfer Counter 25 MOPS
Update

TOTAL MOPS = 275 MOPS

1-6 Introduction

TMS320C4x Features -
1

Without the six communication ports, 120 Mbytes/sec of processor through-
put must be squeezed over one or both of the external memory interfaces,
thereby saturating processor throughput, likewise turning the system into
a complex shared memory architecture. With the communication ports,
bandwidth is plentiful (illustrated in Figure 1-2).

1.3.2 Communication Port Benefits

Figure 1-2. TMS320C40 Throughput Increases Use of Communication Ports

CPU only CPU Communication
Ports
100% 100:/
Interprocessor P
Communication -
- Data Accesses
c
c c B g
2 | Data Accesses 2 AR
ﬁ N @ -2
= = (S =
= - = o 3
g ?g Program g §
@ 'lzf%gegasf‘; @ Accesses €0
C s
200 200 320
Mbytes/Sec Mbytes/Sec Mbytes/Sec

1-7

- TMS320C4x Features
1

1.3.3 DMA Coprocessor Benefits

Without the DMA coprocessor, the CPU would have to use computational
MOPS to transfer data within the processor’s memory map. With the DMA
coprocessor, the CPU can focus its entire 200 MOPS of performance on
quality computational tasks while the DMA coprocessor takes care of the
burdensome 1I/O. This is illustrated in Figure 1-3.

Figure 1-3. TMS320C40 Throughput Increases Use of DMA Coprocessor

CPU only CPU DMA Coprocessor
100% 100%
Data ///
Management P Program Control
b
7 “—
7 c
Program Control P 2
o i o @
E El muLTALU o 8
| 58
MULT/ALU az=

MOPS MOPS MOPS

1-8 Introduction

TMS320C4x Features -
o< 1

1.3.4 TMS320C40 Parallel Processing Development Tools Key Features
The primary TMS320C4x development tools are as follows:

Q

a

a

Parallel processing in-circuit emulator (XDS510) .

B Able to debug both C and assembly code simultaneously using the
graphical user-interface based source-level debugger

B Can debug any number of TMS320C4x devices in a system with a
single XDS510 controller card

B Can globally stop, start and single step all or any combination of
'C40s in a system.

Parallel processing development system
B Host-independent evaluation board with four 'C40s

B Each’C40 connected to every other 'C40 via their communication
ports, enabling designers to efficiently test different system
topologies

B [nterfaces directly to XDS510 emulator, creating a complete
parallel processing development environment.
Parallel processing optimizing ANSI C compiler

B Parallel runtime support library for easy implementation of data and
message passing between tasks (or processors) in parallel
processing systems

B C-source and target-specific optimizations for dense, optimal code
B Plum-Hallvalidated to ANSI standard for maximum code portability

SPOX parallel processing DSP operating system

B Parallel processing support for easy message passing within a
multitasking environment

B Communication port, DMA coprocessor, and memory interface
drivers for fast development of C code without detailed knowledge
of the hardware

B Multitasking real-time kernel for fast implementation of
multitasking system

B DSP math library for fast development of DSP applications (using
optimized assembly language routines)
Parallel processing assembler/linker

B Directives to map program and data code on specific processors for
fast integration and debug of parallel processing code

B Relocatable modules for maximum code flexibility

- TMS320C4x Features
1

Q Hardware verification and full functional models

B Simulation of multiple '‘C40’s and associated logic for accurate
development (via software simulation) of parallel processing
systems

B Accurate simulation of device bus cycles and functional execution
for fast development of product hardware

B Supports various workstation and PC environments
[State accurate simulator

B Provides cycle-by-cycle simulation of all aspects of the
TMS320C4x

B Low-cost way to simulate key software kernels
W Supported on a host of workstation and PC platforms

1-10 Introduction

Applications
1.4 Applications

Below is a list of classical DSP applications along with a number of
embedded real-time applications which need the computational
performance offered by TMS320 devices. The real time performance, low
device costs, and comprehensive development tools are the primary
aspects that which make Texas Instruments TMS320 devices the preferred
solution in the following applications:

Figure 1-4. Matrix of TMS320 DSP Applications

: Purpose DSP : " Instrumentation "

Digital Flltenng 3-D Transformations Rendering Spectrum Analysis
Convolution Robot Vision Function Generation
Correlation Image Transmission/Compression | Pattern Matching

Hilbert Transforms Pattern Recognition Seismic Processing

Fast Fourier Transforms Image Enhancement Transient Analysis

Adaptive Filtering Homomorphic Processing Digital Filtering

Windowing Workstations Phase-Locked Loops

Waveform Generation Animation/Digital Map

Mllltary :

Voice Mail Disk Control Secure Commumcatlons
Speech Vocoding Servo Control Radar Processing
Speech Recognition Robot Control Sonar Processing
Speaker Verification Laser Printer Control Image Processing
Speech Enhancement Engine Control Navigation
Speech Synthesis Motor Control Missile Guidance
Text-to-Speech Kalman Filtering Radio Frequency Modems
Neural Networks Sensor Fusion

. Telecommunications -~ .~ <. o Automotive
Echo Cancellation FAX Engine Control
ADPCM Transcoders Cellular Telephones Vibration Analysis
Digital PBXs Speaker Phones Antiskid Brakes
Line Repeaters Digital Speech Interpolation (DS!) | Adiptive Ride Control
Channel Multiplexing X.25 Packet Switching Global Positioning Navigation
1200~ to 19200-bps Modems Video Conferencing Voice Commands
Adaptive Equalizers Spread Spectrum Digital Radio
DTMF Encoding/Decoding Communications Cellular Telephones

Data Encryption

PR TR e o e o
T s iy o
iy "l, "l. ",
M, |, :, |,‘
L, ", ,

Radar Detectors Robotics Hearing Aids

Ty, 1
, 0
"- |,

Power Tools Numeric Control Patient Monitoring
Digital Audio/TV Security Access Ultra Sound Equipment
Music Synthesizer Power Line Monitors Diagnostic Tools
Toys and Games Visual Inspection Prosthetics
Solid-State Answering Machines | Lathe Control Fetal Monitors

CAM MR Imaging

Introduction

Chapter 2

Architectural Overview

The TMS320C40’s high performance is achieved through the precision and
wide dynamic range of the floating-point units, large on-chip memory, a high
degree of parallelism, and the six-channel DMA coprocessor. Figure 2-1,
beginning on the next page, is a block diagram of the TMS320C40.

This chapter gives an architectural overview of the TMS320C40 processor.
Major areas of discussion are listed below.

Section Page
2.1 Central Processing Unit (CPU)cooiienntt. 2-4
B Floating-point/integer multiplier 2-4
W ALU for floating-point, integer, and logical operations . 2-4
B 32-bitbarrelshifterl 2-4
B Internal buses (CPU1/CPU2 and REG1/REG2) 24
B Auxiliary register arithmetic units (ARAUs) 2-6
B Primary registerfileia 2-6
B CPU expansionregisterfile........................ 2-9
2.2 Memory Organization)ccociiiiiiinineninnnnn 2-10
B RAM,ROM,andcachecccviunnvnnnn. 2-10
B Memorymapscovvteiiiinnierennnneenerennnnes 2-12
M Memory addressingmodesoiiiinnnn. 2-15
2.3 InstructionSetSummaryooiiiiiiiiii i, 2-16
2.4 InternalBusOperationccooiiiiiiiiiiiinn.. 2-26
2.5 External Bus Operationcccoiviiiiiinnnnnnnnn. 2-27
2.6 Peripherals.........ccoiiiiiiiiiiii i i 2-28
B Communication portscccviiiiinnineannn 2-29
B Direct memory access (DMA) coprocessor 2-29
L 1011 = 2-29

TMS320C40 Block Diagram

Figure 2-1. TMS320C40 Block Diagram

2 Cache RAM Block 0 RAM Block 1 ROM Block
(512 Bytes) (4K Bytes) (4K Bytes) (Reserved)

D(31-0) ——
A(30-0) —
% —

AE
STAT(3-0)
LOCK
STRBO,1
RWO,1
PAGEO,1
RDY0,1
CE0,1

Continued on next page

L

X1 ¢—
X2/CLKIN —
TCLKO 4P
TCLK1 4P
ROMEN —P
RESET —W|
RESET-
LOC (0.1)—¥
NMi —P
1IOF(3-0) 4P
JACK €4—
H1 €—
H3 €—
Cvss —P
DVpp —P
DVgs —P
Vgs —M
LADVpp —P
LDDVpp —P
VppL —¥
VssL —P
sups —¥

Yao

Multiplier

Y40 Y40

32-Bit Barrel
Shifter

Y40 —

A —=—0=~300

Extended || 40
Precision il
Register 4
I sRO-Rﬂ!

DISP, IR0, IR1

ARAUO ARAUA
BK

Auxiliary 3
Registers || 4%
(AR0-AR7) |le—324

2.2 Architectural Overview

TMS320C40 Block Diagram

Figure 2-1.

Continued from previous page

TMS320C40 Block Diagram (Concluded)

DMA Coprocessor

DMA Channel 3
DMA Channel 4
DMA Channel 5

N

6 DMA Channels

nuecm@m ®»~o0

e

—D =~ ® TV — 0V E

— LD(31-0)
— LA(30-0)
— LDE
— LAE
— LSTAT(3-0)
—— LLOCK
—— LSTRBO,1
—5" LRWO,1
[— LPAGEO,1
—— LRDY0,1
[— LCEO,1
COM Port 0 N
Input 4% CREQO
FIFo 3 CSTRBO
Output PAU «—» CRDYO
FIFO +—» CDO(7-0)
Port Control Registers
°
] 6 Communi-
: . cation Ports
— COM Port 5 —
P T «» CREG5
r FIFO 4—» CACK5
i, Towa | PV [&0
P v FIFO
h . <% CD5(7-0)
. $—] Port Control Registers 7
r >
a H Timer 0
! Global Control Register
A Time Period Register [4—— TCLKO
d Timer Counter Register
3 I
i > Timer 1
: Time Period Register] [¢ > TCLK1
Timer Counter Register
B -
u ‘ Port Control
Sf—»> Global
i Local

2-3

TMS320C40 CPU

2.1 Central Processing Unit (CPU)

The TMS320C40 has a register-based CPU architecture. The CPU com-
prises the following components:

Q Floating-point/integer multiplier

 ALU for performing arithmetic: floating-point, integer, and logical opera-
tions

32-bit barrel shifter
Internal buses (CPU1/CPU2 and REG1/REG2)
Auxiliary register arithmetic units (ARAUSs)

(I Wy iy =

CPU register file

Figure 2—2 shows the various CPU components that are discussed in the
succeeding subsections.

2.1.1 Multiplier

The multiplier performs single-cycle multiplications on 32-bit integer and
40-bit floating-point values. The TMS320C40 implementation of float-
ing-point arithmetic allows for floating-point operations at fixed-point
speeds via a 40-ns instruction cycle and a high degree of parallelism. To
gain even higher throughput, you can use parallel instructions to perform a
multiply and ALU operation in a single cycle.

When the multiplier performs floating-point multiplication, the inputs are
40-bit floating-point numbers, and the result is a 40-bit floating-point num-
ber. When the multiplier performs integer multiplication, the input data is 32
bits and yields either the 32 most significant bits or 32 least significant bits
of the resulting 64-bit product. Refer to Chapter 4 for detailed information
on data formats and floating-point operation.

2.1.2 Arithmetic Logic Unit (ALU)

The ALU performs single-cycle operations on 32-bit integer, 32-bit logical,
and 40-bit floating-point data, including single-cycle integer and float-
ing-point conversions. Results of the ALU are always maintained in 32-bit
integer or 40-bit floating-point formats. The barrel shifter is used to shift up
to 32 bits left or right in a single cycle.

Internal buses, CPU1/CPU2 and REG1/REG2, carry two operands from
memory and two operands from the register file, thus allowing parallel multi-
plies and adds/subtracts on four integer or floating-point operands in a
single cycle.

Architectural Overview

TMS320C40 CPU

Figure 2-2. Central Processing Unit (CPU)

40 a0 40 T4

- 32-Bit Barrel
Multiplier Shifter

ALU
’l’ 40 T40
Extended || 40
Precision
Registers 4
(RO-R11) || ?
*Disp, IR0, IR1
]\.ARAUO,ZKQARAUt
Auxil 32
uxiliary ([T
Registers ||-—= 32
(ARO-AR7) || 32
Other
Registers || \32
(14)

* Disp = an 8-bit integer displacement carried in a program control instruction

2-5

TMS320C40 CPU

2.1.3 Auxiliary Register Arithmetic Units (ARAUSs)

Two auxiliary register arithmetic units (ARAUO and ARAU1) can generate
two addresses in a single cycle. The ARAUs operate in parallel with the mul-
tiplier and ALU. They support addressing with displacements, index regis-
ters (IR0 and IR1), and circular and bit-reversed addressing. Refer to Chap-
ter 5 for a description of addressing modes.

2.1.4 CPU Primary Register File

2-6

The TMS320C40 primary register file provides 32 registers in a multiport
registerfile that is tightly coupled to the CPU. Table 2-1 lists register names
and functions, followed by the section number and page of each description.
(The expansion register file is described in subsection 2.1.5 on page 2-9.)

All of the primary register file registers can be operated upon by the multipli-
er and ALU, and can be used as general-purpose registers. However, the
registers also have some special functions. For example, the 12 ex-
tended-precision registers are especially suited for maintaining float-
ing-point results. The eight auxiliary registers support a variety of indirect
addressing modes and can be used as general-purpose 32-bit integer and
logical registers. The remaining registers provide system functions such as
addressing, stack management, processor status, interrupts, and block re-
peat. Refer to Chapter 3 for detailed information on the CPU registers. Re-
fer to Chapter 5 for register usage in addressing.

The extended-precision registers (R0—R11) are capable of storing and
supporting operations on 32-bit integer and 40-bit floating-point numbers.
Any instruction that assumes the operands are floating-point numbers uses
bits 39-0. If the operands are either signed or unsigned integers, only bits
31-0 are used, and bits 39-32 remain unchanged. This is true for all shift
operations. Refer to Chapter 4 for extended-precision register formats for
floating-point and integer numbers.

The 32-bit auxiliary registers (AR0-AR7) can be accessed by the CPU
and modified by the two auxiliary register arithmetic units (ARAUSs). The pri-
mary function of the auxiliary registers is the generation of 32-bit addresses.
They can also be used as loop counters or as 32-bit general-purpose regis-
ters that can be modified by the multiplier and ALU. Refer to Chapter 5 for
detailed information and examples of the use of auxiliary registers in ad-
dressing.

Architectural Overview

TMS320C40 CPU

Table 2-1.

CPU Primary Registers
For Further
| Assembler Description, See:
Syntax Assigned Function Name Paragraph Page
RO Extended-precision register 0 3.1.1 3-4
R1 Extended-precision register 1 3.1.1 3-4
R2 Extended-precision register 2 3.1.1 3-4
R3 Extended-precision register 3 3.1.1 3-4
R4 Extended-precision register 4 3.1.1 3-4
R5 Extended-precision register 5 3.1.1 3-4
Ré Extended-precision register 6 3.1.1 3-4
R7 Extended-precision register 7 3.1.41 3-4
R8 Extended-precision register 8 3.1.41 3-4
R9 Extended-precision register 9 3.1.1 3-4
R10 Extended-precision register 10 3.1.1 3-4
R11 Extended-precision register 11 3.1.1 3-4
ARO Aucxiliary register 0 3.1.2 3-5
AR1 Auxiliary register 1 3.1.2 3-5
AR2 Auxiliary register 2 3.1.2 3-5
AR3 Auxiliary register 3 3.1.2 3-5
AR4 Auxiliary register 4 3.1.2 3-5
AR5 Auxiliary register 5 3.1.2 3-5
ARG Auxiliary register 6 3.1.2 3-5
AR7 Auxiliary register 7 3.1.2 3-5
DP Data-page pointer 3.1.3 3-5
IRO Index register 0 314 3-5
IR1 Index register 1 3.14 3-5
BK Block-size register 3.1.5 3-5
SP System stack pointer 3.1.6 3-5
ST Status register 317 3-5
DIE DMA Coprocessor interrupt enable 3.1.8 3-8
IIE Internal-interrupt enable register 3.1.9 3-10
IIF IIOF flag register 3.1.10 3-12
RS Repeat start address 3.1.11 3-14
RE Repeat end address 3.1.11 3-14
RC Repeat counter 3.1.1 3-14

The data page pointer (DP) is a 32-bit register. The 16 LSBs of the data
page pointer are used by the direct addressing mode as a pointerto the page
of data being addressed. The 'C40 can address up to 64K pages, each page
containing 64K words. The data page pointer is illustrated in Figure 5—1
on page 5-4.

The 32-bit index registers contain the value used by the auxiliary register
arithmetic unit (ARAU) to compute an indexed address. Refer to Chapter
5 for examples of the use of index registers in addressing (see subsection
5.1.3, page 5-5, and Section 5.4, page 5-30.

The ARAU uses the 32-bit block size register (BK) in circular addressing
to specify the data block size. (Circular addressing is described in Section
5.3 on page 5-25.)

2-7

TMS320C40 CPU

The system stack pointer (SP) is a 32-bit register that contains the ad-
dress of the top of the system stack. The SP always points to the last ele-
ment pushed onto the stack. A push performs a preincrement, and a pop
performs a postdecrement of the system stack pointer. The SP is manipu-
lated by interrupts, traps, calls, returns, and the PUSH and POP instruc-
tions. Refer to Section 5.5, page 5-31, for information about system stack
management.

The status register (ST) contains global information relating to the state
of the CPU. Typically, operations set the condition flags of the status register
according to whether the result is zero, negative, etc. This includes register
load and store operations as well as arithmetic and logical functions. When
the status register is loaded, however, a bit-for-bit replacementis performed
with the contents of the source operand, regardless of the state of any bits
inthe source operand. Therefore, following a load, the contents of the status
register are identically equal to the contents of the source operand. This al-
lows the status register to be easily saved and restored. See Table 3-2 on
page 3-6 for definitions of the status register bits. :

The DMA coprocessor interrupt enable register (DIE) is a 32-bit register
containing 2- and 3-bit fields to designate the interrupt synchronization
scheme for each of the six DMA channels. It allows each DMA channel to
service a corresponding input communication port and output communica-
tion port. Also, each DMA channel can be synchronized with external inter-
rupts or the on-chip timers. This register is described in subsection 3.1.8
on page 3-8.

The CPU internal interrupt enable register (lIE) is also a 32-bit register
(described in subsection 3.1.9 on page 3-10). This register enables/dis-
ables interrupts for the six communication ports, both timers, and the six
DMA coprocessor channels. .

The IIOF flag register (lIF) controls the function (general-purpose I/O or in-
terrupt) of the four external pins (IIOFO0 to IIOF3). Interrupts can be level or
edge triggered. Subsection 3.1.10 on page 3-12 provides further descrip-
tion.

The 32-bit repeat counter (RC) register specifies the number of times a
block of code is to be repeated when performing a block repeat. When the
processor is operating in the repeat mode, the 32-bit repeat start address
register (RS) contains the starting address of the block of program memory
to be repeated, and the 32-bit repeat end address register (RE) contains
the ending address of the block to be repeated. Further information is in
subsection 3.1.11 on page 3-14.

The program counter (PC) is a 32-bit register containing the address of the
nextinstruction to be fetched. Although the PC is not part of the CPU register

Architectural Overview

TMS320C40 CPU

file, it is a register that can be modified by instructions that modify the pro-
gram flow.

2.1.5 CPU Expansion Register File

Besides the CPU primary register file (just covered in subsection 2.1.4,
starting on page 2-6), the expansion register file contains two special reg-
isters that act as pointers:

O IVTP register (points to the interrupt-vector table, which is shown in
Figure 3-8 on page 3-16),

Q TVTP register (points to the trap vector table (TVT), which defines vec-
tors for 512 interrupts. This is described in Figure 3-7 on page 3-15).

These two registers are fully described in Section 3.2 on page 3-15.

2-9

Memory Organization

2.2 Memory Organization

The total memory reach of the TMS320C40 is 4G (giga or billion) 32-bit
words (4 Gbytes). Program memory (on-chip RAM or ROM and external
memory) as well as registers affecting timers, communication ports, and
DMA channels are contained within this space. This allows tables, coeffi-
cients, program code, and data to be stored in either RAM or ROM. Thus,
memory usage is maximized, and memory space allocated as desired.

By manipulating one external pin (ROMEN, pin AK4), the first one-mega-
word area of memory (0000 0000h to 000F FFFFh) can be configured to be
part of the local address bus or configured to address the on—chip ROM
when using the boot loader (with remaining space reserved). (This is further
discussed in Section 3.4 on page 3-18.)

221 RAM, ROM, and Cache

2-10

Figure 2—3 shows how the memory is organized on the TMS320C40. RAM
blocks 0 and 1 are 4K bytes (1K x 32 bits) each. The ROM block is reserved
and contains a boot loader. Each RAM and ROM block is capable of sup-
porting two accesses in a single cycle. The separate program buses, data
buses, and DMA buses allow for parallel program fetches, data reads and
writes, and DMA operations. For example: the CPU can access two data
values in one RAM block and perform an external program fetch in parallel
with the DMA coprocessor loading another RAM block, all within a single
cycle.

The reserved ROM block (upper right in Figure 2—3) contains a boot loader.
This loader supports loading of program and data at reset time. Loading is
from 8-, 16-, or 32-bit wide memories or any one of the six communication
ports. Section 13.2 (page 13-5) explains the boot loader in detail.

A 128 x 32-bit instruction cache is provided to store often-repeated sections
of code, thus greatly reducing the number of needed off-chip accesses. This
allows for code to be stored off-chip in slower, lower-cost memories. The ex-
ternal buses are also freed for use by the DMA, external memory fetches,
or other devices in the system.

For further information about the memory and instruction cache, refer to
Section 3.4 (memory organization — page 3-18) and Section 3.5 (cache
memory — page 3-25).

Architectural Overview

Memory Organization

Figure 2-3.

D(31-0) —
A(30-0) —

_D_E.——a

AE
STAT(3-0)
LOCK
STRBx
RWx
PAGEx
RDYx
CEx

Memory Organization
Cache RAM RAM
(128 x 32) Block 0 Block 1 (;‘&M Block)
(512 bytes) (1Kx 32) (1K x32) (Rm“‘d"m)

N, e

Program Counter/
Instruction Register

— LD(31-0)

— LSTAT(3-0)
— LLOCK
— LSTRBx
— LRWx
— LPAGEx
— LRDYx

— LCEx

N e/
CPU

A

Coprocessor

2-11

Memory Organization

2.2.2 Memory Maps

Two memory maps are available as shown in Figure 2—4; the one selected
depends upon the level at external pin ROMEN. Both maps in the figure il-
lustrate the 4-gigaword reach of the 'C40; however, they differ in the first 1
megaword of memory in which:

3

]

A one at external pin ROMEN (pin AK4) causes internal ROM to be en-
abled at 0000h with the one-megaword space reserved (0000 0000h
— 000F FFFFh). This is shown in the right side of the figure.

A zero at ROMEN causes addresses 0000 0000h — 000F FFFFh to be
accessible on the local bus. This is shown in the left side of the figure.

The rest of the memory map is the same for either level of ROMEN:

a

Q
a
a

The second megaword of memory is devoted to peripherals (as shown
in Figure 2-5).

The third megaword of memory contains the two 1K (4K-byte) blocks
of RAM (BLKO and BLK1 as shown at 002F F800h — 002F FFFFh).
The rest of the first 2 gigawords (0030 0000h — 7FFF FFFFh) is on the
local bus (external).

The second 2 gigawords (8000 0000h — FFFF FFFFh) are on the global
bus (external).

Section 3.4 (page 3-18) describes the memory maps in greater detail. Sec-
tions 7.1, 7.2, and 7.3, beginning on page 7-3, discuss the local and global
interfaces to these memories.The peripheral bus map and the vector loca-
tions for reset, interrupts, and traps are also explained.

Architectural Overview

Memory Organization

Figure 2-4. Memory Maps

00000 0000h

00000 OFFFh
00000 1000h

Romen Bit
A—

Structure
Depends Upon

0000F FFFFh
Peripherals (Internal) 00010 0000h Peripherals (Internal)

e...(SeeFigure2-5) 1 00010 00FFh (See Figure 2-5)

M 00010 0100h

Reserved Reserved

N

0001F FFFFh
00020 0000h"

Reserved Reserved
iM | 0002F F7FFh

" T RAM BIK S (i ~ | Q002 F8O0N I~ 5 3533 IR G v ™

1K RAM BLK 1 (Internal) _ | 0002F FCOOh Py Tt
(Internal) 0002F ECoon 1K RAM BLK 1 (Internal)

.00030 0000h

Local Bus Local Bus

23‘3’\9 (External) e e (External) e

Structure ldentical
A

K] 07FFF FFFFh
08000 0000h

é Global Bus < Global Bus %
2G (External) (External)

. _y OFFFF FFFFh

(a) Internal ROM Disabled (b) Internal ROM Enabled
(ROMEN = 0) (ROMEN = 1)

2-13

Memory Organization

Figure 2-5. Peripheral Memory Map

0010 0010h
0010 001Fh

0010 0020h [*, Tifne is)-"

0010 002Fh |,

0010 0030h
0010 003Fh ["

0010 0040h
0010 004Fh
0010 0050h
0010 005Fh

0010 0060h
0010 006Fh
0010 0070h
0010 007Fh

0010 0080h
0010 008Fh

0010 0090h
0010 009Fh

0010 00AOh
0010 00AFh

0010 00BOh
0010 00BFh

0010 00COh
0010 00CFh

0010 00DON
0010 00DFh

0010 00EOh
0010 00EFh

0010 00FOh
0010 00FFh

2-14 Architectural Overview

Memory Organization

2.2.3 Memory Addressing Modes

The TMS320C40 supports a base set of general-purpose instructions as
well as arithmetic-intensive instructions that are particularly suited for digital |4
signal processing and other numeric-intensive applications. Refer to Chap-

ter 5 for detailed information on addressing.

Four groups of addressing modes are provided on the TMS320C40 (major
headings below). Each group uses two or more of several different address-
ing types, as shown for each group in the following list:

1) General addressing modes:

W Register. The operand is a CPU register.

B |mmediate. The operand is a 16-bit immediate value.

B Direct. The operand is the contents of a 32-bit address
(concatenation of 16 bits of the data page pointer and a 16-bit
operand).

B |ndirect. A 32-bit auxiliary register indicates the address of the
operand.

2) Three-operand addressing modes:
B Register (same as for general addressing mode).
B Indirect (same as for general addressing mode).
B Immediate (same as for general addressing mode).

3) Parallel addressing modes:
B Register. The operand is an extended-precision register.
B Indirect (same as for general addressing mode).

4) Branch addressing modes:
B Register (same as for general addressing mode).
B PC-relative. A signed 16-bit displacement ora 24-bit displacement
is added to the PC.

2-15

TMS320C40 Instruction Set

2.3

Instruction Set Summary

Table 2-2 lists the TMS320C40 instruction set in alphabetical order. Each
table entry shows the instruction mnemonic, description, and operation. Re-
fer to Chapter 11 for a functional listing of the instructions and individual in-

2-16

struction descriptions.

Table 2-2. Instruction Set Summary
Mnemonic Description Operation

ABSF Absolute value of a floating-point number | |sr¢] — Rn

ABSI- Absolute value of an integer |src{ — Dreg

| ADDC Add integers with carry src + Dreg + C — Dreg

ADDC3 Add integers with carry (3-operand) srel + sre2 + C — Dreg

ADDF Add floating-point values src+Rn— Rn

ADDF3 Add floating-point values (3-operand) srel + sre2 — Rn

ADDI Add integers src+ Dreg — Dreg

ADDI3 Add integers (3-operand) srel + src2 + — Dreg

AND Bitwise logical-AND Dreg AND src — Dreg

AND3 Bitwise logical-AND (3-operand) src1 AND src2 — Dreg

ANDN Bitwise logical-AND with complement Dreg AND src — Dreg

ANDNS3 Bitwise logical-ANDN (3-operand) srct AND src2 — Dreg

If count 2 0:
ASH Arithmetic shift El(sser']med Dreg left by count) — Dreg
(Shifted Dreg right by |count|) — Dreg
If count 2 0:
ASH3 Arithmetic shift (3-operand) E}S%h‘“ed src left by count) — Dreg
(Shifted srcright by |count|) — Dreg
LEGEND:

sre general addressing modes Dreg register address (any register)
srctl three-operand addressing modes Rn register address (RO — R11)
src2 three-operand addressing modes Daddr destination memory address
Csrc conditional-branch addressing modes ARn auxiliary register n (ARO — AR7)
Sreg register address (any register) cond condition code (see Table 11-8)
count shift value (general addressing modes) ST status register
SP stack pointer RE repeat interrupt register
GIE global interrupt enable register RS repeat start register
RM repeat mode bit PC program counter
TOS top of stack C carry bit

Architectural Overview

TMS320C40 Instruction Set

Table 2-2.

Instruction Set Summary (Continued)

Mnemonic

Description

Operation

Bcond

Branch conditionally (standard)

If cond = true:

If Csrcis aregister, Csrc — PC

If Csrcis avalue, Csrc+PC+1—PC
Else:PC +1— PC

BcondAF

Branch conditionally delayed and annul if
false

If condis true:
If srcis a register:
src— PC
If srcis a displacement:
src + PC of branch + 3 —» PC
Else: If condis false, annul execute phase re—
sults of next 3 instructions and continue

BcondAT

Branch conditionally delayed and annul if
true

If cond is true:
If srcis a register:
src— PC
annul execute phase results of next 3
instructions
If srcis a displacement:
src + PC of branch + 3 — PC
annul execute phase results of next 3
instructions
Else: continue

BcondD

Branch conditionally (delayed)

If cond = true:

If Csrcis aregister, Csrc = PC

If Csrcis avalue, Csrc+ PC + 3> PC
Eilse:PC+1—>PC

BR

Branch unconditionally (standard)

Csrc+PC+1— PC

BRD

Branch unconditionally (delayed)

Csrc+PC+3— PC'

CALL

Call subroutine

PC+1—TOS
Csrc+PC+1— PC

CALLcond

Call subroutine conditionally

If cond = true:

PC+1— TOS

If Csrcis a register, Csrc — PC

If Csrcis a value, Csrc + PC — PC
Else:PC+1— PC

CMPF

Compare floating-point values

Set flags on Rn — sre

CMPF3

Compare floating-point values
(3-operand)

Set flags on src1 — src2

CMPI.

Compare integers

Set flags on Dreg - src

CMPI3

Compare integers (3—operand)

Set flags on sre1 — src2

DBcond

Decrement and branch conditionally
(standard)

ARn-1 — ARn
If cond = true and ARn = 0:
If Csrcis aregister, Csrc = PC
If Csrcis avalue, Csrc+ PC+1— PC

Else: PC+1 —> PC

2-17

TMS320C40 Instruction Set

Table 2-2. Instruction Set Summary (Continued)
Mnemonic Description Operation
ARn-1— ARn
- If cond = true and ARn = 0:
DBcondD I(:)deecl;;g&e)nt and branch conditionally If Csrcis a register, Csrc — PC
If Csrcis a value, Csrc+ PC +3 — PC
Else:PC +1— PC
FIX Convert floating-point value to integer Fix (src) — Dreg
FLOAT Convert integer to floating-point value Float(src) = Rn
FRIEEE Convert from IEEE format Convert src from |IEEE format — Dreg
Perform a dummy read with IACK = 0
IACK Interrupt acknowledge At end of dummy read, set IACK = 0
IDLE Idle until interrupt PC + 1 — PC, then Idle until next interrupt
If cond is true:
ST(GIE) — ST(PGIE)
ST(CF) — ST(PCF)
LATcond Link and trap conditionally ? :)’ g%gll%)
PC of LAcond + 4 — R11
trap vector N — PC
Else: continue
. . PC + 4 — R11
LA Link and jump PC of LAJ + 3 + src — PC
If condis true and srcis a gegister:
PC of LAJcond + 4 — R11 & src — PC
LAJcond Link and jump conditional y gocng‘fl&:_t'≫ry +320|_s) aR?%s%agﬁ:nleSg of
LAJcond + 3 + — PC
Else, continue
LBb Load byte Sgn extendedbyte (byte 3,2,1,0) of src— Dreg
LBUb Load byte unsigned Unsigned byte (byte 3,2,1,0) of src — Dreg
LDA Load address register src — Dreg
LDE Load floating-point exponent sre(exponent) — Rn(exponent)
Load integer from exppansion register file
LDEP to primary register file src — Dreg
LEGEND:
src general addressing modes Dreg register address (any register)
srcl three-operand addressing modes Rn register address (RO — R11)
src2 three-operand addressing modes Daddr destination memory address
Csrc conditional-branch addressing modes ARn auxiliary register n (AR0 — AR7)
Sreg register address (any register) cond condition code (see Table 11-8)
count shift value (generaljaddressing modes) ST status register
SP stack pointer RE repeat interrupt register
GIE global interrupt enable register RS repeat start register
RM repeat mode bit PC program counter
TOS top of stack

2-18

Architectural Overview

TMS320C40 Instruction Set

Table 2-2. Instruction Set Summary (Continued)
Mnemonic Description Operation
LDF Load floating-point value src— Rn
ing-poi i If cond = true, src = Rn
LDFcond Load floating-point value conditionally Else: Rn is not changed
LDFI Load floating-point value, interlocked Signal interlocked operation src — Rn
LDHI Load 16 MSBs with 16-bit immediate src — 16 MSBs of Dreg
LDI Load integer src — Dreg
: i If cond = true, src — Dreg
LDlcond Load integer conditionally Else: Dreg is not changed
LDII Load integer, interlocked Signal interlocked operation src — Dreg
LDM Load floating-point mantissa src (mantissa) — Rn (mantissa)
LDP Load data page pointer src — data page pointer
Load integer from primary register file to

LDPE expansion register file src — Dreg
LDPK Load data page pointer immediate src — DP
LHw Load half word Sign-extended half word of src — Dreg
LHUw Load half word unsigned Unsigned half word of src — Dreg

If count 2 0:
LSH Logical shift El(sDel:eg left-shifted by count) — Dreg

(Dreg right-shifted by |count|) — Dreg

If count 2 0:

LSH3 Logical shift (3-operand) El(sser ¢ left-shifted by count) — Dreg
(srcright-shifted by |count|) — Dreg

LWLet Load word, left shifted sDrrce;< (0,1,2,3) bytes and merged with Dreg —
LWRct Load word, right shifted ‘E)rr%? (0,1,2,3) bytes and merged with Dreg —
MBct Merge byte, left shifted ev.lt_hs B?egfir%?:g(on 2:3) bytes and merged
MHct Merge half word, left shifted Jffﬂl{%?zgo f_s)rg:;g(o,ﬂ half words and merged
MPYF Multiply floating-point values sreX Rn — Rn
MPYF3 Multiply floating-point value (3-operand) srcl X src2 = Rn
MPYI Multiply integers src X Dreg — Dreg
MPYI3 Multiply integers (3-operand)

src1 X src2 — Dreg

2-19

TMS320C40 Instruction Set

Table 2-2. Instruction Set Summary (Continued)
Mnemonic Description Operation
MPYSHI mmtnply signed integer and produce 32 dstX src—> Dreg
MPYSHI3 Mglgglyssé%rggr;gteger and produce 32 src1 X src2 — Dreg
MPYUHI Multlply unsigned integer and produce 32 Dreg X src — Dreg
MPYUHI3 Mglgglysugggggd integer and produce 32 sre1 X src2 — Dreg
NEGB Negate integer with borrow 0-src—C — Dreg
NEGF Negate floating-point value 0-src— Rn
NEGI Negate integer 0 - src —> Dreg
NOP No operation Modify ARn if specified
NORM Normalize floating-point value Normalize (src) — Rn
NOT Bitwise logical-complement src —> Dreg
OR Bitwise logical-OR Dreg OR src — Dreg
OR3 Bitwise logical-OR (3-operand) srel OR src2 — Dreg
POP Pop integer from stack *SP--— Dreg
POPF .| Pop floating-point value from stack *SP-—-—> Rn
PUSH Push integer on stack Sreg —> *++ SP
PUSHF Push floating-point value on stack Rn — *++SP
RCPF Reciprocal floating point 16-bit reciprocal of src — dst
RETScond Return from subroutine conditionally If cond = true or missing:
*SP—-— PC
Else: continue
RND Round floating-point value Round (src) = Rn
LEGEND:
src general addressing modes Dreg register address (any register)
srcl three-operand addressing modes Rn register address (RO — R11)
src2 three-operand addressing modes Daddr destination memory address
Csrc conditional-branch addressing modes ARn auxiliary register n (AR0 — AR7)
Sreg register address (any register) cond condition code (see Table 11-8)
count shift value (general addressing modes) ST status register
SP stack pointer RE repeat interrupt register
GIE global interrupt enable register RS repeat start register
RM repeat mode bit PC program counter
TOS top of stack Cc carry bit

2-20

Architectural Overview

TMS320C40 Instruction Set

Table 2-2. Instruction Set Summary (Continued)
Mnemonic Description Operation
ROL Rotate left Dreg rotated left 1 bit — Dreg
ROLC Rotate left through carry Dreg rotated left 1 bit through carry — Dreg
ROR Rotate right Dreg rotated right 1 bit — Dreg
RORC Rotate right through carry Dreg rotated right 1 bit through carry —
Dreg
src— RE
RPTB Repeat block of instructions 1 — ST (RM)
Next PC — RS
If srcis an immediate value (displacement)
src+ PC +3 = RE
Else:
RPTBD Repeat block delayed src— RE
1 — ST (RM)
PC of RPTBD +4 — RS
src— RC
RPTS Repeat single instruction 1— ST (RM)
Next PC — RS
Next PC — RE
RSQRF Reciprocal of square root floating point 16-bit reciprocal of square root of src — Dreg
Signal interlocked operation
SIGI Signal, interlocked Wait for interlock acknowledge
Clear interlock
STF Store floating-point value Rn —> Daddr
i i ; Rn — Daddr
STFI Store floating-point value, interlocked Signal end of interiocked operation
STI Store integer Sreg — Daddr
; ; Sreg — Daddr ‘
STh Store integer, interlocked Signal end of interlocked operation
STIK, Store integer immediate value src — Dreg
suBB Subtract integers with borrow Dreg — src— C — Dreg
SUBB3 Subtract integers with borrow (3-operand) | sret — src2 — C — Dreg
If Dreg - src 2 0:
SUBC Subtract integers conditionally

[(Dreg — src) << 1] OR 1 — Dreg
Else: Dreg << 1 — Dreg

2-21

TMS320C40 Instruction Set

Table 2-2. Instruction Set Summary (Concluded)
Mnemonic Description Operation
SUBF Subtract floating-point values Rn-src— Rn
SUBF3 Subtract floating-point values (3-operand) | sre1 — src2 = Rn
SuBli Subtract integers Dreg — src — Dreg
SuBI3 Subtract integers (3-operand) srcl — sre2 — Dreg
SUBRB Subtract reverse integer with borrow src—Dreg — C — Dreg
SUBRF Subtract reverse floating-point value src—Rn— Rn
SUBRI Subtract reverse integer src— Dreg — Dreg
SWI Software interrupt Perform emulator interrupt sequence
TOIEEE Convert to |IEEE format Convert srcto |IEEE format — dst
If cond = true or missing:
Next PC — * ++ SP
TRAPcond Trap conditionally Trap vector N — PC
0 — ST (GIE)
Else: continue
TSTB Test bit fields Dreg AND src
TSTB3 Test bit fields (3-operand) srcl AND src2
XOR Bitwise exclusive-OR Dreg XOR src — Dreg
XOR3 Bitwise exclusive-OR (3-operand) src1 XOR src2 — Dreg
LEGEND:
src general addressing modes Dreg register address (any register)
srci three-operand addressing modes Rn register address (RO — R11)
src2 three-operand addressing modes Daddr destination memory address
Csrc conditional-branch addressing modes ARn auxiliary register n (ARO — AR7)
Sreg register address (any register) addr 24-bitimmediate address (label)
count shift value (general addressing modes) cond condition code (see Table 11-8)
SP stack pointer ST status register
GIE global interrupt enable register RE repeat interrupt register
RM repeat mode bit RS repeat start register
TOS top of stack PC program counter
C carry bit
2.22 Architectural Overview

TMS320C40 Instruction Set — Parallel Instructions

Table 2-3. Parallel Instruction Set Summary

Mnemonic I Description | Operation
Parallel Arithmetic With Store Instructions
ABSF . . |src2| — dst1
Absolute value of a floating-point
|| STF gpo || src3 — dst2
ABSI : [src2| — dst1
Absolute value of an integer
l| STI g || sre3—> dst2
ADDF3 . . src1 + src2 — dst1
Add floating-point
|| STF 9P Il src3— dst2
ADDI3 . srcl + src2 — dst1
Add integer
I STI 9 || sre3—> dst2
AND3 Bitwise logical-AND src1 AND src2 — dst1
Il STI | src3— dst2
If count 2 0:
sre2 << count — dst1
ASH3 Arithmetic shift Ellé g €3 —> dst2
src2 >> |count] — dst1
|| sre3 — dst2
FIX . . . Fix(src2) — dst1
Convert floating-point to integer
| STI g-po g I| sre3 — dst2
FLOAT . . . Float(src2) — dst1
Convert integer to floating-point <
Il STF 9 P || sre3 — dst2
FRIEEE Parallel FRIEEE and STF Convert src2 from IEEE format — dst1
Il STF in parallel with sre3 — dst2
LDF . . src2 —> dst1
Load floating-point
|| STF gpo || src3— dst2
LDl . src2 — dstt
Load integer
l| STI 9 || sre3 — dst2
If count = 0:
src2 << count — dst1
LSH3 Logical shift Ellé s €3 —> dst2
sre2 >> |count| — dst1
|| sre3 — dst2

LEGEND (for parallel instructions):
srct register addr (RO — R11)
src3 register addr (RO — R11)
dst1 register addr (RO — R11)
op3 - registeraddr (RO or R1)

src2 indirect addr (disp = 0, 1, IR0, IR1)
src4 indirect addr (disp =0, 1, IR0, IR1)

-

dst2 indirect addr (disp =0, 1, IR0, IR1) '

op6 register addr (R2 or R3)

op1,0p2,0p4,0p5 - Two of these operands must be specified using register addr, and two must be specified

using indirect.

2-23

TMS320C40 Instruction Set — Parallel Instructions

Table 2-3. Parallel Instruction Set Summary (Continued)
Mnemonic Description Operation
MPYF3 . . . srci x src2 —> dst1
| STF Multiply floating-point and store || sro3— dst2
MPYI3 s sret x sre2 —> dstl1
Multiply int
Il STI Liiply integer || sre3— dst2
NEGF . . 0- src2 — dst1
Negate floating-point
I STF 9 ngpo || sre3— dst2
I g%l:EE Convert to IEEE floating point format convert src2 to IEEE format — dst?
|| sre3— dst2
‘ Parallel Arithmetic With Store Instructions (Concluded)
NEGI . 0 — src2 — dst1
Negate integer
Il sTi 9 g || sre3 — dst2
NOT src1 — dst1
Complement
I STI P || sre3— dst2
I S(‘).II_:IKS Bitwise logical-OR src1 OR src2 — dst1
. || sre3 — dst2
STF . . -sre1 —> dst1
Store floating-point
Il STF gpo || sre3 — dst2
STI . src1 — dst1
Store integer
I STI g I| src3 — dst2
SUBF3 . . sre1 —src2 — dst1
Subtract floating-point
Il STF oP || src3 — dst2
I g_lL_llB I3 Subtract integer src1 —src2 — dst1
|| sre3 — dst2
XOR3 - . src1 XOR src2 — dst1
Bitwise exclusive-OR
| STI 196 exclusiv \| sre3 —> dst2
LEGEND (for parallel instructions):
srci register addr (RO — R11) src2 indirectaddr (disp =0, 1, IR0, IR1)
src3 register addr (RO — R11) src4 indirect addr (disp =0, 1, IR0, IR1)
dst1 register addr (RO — R11) dst2 indirect addr (disp =0, 1, IR0, IR1)
op3 registeraddr (RO or R1) op6 register addr (R2 or R3)

op1,0p2,0p4d,0p5 - Two of these operands must be specified using register addr, and two must be specified

using indirect.

2-24

Architectural Overview

TMS320C40 Instruction Set — Parallel Instructions

Table 2-3. Parallel Instruction Set Summary (Concluded)
Mnemonic l Description | Operation
Parallel Load Instructions
LDF . . src2 — dst1
Load floating-point
|| LDF 9po || sro4 — dst2
LDF Load floating point and store floating src2 — dst1
|| STF point || sre3— dst2
LDI ; src2 — dst1
Load integer
|| LDI 9 || sro4 — dst2
If count 2 0:
LSH3 src2 << count — dst1
I STI Logical shift, 3 operand, and store integer | Else:
src2 >> |count] —> dst1
|| sre8 — dst2
LSH3 : . : src2 — dst1
Logical shift 3 and store integer
ST 199 9 || sre3— dst2
Parallel Multiply And Add/Subtract instructions
MPYF3 . . . op1 x op2 — op3
Multiply and add floating-point
|| ADDF3 Ply gpo || op4 + op5 —> op6
MPYF3 . . . op1 x op2 — op3
Multiply and subtract floating-point
|| SUBF3 ply 9P || op4 — 0p5 —> op6
MPYI3 . . ; op1 x op2 — op3
Multiply and add integer
|| ADDI3 Ply 9 || op4 + op5 — 0p6
MPYI3 ; : op1 x op2 — op3
Multiply and subtract integer
|| SUBI3 Ply 9 || op4 — op5 —> op6

LEGEND (for parallel instructions):
srcl register addr (RO — R11)
src3 register addr (RO — R11)
dsti register addr (RO — R11)
op3 — registeraddr (RO or R1)

op1,0p2,0p4,0p5— Two of these operands must be specified using register addr, and two must be specified

using indirect.

src2 indirectaddr (disp=0, 1, IR0, IR1)
src4 indirect addr (disp = 0, 1, IR0, IR1)
dst2 indirect addr (disp = 0, 1, IR0, IR1)

opb6 register addr (R2 or R3)

2-25

Internal Bus Operation

24

2-26

Internal Bus Operation -

Alarge portion of the TMS320C40’s high performance is due to internal bus-
ing and parallelism. Separate buses allow for parallel program fetches, data
accesses, and DMA accesses:

 program buses PADDR and PDATA

(d data buses DADDR1, DADDR2, and DDATA

d DMA buses DMAADDR and DMADATA

These buses connect all of the physical spaces (on-chip memory, off-chip
memory, and on-chip peripherals) supported by the TMS320C40.
Figure 2-3 shows these internal buses and their connection to on-chip and
off-chip memory blocks.

The program counter (PC) is connected to the 32-bit program address bus
(PADDR). The instruction register (IR) is connected to the 32-bit program
data bus (PDATA). These buses can fetch a single instruction word every
machine cycle.

The 32-bit data address buses (DADDR1 and DADDRZ2) and the 32-bit data
databus (DDATA) support two data memory accesses every machine cycle.
The DDATA bus carries data to the CPU over the CPU1 and CPU2 buses.
The CPU1 and CPU2 buses can carry two data memory operands to the
multiplier, ALU, and register file every machine cycle. Also internal to the
CPU are register buses REG1 and REG2, which can carry two data values
from the register file to the multiplier and ALU every machine cycle.
Figure 2—2 shows the buses internal to the CPU section of the processor.

The DMA controller is supported with a 32-bit address bus (DMAADDR) and
a 32-bit data bus (DMADATA). These buses allow the DMA to perform
memory accesses in parallel with the memory accesses occurring from the
data and program buses.

Architectural Overview

External Bus Operation

2.5 External Bus Operation

The TMS320C40 provides two identical external interfaces: the global
memory interface and the local memory interface. Each consists of a 32-bit
data bus, a 31-bit address bus, and two sets of control signals. Both buses
can be used to address external program/data memory or I/O space. The
buses also have external RDY signals for wait-state generation with wait
states inserted under software control. Chapter 7 covers external bus oper-
ation.

2.5.1 Interrupts

The TMS320C40 supports four external interrupts (IIOF3-0), a number of
internal interrupts, a nonmaskable, external NMI interrupt, and a nonmask-
able external RESET signal, which sets the processor to a known state. The
DMA and communication ports have their own internal interrupts. When the
CPU responds to the interrupt, the IACK pin can be used to signal an exter-
nal interrupt acknowledge. Section 6.7 (beginning on page 6-23) covers
RESET and interrupt processing.

2.5.2 Interlocked Instructions

In order for multiple processors to access global memory and share data in
acoherent manner, arbitration is necessary. This arbitration (handshaking)
is the purpose of the TMS320C40’s interlocked operations, handled
through the Interlocked instructions (explained in Section 6.4 on page 6-11).

2-27

TMS320C40 Peripherals

2.6 Peripherals

All TMS320C40 peripherals are controlled through memory-mapped regis-

ters on a dedicated peripheral bus. This peripheral bus is composed of a
32-bit data bus and a 32-bit address bus. This peripheral bus permits
straightforward communication to the peripherals. The TMS320C40 periph-
erals include two timers and two serial ports. Figure 2—6 shows the periph-
erals with associated buses and signals.

Figure 2-6. Peripheral Modules

T DADDR 1 Bus
©° DADDR 2 Bus
4 DMADATA Bus

F DMAADDR Bu

MUX
32 32
COM Port 0 N
Input <4—» CREQO
FIFO <4—» CACKO
. PAU <4—» CSTRBO
DMA Controller Output <4—» CRDYO
DMA Channel 0 FIFO <% CDO(7-0)
DMA Channel 1 A P -] Port Control Registers
DMA Channel 2 P e . S
[]
DMA Channel 3 N : . 7 Sommunication
DMA Channel 4 II> : g COM Port &
DMA Channel 5 h e » Tnput <4—p» CREQ5
\ J] e r FIFO <4—» CACK5
\/ ; ? St PAU <4—» CSTRB5
6 DMA Channels | - FIFO 4—» CRDY5
A > |€«—» CD5(7-0)
D d | Port Control Registers -
a d g
t
aje— ; > Timer 0
s}~ Global Control Register
E s Time Period Register <4—»— TCLKO
s B Timer Counter Register
u
s Timer 1
Global Control Register
Time Period Register <4—»— TCLK1
Timer Counter Register

2.28 Architectural Overview

TMS320C40 Peripherals

2.6.1 Communication Ports

Six high-speed communication ports provide rapid processor-to-processor
communication through each port's dedicated communication interfaces.
Coupled with the 'C40’s two memory interfaces (global and local), this al-

lows you to construct a parallel processor system that attains optimum sys-

tem performance by the distributing of tasks among several processors.

Each 'C40 can pass the results of its work to another, enabling each 'C40

to continue working. Chapter 8 explains communication port operation in

detail.

Communication port features:

d 160-megabit per second (20-Mbytes or 5-Mwords per second)
bidirectional data transfer operations (at 40-ns cycle time)

direct (glueless) processor-to-processor communication via eight data
lines and four control lines

buffering of all data transfers, both input and output

automatic arbitration provided to ensure communication synchroniza-
tion

synchronization between the CPU or direct-memory access (DMA)
coprocessor and the six communication ports via internal interrupts and
internal ready signals.

2.6.2 Direct Memory Access (DMA)

The six channels of the on-chip Direct Memory Access (DMA) coprocessor
can read from or write to any location in the memory map without interfering
with the operation of the CPU. This allows interfacing to slow external me-
mories and peripherals without reducing throughput to the CPU. The DMA
coprocessor contains its own address generators, source and destination
registers, and transfer counter. Dedicated DMA address and data buses al-
low for minimization of conflicts between the CPU and the DMA coproces-
sor. A DMA operation consists of a block or single-word transfer to or from
memory. A key feature of the DMA coprocessor is its ability to automatically
reinitialize each channel following a data transfer. Referto Chapter 9 for de-
tailed information on the DMA coprocessor.

2.6.3 Timers

The two timer modules are general-purpose 32-bit timer/event counters
with two signaling modes and internal or external clocking. They can signal
internally to the ’C40 or externally to the outside world at specified intervals,
orthey can count external events. Eachtimer has anl/O pinthatcanbe used
as an input clock to the timer, as an output signal driven by the timer, or as
ageneral-purpose I/O pin. Timers are described in detail in Section9.10 on
page 9-45.

o o0 Q@

2-29

2-30

Architectural Overview

Chapter 3

CPU Registers, Memory, and Cache

0

The CPU primary register file contains 32 registers that can be used as
operands by the multiplier and ALU (arithmetic logic unit). The register file
includes the auxiliary registers, extended-precision registers, and index
registers. These registers support addressing, floating-point/integer opera-
tions, stack management, processor status, block repeats, branching, and
interrupts.

The CPU expansion register file contains two registers — the interrupt
vector table pointer (IVTP) and the trap vector table pointer (TVTP).

The TMS320C40 accesses a total memory space of 4G (giga = 1 billion)
32-bit words (16 gigabytes) of program, data, and I/O space. Two internal
RAM blocks of 1K x 32 bits each (4K bytes) and an internal ROM block con-
taining a boot loader permit two accesses per block in a single cycle.

A 128x 32-bitinstruction cache stores often-repeated sections of code. The
cache greatly reduces the number of off-chip accesses, allowing code to be
stored off-chip in slower, lower-cost memories without degrading perform-
ance. The cache also speeds data fetches to the same physical space as
the program by not burdening the bus with program instruction fetches.
Three bits in the CPU status register control the clear, enable, or freeze of
the cache.

This chapter describes in detail each of the CPU registers, the memory
maps, and the instruction cache. Major topics are as follows:

Section Page
3.1 CPUPrimary RegisterFilecooiiiiiiiit. 3-3
B Extended-Precision Registers (RO-R11) 3-4
B Auxiliary Registers (ARO-AR7)coiiiiiinn. 3-5
B Data-Page Pointer (DP)t 3-5
B Index Registers (IR0, IR1), 3-5
B Block-Size Register (BK) ..., 3-5
B System Stack Pointer (SP) ... 3-5

CPU Registers, Memory, and Cache

Section Page
B Status Register (ST)cviiiiiiiii e 3-5
B DMA Interrupt Enable Register (DIE) 3-8
B Internal Interrupt Enable Register (IlE) 3-10
B |Interrupt Flag Register (IIF) Controls External Pins
IIOF(3—0),Timer/DMAFlagsccovvvieiinn.n 3-12
B Block-Repeat (RS, RE) and
Repeat-Count (RC) Registers 3-14
B ProgramCounter(PC)ccvviiiiiiiii . 3-14
B Reserved Bits and Compatibility . . e 3-14
3.2 CPU Expansion RegisterFile 3-15
B CPUExpansionRegisterscccoiviiiian.. 3-15
B Trap Vector Table (TVT)ovviiiiiiii e 3-15
3.3 Reset VectorMappingoovviiiiiinniininnannn. 3-17
34 MemMOry o e 3-18
B MemoryMaps ... 3-19
B Peripheral BusMemoryMap 3-20
3.5 Instruction Cache Architecture 3-25
B Cache Algorithm i 3-27
B Cache and SystemMemory 3-28
B CacheControlBitsccoiiii.. 3-29

CPU Registers, Membfy, and Cache

CPU Primary Register File

3.1 CPU Primary Register File

The TMS320C40 provides 32 registers in a multiport register file that is tight-
ly coupled to the CPU. The PC (program counter) is not included in the
32 registers. The registers’ names and assigned function are listed in
Table 3—1.

All of these registers can be used as operands by the multiplier and ALU,
and can be used as general-purpose 32-bit registers. However, the regis-
ters also have some special functions for which they are particularly appro-
priate. For example, the 12 extended-precision registers are especially

Table 3-1. CPU Primary Register File

Register
Assembler | Machine See On
Syntax Value (hex) Assigned Function Name Paragraph Page
RO 00 Extended-precision register 0 3141 3-4
R1 01 Extended-precision register 1 3.1.1 3-4
R2 02 Extended-precision register 2 3.141 3-4
R3 03 Extended-precision register 3 3.1.1 3-4
R4 04 Extended-precision register 4 3.141 3-4
R5 05 Extended-precision register 5 3.1.1 3-4
R6 06 Extended-precision register 6 3.1.1 3-4
R7 07 Extended-precision register 7 3.1.1 3-4
R8 1C Extended-precision register 8 3.1.1 3-4
R9 1D Extended-precision register 9 3.1.1 3-4
R10 1E Extended-precision register 10 3.1.1 3-4
R11 1F Extended-precision register 11 3.1.1 3-4
ARO 08 Augxiliary register 0 3.1.2 3-5
AR1 09 Auxiliary register 1 3.1.2 3-5
AR2 0A Auxiliary register 2 3.1.2 3-5
AR3 0B Auxiliary register 3 3.1.2 3-5
AR4 oc Auxiliary register 4 3.1.2 3-5
AR5 oD Auxiliary register 5 3.1.2 3-5
AR6 OE Auxiliary register 6 3.1.2 3-5
AR7 OoF Auxiliary register 7 3.1.2 3-5
DP 10 Data-page pointer 313 3-5
IRO 1 Index register 0 3.1.4 3-5
IR1 12 Index register 1 3.1.4 3-5
BK 13 Block-size register 3.15 3-5
SP 14 System stack pointer 3.1.6 3-5
ST 15 Status register 3.1.7 3-5
DIE 16 DMA coprocessor interrupt enable 3.1.8 3-8
lIE 17 Internal-interrupt enable register 3.1.9 3-10
IF 18 IIOF fiag register (IIOF3-0, timers, DMA) 3.1.10 3-12
RS 19 Repeat start address 3.1.11 3-14
RE 1A Repeat end address 3.1.11 3-14
.RC 1B Repeat counter 3.1.11 3-14

3-3

CPU Register File — Registers R0-R11

well suited for maintaining extended-precision floating-point results. The
eight auxiliary registers support a variety of indirect addressing modes and
can be used as general-purpose 32-bit integer and logical registers. The re-
maining registers provide system functions such as addressing, stack man-
agement, processor status, interrupts, and block repeat. Refer to Chapter
5 for detailed information and examples of the use of CPU registers in ad-
dressing.

3.1.1 Extended-Precision Registers (R0O—-R11)

Figure 3-1.

Figure 3-2.

The 12 extended-precision registers (R0—R11) can store and support oper-
ations on 32-bit integer and 40-bit floating-point numbers. These registers
consist of two separate and distinct regions:

O bits 39-32: dedicated to storage of the exponent (e) of the floating-point
number.

 bits 31-0: store the mantissa of the floating-point number:
H bit 31: sign bit (s),
B bits 30-0: the fraction (f).

Any instruction that assumes the operands are floating-point numbers uses
bits 39-0. Figure 3—1 illustrates the storage of 40-bit floating-point numbers
in the extended-precision registers.

Extended-Precision Register Floating-Point Format
39 32 31 30 0

A

y

mantissa

Forinteger operations, bits 31-0 of the extended-precision registers contain
the integer (signed or unsigned). Any instruction that assumes the operands
are either signed or unsigned integers uses only bits 31-0. Bits 39-32 re-
main unchanged. This is true for all shift operations. The storage of 32-bit
integers in the extended-precision registers is shown in Figure 3-2.

Extended-Precision Register Integer Format
39 32 31 ‘ 0

unchanged ’ sxgned or unsigned integer ’

CPU Registers, Memory, and Cache

CPU Register File — Registers ARx, DP, IRx, BK, SP, ST

3.1.2 Auxiliary Registers (AR0O-AR?7)

The eight 32-bit auxiliary registers (AR0—-AR7) can be accessed by the CPU
and modified by the two auxiliary register arithmetic units (ARAUSs). The pri-
mary function of the auxiliary registers is the generation of 32-bit addresses.
However, they can also operate as loop counters in indirect addressing or
as 32-bit general-purpose registers that can be modified by the multiplier
and ALU. Refer to Chapter 5 for detailed information and examples of the
use of auxiliary registers in addressing.

3.1.3 Data-Page Pointer (DP)

The data-page pointer (DP) is a 32-bit register whose 16 LSBs are used
by the direct addressing mode as a pointer to the page of data being ad-
dressed. Data pages are 64K words long with a total of 64K (65,536) pages.
Bits 31—16 are reserved; they are always read as zeroes and should not
be modified by writing to the register. The DP can be loaded by using
the LDP pseudo-instruction or the LDI instruction. Figure 5—-1 on page 5-4
describes this register’s function.

3.1.4 Index Registers (IR0, IR1)

The 32-bit index registers (IR0 and IR1) are used by the auxiliary register
arithmetic unit (ARAU) for indexing the address. IR0 is also used for bit-rev-
ersed addressing. Referto Chapter 5 for detailed information and examples
of the use of index registers in addressing. (Subsection 5.1.3 on page 5-5
covers use of the IR in indirect addressing; see the examples starting on
page 5-12. Section 5.4 on page 5-30 describes using it with bit-reversed ad-
dressing).

3.1.5 Block-Size Register (BK)

The 32-bit block-size register (BK) is used by the ARAU in circular address-
ing to specify the data block size (see Section 5.3 on page 5-25).

3.1.6 System Stack Pointer (SP)

The system stack pointer (SP) is a 32-bit register that contains the address
of the top of the system stack. The SP always points to the last element
pushed onto the stack. The SP is manipulated by interrupts, traps, calls, re-
turns, and the PUSH, PUSHF, POP, and POPF instructions. Pushes and
pops of the stack perform preincrement and postdecrement, respectively,
on all 32 bits of the SP. Refer to Section 5.5 on page 5-31 for information
about system stack management.

3.1.7 Status Register (ST)

The status register (ST) contains global information relating to the CPU
state. Typically, operations set the condition flags of the status register ac-

3-5

CPU Register File — Status Register (ST)

cording to whether the result is zero, negative, etc. This includes register
load and store operations as well as arithmetic and logical functions. How-
ever, when the ST is loaded, the contents of the load instruction’s source
operand replace the ST current contents bit for bit, regardless of the state
of any bit(s) inthe source operand. Therefore, following an ST load, the con-
tents of the ST are identical to the contents of the source operand. This al-
lows the status register to be saved easily and restored. At system reset,
0 is written to this register.

The format of the status register is shown in Figure 3-3. Table 3—2 defines
the status register bits, their names, and functions.

Figure 3-3. Status Register
31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16
rxxlxxj 06 : xI xx :"“:‘vax--:l XX | 'xxﬁ-vl g I‘:'xx | XX l xx I XX I xxT XX IAnyll
R R R R R R R R R R R R R R R R
5. 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[sc|peief e fcc | ce |cr [per| v owm]wr | w ur [N |z [v]c]
RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW
NOTE: xx = reserved bit.
R =read, W = write.
Table 3-2. Status Register Bits Summary
Bit Field
Bit Name: Function
of (o} Carry condition flag
11 v Overflow condition flag
ot Z Zero condition flag
3t N Negative condition flag
4t UF Floating-point underflow condition flag
st Lv Latched overflow condition flag
6t LUF Latched floating-point underflow condition flag
Overflow mode flag. This flag affects only integer operations.
If OVM = 0, the overflow mode is turned off; integer results that overflow are
treated in no special way.
fOVM =1,
7 OVM a) integer results overflowing in the positive direction are set to the
most positive 32-bit twos-complement number (7FFF FFFFh).
b) integer results overflowing in the negative direction are set to the
most negative 32-bit twos-complement number (8000 0000h).
Note that the functions of bits V and LV are independent of the setting of OVM.
8 RM Repeat mode flag. If RM = 1, the PC is being modified in either the repeat-
block or repeat-single mode.

t The seven condition flags (ST bits 0 — 6) are defined in Section 11.2 on page 11-10.

3-6

CPU Registers, Memory, and Cache

CPU Register File — Status Register (ST)

Table 3-2.

Status Register Bits Summary (Continued)

Bit

Bit Field
Name

Function

PCF

Previous state of bit CF. When a trap executes or an interrupt is taken, bit CF is
setto 1. When this occurs, the PCF bit is set to the CF bit's value before the trap
orinterrupt. Note that the RETI and RETID instructions copy PCF to the CF bit.

10

CF

Cache freeze. Set CF = 1 to freeze cache (cache is not updated) including LRU
(leastrecently used) stack manipulation. If the cache is enabled (CE = 1), fetches
fromthe cache are allowed, but modification of the cache contents is not allowed.
Cache clearing (CC=1) is allowed. At reset, this bit is set to zero. When CF=0,
cache clearing (CC=1) is allowed. CF is set to one when a trap or interrupt is tak-
en. Also, the RETI and RETID instructions copy PCF to the CF bit.

11

CE

Cache enable. Set CE = 1 to enable the cache, allowing the cache to be used
according to the LRU (least recently used) cache algorithm. Set CE =0 to disable
the cache; preventing cache updates or modifications (thus, no cache fetches
can be made). At reset, 0 is written to this bit. Cache clearing (CC = 1) is allowed
when CE=0. The following describe the combination of the CE and CF bits:
CE CF Effect

0 0 Cache not enabled

0 1 Cache not enabled

1 0 Cache enabled and not frozen

1 1 Cache enabled but frozen (cache read only)

12

CcC

Cacheclear. CC =1 invalidates all entries in the cache (contents notguaranteed,
“garbage”). This bit is always cleared after it is written to and thus always read
as 0. Atreset, 0 is written to this bit. All cache P flags = 0 when cache is cleared.

13

GIE

Global interrupt enable. If GIE = 1, the CPU responds to an enabled interrupt. If
GIE =0, the CPU does notrespond to an enabled interrupt (when atrap executes
or an interrupt is taken, bit GIE is set to 0). This bit does not affect interrupts on
the NMI pin. The IDLE, LAT, RETI, RETID, and TRAP instructions affect this bit's
value.)

14

PGIE

Previous state of bit GIE. When a trap executes or an interrupt is taken, bit
GIE is set to 0. When this occurs, the PGIE bit is set to the GIE bit's value
before the trap or interrupt. Note that the RETIcond and RETIcondD instruc-
tions copy PGIE to the GIE bit. At reset, this bit is set to 0.

15

SET COND

This bit determines how condition flags (ST bits 0 — 6) are set:
If SET COND = 0, condition-flags are set if the operation’s
targetis any extended-precision register (R0 — R11) com-
patible with the TMS320C30. This bit is set to 0 at reset.
If SET COND = 1, condition flags are set if the target of the
operation is any register in the primary register files except
the status register.
Condition flags are always set when a CMPF, CMPL, CMPF3, CMPI3, TSTB,
or TSTB3 instruction is executed.

16

ANALYSIS

In analysis mode — state information for emulation. Read only.

17 -31

Reserved

Value undefined. Read only. Reserved for an identification value. This value is
set by Texas Instruments (e.g., to identify device types and revisions).

3-7

CPU Register File — DMA Interrupt Enable Register (DIE)

3.1.8 DMA Coprocessor Interrupt Enable Register (DIE)

The 32-bit DMA interrupt enable register (DIE), shown in Figure 3—4, is
broken into six subfields that determine which interrupts can be usedto con-
trol the synchronization for each of the six DMA coprocessor channels. At
reset, all zeroes are written to the register.

Figure 3-4. DMA Interrupt Enable Register Bit Functions
31

29 28 26 25 23 22 20
| DOMASWRITE | DMA5READ | DOMA4WRITE | DMA4READ |
RW RW RW RW RW RW RW RW RW RW RW RW
19 17 16 14 13 1 10 8
| DbmMA3WRITE [DMA3 READ | omAazwRITE | DMA2 READ |
RW RW RW RW RW RW RW RW RW RW RW RW
7 6 5 4 3 2 1 0

| bMA1 WRITE | DMA1 READ | DMAO WRITE | DMAO READ |

R/W R/W R/W R/W RW RW R/W R/W
R =Read W = Write

Table 3—3 summarizes the interrupt activity for each of the four possible
combinations of two-bit values in DMAO and DMA1 (bottom of Figure 3—4).

Likewise, Table 3—4 (page 3-9) summarizes the interrupts enabled by
three-bit values in DMA2 through DMAS.

Note: DMA Coprocessor Uses Signals to Synchronize

The interrupts in Table 3-3 and Table 3—4 (ICRDYx, OCRDYx, TIMO,
etc.) are not vectored. The DMA uses these as signals to synchronize

DMA coprocessor transfers. This is explained in Section 9.9 on page
9-40.

3-8 CPU Registers, Memory, and Cache

CPU Register File — DMA Interrupt Enable Register (DIE)

Table 3-3. DMA Channels 0 and 1 Synchronization Interrupts (DMAO and DMAT)

B'it I\),:I::?) Interrupt Enabled at DMAO or DMA1 Interrupt Source for

I Ay | DMA0 [DMAo | omat | DMa1 DMA Synchronization

°) Read Write Read Write
00 None None None None -
01 ICRDYO | OCRDYO | ICRDY1 | OCRDY1 | From communication port
10 IIOF0 IIOF1 lIOF2 IIOF3 From external pins IOF0-I1IOF3
11 TIMO TIMO TIMO TIMO From timer TIMO

This interrupt synchronization scheme allows each DMA channel to service
a corresponding input communication port and output communication port.

Also, each DMA channel can be synchronized with external interrupts and
the on-chip timers.

Table 3-4. DMA Channels 2to 5 Synchronization Interrupts (DMAZ2 to DMA)5

Bit Value Interrupt Enabled at DMA2-DMA5T Interrupt Source for
(in DMA2to DMAS 1DMAX Read 1DMA X Write DMA Synchronization
000 None None —-—
001 TICRDY x TOCRDYx From communication port
010 TIOF0 TIOF0
011 lIOF1 lIOF1 From external pins
100 TIoF2 TIoF2 INTO - INT3
101 TIOF3 TIOF3
110 TIMO TIMO .
111 v ™M1 } From timers TIMO and TIM1

t The x in DMAX is the DMA channel number, which is also the number for the corresponding ICRDY x and
OCRDY xinterrupts. For example, an 21?1 %in both DMA2 READ and DMAS WRITE would enable interrupts
ot

ICRDY2 and OCRDYS5, respectively. er viable bit values (0102 to 1112) are the same (as shown in the
table) for DMA2 through DMAS.

Note that each DMA channel looks not only at the DMA synchronous inter-
rupts selected but also at the synchronization mode that the channel is cur-
rently using (see Table 9-4 on page 9-15). The synchronization mode is
specified by the DMA channel control registers located in the DMA
COprocessor. '

CPU Register File — CPU Internal Interrupt Enable Register (IIE)

3.1.9 CPU Internal Interrupt Enable Register (lIE)

The 32-bit internal interrupt enable register, shown in Figure 3-5, enables/
disables the following interrupts for the CPU:

Q TimersOand1,
Q For communication ports 0-5:

Input-buffer full,
Input-buffer ready,
Output-buffer ready,
Output-buffer empty .

Q DMA coprocessor channels 0-5.

Figure 3-5shows the lIE register bits, and Table 3—5 describes the interrupt
enabled, depending on the bit value. A 1 read means the corresponding in-
terrupt is enabled; a 0 indicates disabled. At reset, all zeroes are written to
the register.

CPU Registers, Memory, and Cache

CPU Register File — CPU Interrupt Enable Register (IIE)

Figure 3-5. Internal Interrupt Enable Register (IIE)
31 30 29 28 27 26 25

ETINT1 || EDMA- | EDMA- | EDMA- | EDMA- | EDMA- | EDMA-
INTS INT4 INT3 INT2 INT1 INTO

R/W RW R/W RW R/W RW RW
24 23 22 21 20 19 18 17

EOC- EOC- EIC- EIC- EOC- EOC- EIC- EIC-
EMPTY5 | RDY5 RDY5 FULL5 }| EMPTY4 | RDY4 RDY4 | FULL4
R/W RW R/W RW R/W R/W R/W RW
16 15 14 13 12 1 10 9

EOC- EOC- EIC- EIC- EOC- EOC- EIC- EIC-
EMPTY3 | RDY3 RDY3 | FULL3 | EMPTY2 [RDY2 RDY2 | FULL2

R/W R/W R/W R/W R/W R/W RIW R/W

8 7 6 5 4 3 2 1 0o
“ EOC- | EOC- | ElC- ElC- " EOC- | EOC- | EIC- ElC- “ ETINTO "
EMPTY1 | RDY1 | RDY1 | FULL1 ||EMPTYO | RDYO | RDY0 | FULLO

R/W RIW RIW RIW R/W RIW RIW R/W RW

R=Read, W =Write, R/W = Read/Write

Table 3-5. Summary of Interrupt Enable Register Bits (IIE)

IIE Bit Numbers /«“("
lIE Bit Field Name 01 2 3 4 5 °° Enables/Disables(note 1)

EICFULLX (Note 2) 13 Comm. port x input-buffer full interrupt
EICRDYx (Note 2) 14
EOCRDYx (Note 2)
EOCEMPTYx (Note 2)
EDMAINTXx (Note 2)
ETINTO

ETINTAH

Comm. port x input-buffer ready interrupt
Comm. port x output-buffer ready interrupt
Comm. port x output-buffer empty interrupt

DMA coprocessor channel x interrupt
Timer 0 interrupt

Timer 1 interrupt

NOTES: 1 The x represents a corresponding communication port number (0 — 5) or DMA coprocessor
chanel number (0 — 5). For example, ones in bits 5 and 25 enable interrupts for (a) input-buffer
full gt c:brpmu{\)ication port 1 and for (b) DMA coprocessor channel 0. (A 1 enables the interrupt;
a 0 disables it.

2. Communication port bits are shaded according to communication port number. For example,
communication port 0s bit numbers are in the first group of vertical shading. Thus, communic-
ation port 0’'s bits are 1, 2, 3, 4; communication-port 1's bits are 5, 6, 7, 8; etc. The DMA
coprocessor channel interrupts are shown the same way (e.g., EDMAINTO at bit 25,
EDMAINT1 at bit 26, etc.).

3-11

CPU Register File — Interrupt Flag Register (IIF)

3.1.10

Figure 3-6.

3-12

lIOF Flag Register (lIF) Controls External Pins IIOF(3 - 0),
Timer/DMA Flags

The lIF register controls the externalinterrupt pins IIOF (3 — 0). Useitto spec-

ify:

3 which IIOF pins are used for general-purpose 1/0O and which are used
for interrupts,

[whether a general-purpose pin is input (read only) or output (read/
write),

d whether an interrupt pin is for edge-triggered or level-triggered inter-
rupts,

[if an interrupt is enabled or disabled.

Figure 3—6 depicts the IIF register bits. Table 3-6 (page 3-13) explains
these bits in detail. Interrupt traps are shownin Figure 3—7 (page 3-15). In-
terrupts are further explained in Section 6.7 on page 6-23.

Interrupt Flag Register (lIF)

31 30 29 28 27 26 25 24
[TiNT1] omaINTs [DMAINT4 [DMAINTS | DMAINT2 | DMAINTY [DMAINTO | TINTO ||
RW RIW RIW RIW RW RW RIW RIW
23 22 21 20 19 18 17 16
" XX | XX | XX | XX I XX | XX | XX I NMI ||
R R R R R R R R
15 14 13 12 11 10 9 8
{| Enors | FLAG3 | TYPE3 | FUNC3 || ElloF2 | FLAG2 | TYPE2 | Func2 ||
RW RIW R/W RW RW RW RW RW
7 6 5 4 3 2 1 0
[Enor1 | FLAG1 | TyPE1 | FuNct || ElloFo | FLAGo | TYPEo | Funco ||
RW RW RIW RW RW RW RIW RW
R = Read (only), R/W = Read/Write, xx = Reserved, read as 0

CPU Registers, Memory, and Cache

CPU Register File — Interrupt Flag Register (lIF)

Table 3-6.

lIF Register Bits Summary

Bit Field
Name

00
{_NIF Bit Nos. Function (Note 1)

FUNCx
(note 2)

TYPEx
(note 2)

FLAGx
(note 2)

ElIOFx
(note 2)

NMI

0 1 2 3 ¢°

' Mode of pin IIOF x:
04 o 12 If FUNCx = 0, pin IIOFx is a general-purpose 1/O (R/W) pin.
. . . If FUNCx = 1, pin IlOF x is an interrupt (R) pin.

Type of function for pin IIOFx:
If pin IIOF x is a general-purpose I/O pin (FUNCx = 0):
e TYPEXx = 0 makes llOFx an input pin.
=5 9 13 TYPEx = 1 makes |IOFx an output pin
2 If pin llOF x is an interrupt pin (FUNCx = 1):
. TYPExX = 0 makes I|IOF x an edge-triggered latched interrupt,
P TYPEx = 1 makes |IOFx a level-triggered unlatched interrupt.

Flag for pin IIOF x:
If pin IlOFx is a general-purpose input pin (FUNCx = 0, TYPEx = 0),
FLAGx = the value of pin IIOFx and is read only.
If pin lIOF x is a general-purpose output pin (FUNCx =0, TYPEx = 1),
FLAGx = the value on pin IOFx and is R/W.
If pin IIOFx is an interrupt pin (FUNCx = 1):
FLAGx = 0 if interrupt is not asserted.
FLAGx = 1 if interrupt is asserted.
If 0 (zero) is written to FLAGX, the corresponding interrupt is
cleared unless an interrupt is on the same pin; in that case,
the interrupt will be set.

Disable/enable external interrupt:
ElIOFx = 0 disables external interrupts at pin lIFOx.
ElIOFx = 1 enables external interrupts at pin lIFOx.

Nonmaskable Interrupt flag (NMI). The NMl interrupt (on the external NMI pin)
behaves like other interrupts, exceptit cannot be masked (disabled) by the GIE
bit (ST bit 13) or by writing to the NMI bit itself. It is temporarily masked during
delayed branches and multicycle CPU operations. At reset, this bit is cleared.
An asserted interrupt is cleared only by servicing the interrupt. NMl is a negati-
ve-going, edge-triggered, latched interrupt. It is read only.

Reading NMI as 0 indicates the interrupt is not asserted.

Reading NMI as 1 indicates the interrupt is asserted.

16

Reserved

17- 23 Reserved; read as zeroes.

TINTO
TINTH

Timer interrupt flags 0 and 1:

Reading TINTx as 0 indicates the timer interrupt is not asserted.
24 Reading TINTx as 1 indicates the timer interrupt is asserted.
31 A zero written to this bit clears the interrupt unless the interrupt is
asserted at the same time; in that case, the interrupt will be shown
as asserted.

DMAINTx

Interrupt flag for DMA coprocessor channels 0 to 5.
Reading DMAINTx as 0 indicates the channel interrupt is not asserted.
o5 _30 Reading DMAINTx as 1 indicates the channel interrupt is asserted.
A zero written to this bit clears the interrupt unless the interrupt is
asserted at the same time; in that case, the interrupt will be
shown as asserted.

NOTES: 1
2.

The xrepresents the corresponding IOF interrupt pin (IIOF3-110F0). R = Read, /W = Read/Write
Shading organizes each communication port's bits the same as shown for the IIE register
inTable 3-5 (see note 2) on page 3-11. For example, bits 0, 1, 2, 3 apply to pin IIOFO0; bits 4, 5,
6, 7 apply to IIOF1, etc.

3-13

CPU Register File — RC, RE, RS Registers

3.1.11 Block-Repeat (RS, RE) and Repeat-Count (RC) Registers

The 32-bit repeat start address register (RS) contains the starting address
of the block of program memory to be repeated when operating in the repeat
mode.

The 32-bit repeat end address register (RE) contains the ending address
of the block of program memory to be repeated when operating in the repeat
mode.

The repeat-count register (RC) is a 32-bit register used to specify the num-
ber of times a block of code is to be repeated when performing a block re-
peat. If RC contains the number n, the loop will be executed n + 1 times.

3.1.12 Program Counter (PC)

The program counter (PC) is a 32-bit register containing the address of the
next instruction to be fetched. While the program counter is not part of the
CPU register file, it is a register that can be modified by instructions that
modify the program flow.

3.1.13 Reserved Bits and Compatibility

In order to retain compatibility with future members of the TMS320C4x fami-
ly of microprocessors, reserved bits that are read as zero must be written
as zero. Reserved bits that have an undefined value must not have their
current value modified. In other cases, maintain the reserved bits as speci-
fied.

CPU Registers, Memory, and Cache

CPU Expansion Register File — Interrupt Vectors and Trap Vectors

3.2 CPU Expansion Register File

This expansion register file contains two special control registers:
Q Interrupt-vector table pointer register (IVTP),
Q Trap-vector table pointer (TVTP).

Table 3-7. CPU Expansion Registers

Assembler Syntax Function Name

VTP Interrupt-vector table pointer. Points to start of interrupt-
vector table (shown in Figure 3-8).

Trap-vector table pointer. Points to start of the 512-trap-
vector table (shown at page bottom).

Use the LDEP instruction to load (copy) an expansion register to a primary
register (e.g., to any of the auxiliary registers ARO — AR7, see Table 3-1 on
page 3-3). For example:

LDEP IVTP, AR5 ; IVTP contents to AR5

Likewise, use the LDPE instruction to load (copy) a primary register to an
expansion register. Neither of these instructions affects the status register
condition flags.

LDPE AR5, IVTP ; AR5 contents to IVTP

Note that both the interrupt-vector table and the trap-vector table are re-
quired to lie on a 512—-word boundary; thus, the nine least-significant
bits of these pointers are zeroes (i.e., 10 0000 0000, = 512 = 200h).
Write only zeroes to these bits (though the register forces these to zeroes).
The 32-bit IVTP register points to (is essentially the base address for) the
interrupt-vector table (IVT) in memory. The contents of this table are de-
picted in Figure 3-8 on page 3-16.

The 32-bit TVTP register is essentially the base address for the trap-vector
table (TVT) in memory. This table, depicted below, contains the vectors for
the TRAP instruction’s 512—trap addresses (TRAPO-TRAP511),

The interrupt (including RESET — see Section 3.3) and trap maps can be
configured to overlap. At reset, IVTP and TVTP are set to all zeroes.

Figure 3-7. Trap Veector Table (TVT)

TVTP

TVTP + 000h v 'TRAPO i
TVTP + 001h oo TRAPT S
: o
° . TRAP509
TVTP + 1FEh . TRAP510
TVTP + 1FFh TRAP511

3-15

Notes:

CPU Expansion Register File — Interrupt and Trap Vectors

Figure 3-8.

IVTP +
IVTP

IVTP
IVTP
IVTP
IVTP

o
+ + + + + +F + + 4+ + + + + + + + + + 4+ + + + + o+ 4+

Interrupt-Vector Table (IVT)
000h

001h
002h
003h
004h
005h
006h
007h
.
00Ch
00Dh
00Eh
00Fh
010h
011h
012h
013h
014h
015h
016h
017h
018h
01%h
01Ah
01Bh
01Ch

ICFULLO

ICRDYO

OCRDY0

OCEMPTYO

ICFULL1

ICRDY1

OCRDY1

OCEMPTY1

ICFULL2

ICRDY2

OCRDY2

OCEMPTY2

ICFULL3

ICRDY3

OCRDY3

OCEMPTY3

Note 1

Note 2

Note 3

Note 4

> Note 5

/

IVTP

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

01Dh
01Eh
01Fh
020h
021h
022h
023h
024h
025h
026h
027h
028h
02%h
02Ah
02Bh

ICFULL4

ICRDY4

OCRDY4

OCEMPTY4

ICFULL5

ICRDY5

OCRDY5

OCEMPTYS

DMA INTO

DMA INTH

DMA INT2

DMA INT3

DMA INT4

DMA INTS

TINTH

02Ch | o

03Eh
03Fh

Reserved

) Note 5

yd

> Note 6

Note 3

1) Reserved for the reset vector when IVTP = 0000 0000h and RESETLOC(1,0) = 0 05 or
when IVTP=08000 0000h and RESETLOC(1,0) = 1 05. See Table 3-8.

2) NMI (nonmaskable interrupt) is discussed in Section 9.9, page 9-40.

3) Timer interrupts TINTO and TINT1 are enabled and programmed by the lIE register (subection

3.1.9, page 3-10) and monitored at the IIF register (subection 3.1.10, page 3-12).

4) External pins IIOF0-IIOF5 are programmed in the DIE register (subsection 3.1.8, page 3-8)

and IIF register.

5) The communication port I/O buffers full/ready interrupts are enabled by the DIE and IIE re-
gisters and also discussed in Table 8-1, page 8-10 (OUTPUT LEVEL & INPUT LEVEL bits).
6) DMA interrupts are enabled at the IIE register and DMA channel control register (at bits TCC
and AUX TCC explained in Table 9-1 on page 9-8).

3-16

CPU Registers, Memory, and Cache

RESET Vector Mapping

3.3 RESET Vector Mapping

The 'C40s RESET vector can reside in any one of four memory locations.
The value on two external pins (RESETLOC(1,0)) determines the RESET
vector location as shown in the following table.

Table 3-8. Four RESET Vector Locations Chosen by Values on Pins RESETLOC(1,0)

Value at RESETLOCx Pin Get RESET Vector
RESETLOC1 | RESETLOCO | From Memory Address Comment
0 0 00000 00004g Local Bus
0 1 07FFF FFFF4g Local Bus
1 0 08000 000044 Global Bus
1 1 OFFFF FFFFyg Global Bus

Note that if pin ROMEN = 1 and the vector at 0000 0000h is enabled (pins
RESETLOC(1,0) = 00), then the vector is mapped to address 0 of internal

ROM.

This mapping scheme of the RESET vector allows the TMS320C40 to be
integrated easily into systems having other processors with fixed RESET
vector locations. It also allows you to make the RESET vector either external
or internal (on-chip ROM) to the processor.

3-17

Memory

3.4 Memory

The TMS320C40’s memory space of 4 giga words (4 billion x 32 bits where
1 G = 230) is shown in the two memory maps in Figure 3-9. These maps
differ only by the makeup of the lowest address space at 0000 0000h to
0000 OFFFh. This makeup is configured by the value at pin ROMEN
(onchip — reserved — ROM enable, pin AK4):

& ROMEN = 1. Addresses 0000h — OFFFh are an accessible onchip
ROM block (reserved), and 0000 1000h — 000F FFFFh are reserved

& ROMEN = 0. Theon-chip (reserved) ROMis disabled, and address-
es 0000 0000h — O0OF FFFFh are accessible over the local bus.

Memory in both maps starting at 10 0000h is not affected by ROMEN (as
described for addresses 00000h — FFFFFh above). A general summary of
address ranges:

J 0000 0000h — 000F FFFFh: Can be local bus or on-chip (reserved)
ROM, depending on the value of pin ROMEN.

J 0010 0000h-0010 OOFFh: Internal peripherals \
(DMA coprocessor, communications ports, timers,

etc.) Instruct'iaons
0010 0100h — 001F FFFFh: Internal peripheral re- ¢ aacocsen in
gion. : these 3 areas.

0020 0000h — 002F F7FFh: Reserved.
002F F800h — 002F FBFFh: 1K RAM Block 0.
002F FCOOh — 002F FFFFh: 1K RAM Block 1.

0030 0000h - O7FFF FFFFh: Local bus. If ROMEN = 1, another part
of the local bus is at 00 0000h — OF FFFFh. These addresses activate
the local bus.

(J 08000 0000h — OFFFF FFFFh: Global bus.

oooo0 0

CPU data accesses and DMA accesses can be made from any unreserved
part of the 'C40 memory map. Instruction fetches can take place at any unre-
served area of the 'C40 memory map except at the peripheral space (ad-
dresses 0010 0000h — 0010 QOFFh).

The ’C40’s internal ROM is currently reserved for Tl internal use only.

3-18 | CPU Registers, Memory, and Cache

Memory

3.4.1 Overall Memory Map

Figure 3-9. Memory Maps
=z
g 8 % 00000 0000h - 4K ROM .
55> (Reserved)
o Accessible 00000 OFFFh _
g2 2 1M Local Bus 00000 1000h 4_.
g W (External)
w o
a 0000F FFFFh G e e
Peripherals (Internal) 00010 0000h Peripherals (Internal)
. (SeeFigure 3-10) _ _ _ | 00010 00FFh |. .. .(SeeFigure3-10) _ _ |
00010 0100h
Reserved Reserved
0001F FFFFh
00020 0000h
Reserved Reserved
M becccceccnccccacnans 0002F F7FFh e ccnncscccancsancns
| _ 1K RAM BLK 0 (internai) | S002E F80CR - '™ 5k RAM BLK 0 (internai)
. it et ey SR
Z v 1K RAMBLK 1 (Intemal) 8885’5 F‘;::’.QE{,‘ 1K RAM BLK 1 (Internal)
E) 00030 0000h
=z :
a
mp
5 2G(-3M Local Bus Local Bus
§ e (External) e <> (External)
T
}.—
»n
1 07FFF FFFFh
[08000 0000h
<§ Global Bus e e Global Bus
2G (External) (External)

(a) Internal ROM Disabled
(ROMEN = 0)

OFFFF FFFFh

<

e

(b) Internal ROM Enabled
(ROMEN = 1)

3-19

Memory — Peripheral Bus Memory Map

3.4.2 Peripheral Bus Memory Map

This map resides in addresses 0010 0000h — 0010 00FFh as shown in the
memory map, Figure 3-9. Each peripheral requires a 16-word area.

Figure 3-10. Peripheral Memory Map

/5

0010 000Fh
0010 0010h
0010 001Fh

0010 0020h | Timet
0010 002Fh },"

..............

0010 0000h |, t'6Gel arGlobel Port Coritror B "::
e subseoﬂpm&,? 1"M Figuire 35 y

1] ré N i ‘|' o I,nl“l " o l.|' |" .n |
! O I L L L L '
e st

0010 0030h |
0010 003Fh [

0010 0040h
0010 004Fh

0010 0050h
0010 005Fh

0010 0060h
0010 006Fh

0010 0070h
0010 007Fh

0010 0080h
0010 008Fh
0010 0090h
0010 009Fh
0010 00ACh
0010 00AFh

0010 00BOh i
0010 00BFh

0010 00COh
0010 00CFh

0010 00DONh
0010 00DFh

0010 00EOh
0010 O0EFh

0010 00FOh
0010 00FFh

3-20

CPU Registers, Memory, and Cache

Memory — Memory Interface and Analysis Module

3.4.2.1 Local and Global Memory Interface Control Registers

These registers control the local and global memory interfaces. They
occupy the first 16-word block of the peripheral bus memory map, shown
in Figure 3—10. The registers themselves are shown in Figure 3—11. Chap-
ter 7 covers the operation of these registers. A detailed description of these
is shown in Figure 7-2 and Table 7-3 (pages 7-7and 7-8)

‘These registers define:

the page sizes used for the two strobes of each port,

address ranges over which the strobes are active,

wait states, and

other similar operations that compose the memory interfaces.

Figure 3-11. Memory Interface Control Registers

0010 0000h |~GilobalMemioty Interface Control Register
0010 0001h

Reserved
0010 0003h
0010 0004h | I'otal.Memory Interface Control Register
0010 0005h

Reserved
0010 O0OFh

3.4.2.2 Analysis Module Registers

These registers, the second 16-word block in the peripheral bus memory
Map (Figure 3—10), are shown below in Figure 3—12. These registers are
reserved for emulation functions.

Figure 3-12. Analysis Module Registers

3-21

Memory — Timer Registers Memory Map

3.4.2.3 Timer Registers

This group of registers occupies the 0010 0020h — 0010 003Fh range in the
peripheral bus memory map, Figure 3-10, on page 3-20. Timers and their
registers are covered in detail in Section 9.10 on page 9-45.

Figure 3-13. Timer Registers

r
0010 0020h |
Reserved
Timer 0 '< 0010 0024h |.".". TimerQ Counter Register-.",",".
Reserved
0010 0028h |- Timer-0 Period Register. .
Reserved
r
0010 0030h [
Reserved
Timer 1 'ﬁ 0010 0034h [, Timer.-Counter Register, .
Reserved
0010 0038h |."~"." Timer 1 Period Register "
Reserved
0010 003Fh

3-22 7 CPU Registers, Memory, and Cache

Memory — Communication Port Memory Map

3.4.2.4 Communication Port Memory Map

Figure 3-14.

The communication-port control registers (CPCR) and input and output
FIFO buffers are illustrated below in Figure 3—14. This is the central group
of registers in the peripheral bus memory map, Figure 3-10, on page 3-20.
These are described in more detail in Chapter 8.

Communication Port Memory Map

0010 0040h
0010 0041h
0010 0042h
0010 00SOh [T EEeRT
0010 0051h | i
0010 0052h . " .
0010 0060h
0010 0061h
0010 0062h = -
0010 0070h
0010 0071h
0010 0072h
0010 0080h
0010 0081h
0010 0082h -
0010 cosoh T
0010 0091h
0010 0092h

Reserved
0010 009Fh

3-23

Memory — DMA Coprocessor Register Memory Map

3.4.2.5 DMA Coprocessor Registers
The DMA registers (shown below) are the bottom block of registers in the

peripheral bus memory map (Figure 3—10 on page 3-20). These registers
are described in Chapter 9. Figure 9-2, page 9-5, is an index to subjects.

Figure 3-15. DMA Coprocessor Memory Map

0010 00AQh +
DMA Ch 0
0010 00A8h
0010 00A%h
Reserved 2
0010 00AFh
0010 00BOh ¥
DMA Ch 1
0010 00B8h {
0010 00BSh
0010 00BFh
0010 00COh)
DMA Ch2
0010 00C8h
0010 00CSh >
Reserved
0010 00CFh
0010 00DOh)
DMACh3
0010 00D8h iew))
0010 OODQh<> <>
Reserved
0010 00DFh |
0010 OOEOh | f
Reglsters DMA Ch 4
(See ‘exploded
0010 Q0ESh |._.-View) - '
0010 00ESh
Reserved
0010 0OEFh
0010 0OFOh

0010 OOF8h
0010 00FSh

T

DMACh 5

{

Reserved
0010 O00FFh | |

3-24

010

010
010

010
010
010
010
010
010

EXPLODED VIEW OF EACH CHANNEL
REGISTER

00z0h| Control Register x ..
00z1h| Source Address x
00z2h |_Source Address Index x. -

00z3h |_Transfer Counter x . % - | DMA
00z4h | “‘Destination Address x .. %" "] Ch,
00z5h | Destination Address Index x:- X

00z7h | Auxiliary Transfer Counter X
00z8h | Auxiliary Link Pointer x

00z6h |- Link Pointer x .o 5 b i l

x = channel number (e.g., all are 1 for
channel 1, all 2 for channel 2, etc.).

z = corresponding hexadecimal digit for
channel address (e.g., substitute
an "A” for DMA channel 0, "B” for
DMA channel 1, etc.).

These registers are described in
Chapter 9, and an index of de-
scription locations is listed in
Figure 9-2 on page 9-5.

CPU Registers, Memory, and Cache

Instruction Cache Architecture

3.5 Instruction Cache Architecture

The 128 x 32-bit instruction cache speeds instruction fetches and lowers

system cost. The instruction cache allows the use of slow external memo-

ries while still achieving single-cycle access performance. The cache also

frees the external bus from program fetches, thus, allowing the use of these

buses for DMA or other system needs. The cache can operate in a com-

pletely automatic fashion without the need for external intervention. It uses -
a form of the LRU (least recently used) cache update algorithm.

The instruction cache (see Figure 3—17 on page 3-26) contains 128 32-bit
words of RAM, enough to hold 128 words of program memory. It is divided
into four 32-word segments. Associated with each segment is a 27-bit seg-
ment start address (SSA) register. For each word in the cache, there is a
corresponding single-bit present (P) flag.

When the CPU requests an instruction word, a check is made to determine
whether the word is already in the instruction cache. The partitioning of an
instruction address as used by the cache control algorithm is shown in
Figure 3—16. The 27 most significant bits (MSBs) of the instruction address
select the segment, and the 5 least significant bits define the address of the
instruction word within the pertinent segment. The 27 MSBs of the instruc-
tion address are compared with the four SSA registers. If a match is found,
the relevant P flag is checked. The P flag indicates whether or not the word
within a particular segment is already present in cache memory:

A P =1: the word is already present in cache memory.
[P =0: location in cache is invalid (e.g., contains garbage).

Figure 3-16. Address Partitioning for Cache Control Algorithm
31 54 0

se | instructionword
....... ddress within segment

If there is no match, one of the segments must be replaced by the new data.
The segment replaced in this circumstance is determined by the LRU (least
recently used) algorithm. The LRU stack (see upper right of Figure 3—17 on
page 3-26) is maintained for this purpose.

3-25

Instruction Cache Architecture

Figure 3-17. Instruction Cache Architecture

Segment Start
Address Registers

P
Flags

Segment Words

A\

Segment Word 0
Segment Word 1

Segment Word 30
Segment Word 31

le— 32 bits —»]

Segment Word 0
Segment Word 1

.

Segment Word 30
Segment Word 31

Segment Word 0
Segment Word 1

.
.
.

Segment Word 30
Segment Word 31

Segment Word 0
Segment Word 1

Segment Word 30

Segment 0

LRU
Stack

Most Recently
Used Segment
Number

Least Recently
Used Segment
Number

—=| 2 bits |

: Segment 1

Segment 2

Segment 3

Segment Word 31

3-26

CPU Registers, Memory, and Cache

Instruction Cache—Cache Algorithm

The LRU stack keeps track of which segment (0 — 3) qualifies as the least
recently used after each access to the cache. Each time a segment is ac-
cessed, its segment number is removed from the LRU stack and pushed
onto the top of the LRU stack. Therefore, the number at the top of the stack
is the most recently used segment number, and the number at the bottom
of the stack is the least recently used segment number.

At RESET, the following occur in the instruction cache:

Q all P flags are set to zero, and

Q the LRU stack is initialized with segment no. 0 at the top followed by
1,2, and 3 at the bottom. If any two SSA registers are equal (due to RE-
SET conditions) and a cache hit occurs, the instruction word is fetched
from the most recently used segment.

When a replacement is necessary, the least recently used segment is se-
lected for replacement. Also, the 32 P flags for the segment to be replaced
are set to 0, and the segment’s SSA register is replaced with the 27 MSBs
of the instruction address.

3.5.1 Cache Algorithm

When the TMS320C40 requests an instruction word from external memory,
the two possible actions are a cache hit or a cache miss.

[CacheHit. The cache contains the requested instruction, and the fol-
lowing actions occur:

B The instruction word is read from the cache.

B The number of the segment containing the word is removed from
the LRU stack and pushed to the top of the LRU stack (if notalready
atthe top), thus moving the other segment numbers toward the bot-
tom of the stack.

[d Cache Miss. The cache does not contain the instruction. Types of
cache misses are

B Subsegment miss. The segment address register matches the in-
struction address, but the relevant P flag is not set. The following
actions occur:
= The instruction word is read from memory and copied into the
cache.

= The number of the segment containing the word is removed from
the LRU stack and pushed to the top of the LRU stack (if not al-
ready at the top), thus moving the other segment numbers to-
ward the bottom of the stack.

= The relevant P flag is set.

3-27

Instruction Cache—Cache and System Memory

B Segment miss. None of the segment addresses matches the in-
struction address. The following actions occur:

= The least recently used segment is selected for replacement.
The P flags for all 32 words are cleared.

m The SSA register for the selected segment is loaded with the 27
MSBs of the address of the requested instruction word.

m Theinstruction word s fetched and copied into the cache. ltgoes
into the appropriate word of the least recently used segment. The
P flag for that word is set to 1.

= The number of the segment containing the instruction word is re-
moved from the LRU stack and pushed to the top of the LRU
stack, thus moving the other segment numbers toward the bot-
tom of the stack.

3.5.2 Cache and System Memory

3-28

Only instructions may be fetched from the program cache. All reads and
writes of data in memory bypass the cache. Program fetches from internal
memory do not modify the cache and do not generate cache hits or misses.
The program cache is a single-access memory block. Dummy program
fetches (i.e., following a branch) can generate cache misses and cache up-
dates.

Avoid using self-modifying code. If an instruction resides in cache and
the corresponding location in primary memory is modified, the copy of the
instruction in cache is not modified.

Cache can be used more efficiently by aligning program code on 32-word
address boundaries. Do this by using the ALIGN directive when coding as-
sembly language.

CPU Registers, Memory, and Cache

Instruction Cache—Cache Control Bits

3.5.3 Cache Control Bits

Four cache control bits are located in the CPU status register: the cache
clear bit (CC), the cache enable bit (CE), the cache freeze bit (CF), and the
previous cache freeze bit (PCF) as shown in Figure 3-3 on page 3-6. The

Table 3-9.

definitions of these bits are repeated below from Table 3—-2.

Cache Clear Bit (CC). Set CC = 1toinvalidate all entries in the cache (con-
tents not guaranteed, "garbage”). This bit is always cleared after it is
written to; thus, it is always read as 0. At reset, 0 is written to this bit.
The cache P flag = 0 when cache is cleared.

Cache Enable Bit (CE). Set CE = 1 to enable the cache, allowing the cache
to be used according to the LRU (least recently used) cache algo-
rithm. Set CE = 0 to disable the cache; this prevents cache updates or
modifications (thus no cache fetches can be made). Atreset, Ois writ-

ten to this bit. Cache clearing (CC = 1) is allowed when CE=0.

Cache Freeze Bit (CF). Set CF = 1 to freeze the cache (cannot be written to)
including freezing of LRU (least recently used) stack manipulation. If
the cache is enabled (CE = 1), fetches from the cache are allowed,
but modification of the cache contents is not allowed. Cache clearing
(CC=1)is allowed. . At reset, this bit is set to zero. When CF=0, cache
clearing (CC=1) is allowed. CF is set to one when a trap or interrupt is
taken. Also, the RETI and RETID instructions copy PCF to the CF bit.

Table 3-9 defines the effect of the CE and CF bits used in combina-

tion.

Combined Effect of the CE and CF Bits

CE CF Effect
0 0 Cache not enabled
0 1 Cache not enabled
1 0 Cache enabled and not frozen
1 1 Cache enabled and frozen

Previous Cache Freeze Bit (PCF). When an interrupt or trap vector is tak-
en, the CF value is copied to the PCF bit and the CF bitis setto 1. This
protects the cache during interrupt processing and is particularly use-
fulwhen code loops are interrupted. The interrupt service routine may
optionally use the cache under software control. Interrupts may also
be nested, providing that the status register is saved prior to enabling
the interrupts. When the instructions RETlcond and RETlcondD are
executed to complete interrupt processing, the contents of the PCF
bit are copied to the CF bit. '

3-29

3-30

CPU Registers, Memory, and Cache

Chapter 4

Data Formats and Floating-Point
Operation

In the TMS320C40 architecture, data is organized into three fundamental
types: integer, unsigned-integer, and floating-point. Note that the terms, in-
teger and signed-integer, are considered to be equivalent. The TMS320C40
supports short and single-precision formats for signed and unsigned inte-
gers. It also supports short, single-precision and extended-precision for-
mats for floating-point data.

Floating-point operations make fast, trouble-free, accurate, and precise
computations. Specifically, the TMS320C40 implementation of floating-
point arithmetic facilitates floating-point operations at integer speeds while
preventing problems with overflow, operand alignment, and other burden-
some tasks common in integer operations.

This chapter discusses in detail the data formats and floating-point opera-
tions supported on the TMS320C40. Major topics in this section are as fol-
lows:

Section Page
41 SignedintegerFormats ..., 4-3
B Shortinteger Formatciiiiit, 4-3
B Single-Precision Integer Format 4-3
4.2 Unsigned-Integer FOrmatsovveiinereneennnns 4-4
B Short Unsigned-integer Format) 4-4
B Single-Precision Unsigned-Integer Format 4-4
4.3 Floating-PointFormatscoiiiiiiiin... 4-5
B Short Floating-Point Format 4-6
B Single-Precision Floating-Point Format 4-7

Data Formats and Floating-Point Operation

Section Page
B Extended-Precision Floating-Point Format 4-8
B Conversion Between Floating-Point Formats 4-9
4.4 Floating-Point Conversions, IEEE/C4X 4-11
B Converting IEEE Format to Twos Complement
Floating-Point Format it 4-12
B Converting Twos Complement Floating-Point
Formatto IEEEFormatt 4-13
4.5 Floating-Point Multiplication 4-15
4.6 Floating-Point Addition and Subtraction 4-20
4.7 Normalization, (NORM Instruction) 4-24
4.8 Rounding, (RND Instruction)covviinnan.... 4-26
4.9 Floating-Point to Integer Conversions,
FIXInstructioncoviiiiiin ittt iaeeannn 4-28
4.10 Integer to Floating-Point Conversion,
FLOAT Instructioncoiiiin ittt ieenens 4-30
4.11 Reciprocal of Number, RCPF Instruction 4-31
4.12 Reciprocal of Square Root, RSQRF Instruction 4-33

Data Formats and Floating-Point Operation

Signed Integer Formats

4.1 Signed Integer Formats

The TMS320C40 supports two integer formats: a 16-bit short integer format
and a 32-bit single-precision integer format. When extended-precision
registers are used as integer operands, only bits 31— 0 are used; bits 39 —32
remain unchanged and unused.

4.1.1 Short Integer Format

The short integer format is a 16-bit twos-complement integer format used

forimmediate integer operands. For those instructions that assume integer
operands, this format is sign extended to 32 bits (see Figure 4-1). The _
range of an integer si, represented in the short integer format, is:

215 < si< 215

In Figure 4-1 and other figures in this chapter, s = sign bit.

Figure 4-1. Short Integer Format and Sign Extension of Short Integer
15 0

(a) Short Integer Format
31 16 15 0

(b) Sign Extension of a Short Integer

4.1.2 Single-Precision Integer Format

In the single-precision integer format, the integer is represented in
twos-complement notation. The range of an integer sp, represented in the
single-precision integerformat, is— 231 < sp< 231 -1, Figure 4-2 shows the
single-precision integer format.

Figure 4-2. Single-Precision Integer Format

31 0

Unsigned-integer Formats

4.2 Unsigned-Integer Formats

Two unsigned-integer formats are supported on the TMS320C40: a 16-bit
shortformat and a 32-bit single-precision format. In extended-precision reg-
isters, the unsigned-integer operands use only bits 31— 0; bits 39 — 32re-
main unchanged.

4.2.1 Short Unsigned-Integer Format

Figure 4-3 shows the16-bit, short, unsigned-integer format used forimme-
diate unsigned-integer operands. For those instructions that assume
unsigned-integer operands, this format is zero filled to 32 bits. In Figure 4-3
below, x = MSB (1 or 0).

Figure 4-3. Short Unsigned-Integer Format and Zero Fill

(a) Short Unsigned-Integer Format

1615

(b) Zero Fill of a Short Unsigned Integer

4.2.2 Single-Precision Unsigned-Integer Format

In the single-precision unsigned-integer format, the number is represented
as a 32-bit value, as shown in Figure 4—4.

Figure 4-4. Single-Precision Unsigned-Integer Format

31

4-4 Data Formats and Floating-Point Operation

Floating-Point Formats

4.3 Floating-Point Formats

All TMS320C40 floating-point formats consist of three fields: an exponent
field (e), a single-bit sign field (s), and a fraction field (f). These are
stored as shown in Figure 4-5. The exponent field is a twos-complement
number. The sign field and fraction field may be considered as one unit and
referred to as the mantissa field (man). The mantissa is used to represent
a normalized twos-complement number. In a normalized representation, a
most significant nonsign bit is implied, thus providing an additional bit of pre-
cision. The value of a floating-point number x as a function of the fields e,

s, and fis given as _
x=01.fx2¢ ifs=0

x=10.fx 28 ifs=1
x=0 if @ = most negative twos-complement
value or the specified exponent field width

Figure 4-5. Generic Floating-Point Format

<4—— man (mantissa) ~—————p>

Note: e = exponent field
s = single-bit sign field
f = fraction field

Three floating-point formats are supported on the TMS320C40:

[a short floating-point format (for immediate floating-point operands)
consisting of a 4-bit exponent, 1 sign bit, and an 11-bit fraction,

[asingle-precision format consisting of an 8-bit exponent, 1 sign bit, and
a 23-bit fraction, and

[anextended-precision format consisting of an 8-bit exponent, 1 sign bit,
and a 31-bit fraction.

Floating-Point Formats

4.3.1 Short Floating-Point Format

Figure 4-6.

Inthe short floating-point format, floating-point numbers are represented by
a twos-complement 4-bit exponent field (e) and a twos-complement 12-bit
mantissa field (man) with an implied most significant nonsign bit.

Short Floating-Point Format

15 12|11|10 0

| < man >

Operations are performed with an implied binary point between bits 11 and
10. When the implied most significant nonsign bit is made explicit, it is lo-
cated to the immediate left of the binary point. The floating-point twos-com-
plement number x in the short floating-point format is given by

x=01.fx2€ ifs=0
x=10.fx 2¢ ifs=1
x=0 fe=—8,5=0,f =0

You must u<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>